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Abstract: This study aimed to address the stability of orthodontic mini-implants submitted to an
immediate orthodontic functional load, in splinted or unsplinted conditions, further characterizing
the histomorphometric parameters of the neighboring bone tissue, in an in vivo experimental model.
Mini-implants (1.4 × 6.0 mm) were placed in the proximal tibia of New Zealand White rabbits
and immediately loaded with a 150 g force. Tissue healing was characterized within 8 weeks.
Microtomography was used to assess the mini-implants’ tipping and bone histomorphometric
indexes. Loaded implants were evaluated in splinted and unsplinted conditions, with data being
compared to that of unloaded mini-implants with the Kruskal–Wallis nonparametric test, followed
by Dunn’s multiple comparison tests. The splinting of mini-implants submitted to immediate
orthodontic loading significantly reduced the tipping to levels similar to those of unloaded mini-
implants. Immediate loading further increased the histomorphometric indexes associated with bone
formation at the peri-implant region, in both splinted and unsplinted conditions, with no significant
differences between the tension and compression regions. Accordingly, within this experimental
setting, splinting was found to lessen tipping and mini-implants’ displacement, without affecting the
increased bone formation at the peri-implant region, induced by a functional orthodontic load.

Keywords: mini-implants; splinting; bone tissue; tipping; bone histomorphometry

1. Introduction

In clinical orthodontic practice, a stable anchorage is essential to withstand the reactive
forces that derive from tooth movements, further preventing the development of negative
effects [1]. Traditionally, anchorage has been attained by the use of extra-oral or intra-oral
appliances, with associated disadvantages—such as the elaborate design, the need for high
patient compliance, and most importantly, the limited efficacy during active appliance
therapy [2,3].

In order to cope with these hindrances, innovative solutions, relying on the skeletal
anchorage upon the mini-implants’ placement, have become increasingly popular, allowing
a paradigm shift in the expected movement of the teeth resulting from orthodontic biome-
chanics. Currently, many types of mini-implants are available, characterized by distinct
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sizes, shapes, and design characteristics. From a structural point of view, mini-implants are
composed of the head—the part exposed to the oral environment, which should permit
the retention of the orthodontic accessory—the transgingival component—which allows
the transition between the endosseous part of the mini-implant and the head—and the
threadable portion—which has a cylindrical, conical, or truncated cone design and aims
at stability via direct contact with the bone tissue. Mini-implants usually range between
1.5 and 2.5 mm in diameter and between 6 and 10 mm in length, with different lengths of
the transgingival element to allow a proper adaptation of the mucosa of different thick-
nesses. Mini-implants, given their small size, allow for a high treatment versatility, simple
operation, and high efficacy, improving the effectiveness of new treatment options with
solid control over the spatial tooth displacement [4,5]. Initially limited to clinical condi-
tions in which high anchorage requirements were essential for the maximum retraction
of the anterior teeth, the application to a wide range of complex three-dimensional tooth
movements—including intrusion, extrusion, distalization, expansion, and protraction—
has been envisioned, with a very high success rate achieved—above 80–90% [6,7]. This
notwithstanding, differences in the success rates seem to occur in relation to the location of
insertion, with mandibular placement presenting an increased risk of failure as compared
to placement in the maxilla, as well as the option of inter-radicular placements in compar-
ison to extra-alveolar locations, such as palatal placement [8–10]. Mini-implants further
offer the benefits of a relatively low cost, placement in a single chairside procedure, better
patient compliance, and the possibility for immediate loading, as osseointegration is not a
requirement for effective functionality.

Successful clinical outcomes seem to be greatly correlated with the stability of mini-
implants, broadly defined by two major components: primary stability—achieved due to
the mechanical interlocking of the mini-implant within the surrounding bone during
insertion—and secondary stability—proceeding from continuous bone healing or the
remodeling process at the bone–implant interface and neighboring tissues [11]. Different
factors seem to influence the stability and, consequently, the survival and success rate of
mini-implants, broadly including patient-related (e.g., age, gender, oral hygiene levels, type
of malocclusion, location of placement, soft tissue conditions, local bone quality, and clinical
purpose), mini-implant-related (e.g., geometry, diameter, length, and thread characteristics),
and/or technique-related (e.g., operator experience, surgical protocol, loading protocol—
strength and duration of the orthodontic forces) parameters, despite the inconsistent data
from recent systematic reviews and meta-analytical studies [11–14].

Furthermore, mounting evidence has converged on the idea that, upon orthodon-
tic loading, mini-implants may not remain completely stationary, despite their overall
functional stability [15]. Whether absolute anchorage—the absence of the movement of
mini-implants in response to the forces applied to induce teeth movement—is envisaged [5],
clinical evidence supports the displacement of mini-implants under functional orthodontic
loadings and force application [16]. Although primary displacement—resulting from the
elastic characteristics of the supporting bone and associated tissues—does not seem to be
of clinical relevance for implant failure or mobility, given the low range of values—below
to 0.1 mm [15]—significant secondary displacement under orthodontic forces—due to
the remodeling processes—has been described [15,16]. This displacement may affect the
integrity of distinct anatomical structures, such as dental roots and other notable structures,
and further compromise the outcomes of the orthodontic treatment [15]. Recent biomechan-
ical and experimental in vivo studies have validated the positional shift of mini-implants
under functional orthodontic loading, in direct relation to the magnitude of the force,
further evidencing a reduction of the displacement velocity with time [17–19]. Most inter-
estingly, increased bone formation has also been attained at the bone-to-implant surface
and peri-implant region [17,18].

To minimize displacement, the splinting of mini-implants has been considered. In this
frame, oral rehabilitation approaches with splinted mini-implants have been successful [20,21],
evidencing decreased bone stress levels and reduced marginal bone loss, in comparison
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to rehabilitated unsplinted mini-implants [22]. Nonetheless, few data reports on the
functionality of splinted orthodontic mini-implants are available, and the studies conducted
seem to be broadly limited, to the best of the authors’ knowledge, to in vitro protocols [23]
or clinical case reports [24,25]. Accordingly, this study aimed to address the stability of
orthodontic mini-implants submitted to an orthodontic functional load, in splinted or
unsplinted conditions, placed in a translational experimental in vivo model. For this, a
detailed microtomographic analysis was conducted, assessing mini-implant tipping and the
distinct histomorphometric parameters of the neighboring bone tissue—further including
a segmentation into zones of tension or compression—to disclose the potential influence of
the forces on the biological outcomes. The null hypothesis was that there are no significant
differences regarding the tipping or bone histomorphometric indexes, between splinted
and unsplinted loaded orthodontic mini-implants.

2. Materials and Methods
2.1. Materials

Within the present study, the following materials were used: 60 self-tapping mini-
implants (VectorTASTM, Ormco, Amersfoort, The Netherlands) with a 6 mm length and a
1.4 mm diameter; 20 closed coil springs (ALIGN™ coil springs, Ormco, Amersfoort, The
Netherlands); 10 splints, manufactured in a cobalt-chromium-molybdenum (Co-Cr-Mo)
alloy (analytical composition of Co 61%, Cr 25%, Mo 6%, and others 8%).

2.2. Experimental Groups

In this work, the following experimental groups were considered (Figure 1):

• Group 1—Two splinted mini-implants, connected to another mini-implant through a
coil spring. Within this group, two sub-groups were independently analyzed: splinted
implants (2 Splinted) and implants connected to the coil spring (1 Splinted);

• Group 2—One mini-implant, connected to another mini-implant through a coil spring
(Loaded);

• Group 3—One unloaded mini-implant (unloaded).
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In order to guarantee the effectiveness of the load between the fixtures, the coil
extension corresponding to a 150 g force was previously determined with a dynamometer
(Correx, Haag-Streit Diagnostics, Mason, OH, USA). It was verified that a separation of
12.5 mm corresponded to the desired load, being thus-defined as the distance between the
fixtures that would be submitted to the load.

2.3. Animals

Ten male New Zealand white rabbits, with a mean weight of 2.95 ± 0.40 kg, were
acquired from a certified vendor (Granja San Bernardo, Navarra, Spain). The animals
were acclimatized for 2 weeks before any experimental intervention, in order for the
animals to adjust to the new environment. The animals were randomized into groups and
maintained in clearly labeled individual cages with environmental enrichment. Throughout
the experimental period, the animals were housed in a controlled temperature and humidity
room, with a 12 h light/dark cycle and controlled ventilation. The animals had ad libitum
access to food (2RB19, Complete feed for rabbit, Mucedola, Milano, Italy) and water.

2.4. Surgical Procedure

Animals were pre-medicated with diazepam at 1 mg/kg (intramuscular administra-
tion) and anesthetized with ketamine at 30 mg/kg and xylazine at 5 mg/kg (intramuscular
administration), supplemented with buprenorphine at 0.03 mg/kg (subcutaneous adminis-
tration), for intraoperative analgesia. Mepivacaine 3% was infiltrated within the surgical
area, and fluid therapy with sterile saline was initiated and maintained throughout the
surgical procedure. The eyes were treated with an ophthalmic ointment to prevent drying
and corneal damage. Supplemental heat was provided during the anesthetic procedure
and during recovery, to prevent hypothermia.

Upon assessment of the anesthetic plane and monitoring, the trichotomy of the anterior
area of the proximal tibia was established, followed by skin disinfection with chlorhexidine
2%. The limbs were positioned for orientation, and a full-thickness incision was established
followed by careful tissue blunt dissection, for mucoperiosteum elevation and exposure
of the bone surface. Prior to the placement of the mini-implants, cortical drilling was
conducted with a spherical drill of 0.5 mm in diameter, at a low speed. Following this,
the mini-implants were placed with a surgical engine, with a torque lower than 20 Ncm.
In the splinted conditions, the vertex of the implants’ heads was longitudinally aligned
to ensure the proper splint position. In selected conditions (Groups 1 and 2), the spring
coil was applied to the coronal portion of the mini-implants, separated by 12.5 mm, along
the main axis, immediately following implantation—immediate loading. Following this,
the tissues and the skin were closed in layers with 5/0 absorbable sutures (Safil, BBraun,
Queluz, Portugal). Infection prophylaxis was administered using enrofloxacin 10 mg/kg.

Post-operative recovery was closely monitored, namely body temperature and food
ingestion, to prevent post-operative ileus, with high-value treat food being offered as
soon as possible. During the postoperative period, animals were allowed free movement
in the cages, and an analgesic regimen with buprenorphine was maintained for 8 days.
The animals’ situation was assessed daily regarding feeding condition, weight, body
temperature, breathing, the clinical appearance of the surgical site, movement function,
and signs of pain and distress.

2.5. Sample Collection

Animals were euthanized with an anesthetic overdose of pentobarbital upon 8 weeks
of healing. To identify potential systemic alterations, a systematic necropsy was conducted
with the histopathological characterization of the liver and kidneys, with a particular focus
on potential clinical alterations and changes associated with the region of implantation.
The tibias were subsequently separated en bloc, and the soft tissues were carefully removed,
prior to fixation. The soft tissues surrounding the mini-implants were only removed upon
a detailed gross examination.
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2.6. Microtomographic Analysis

The tibias, previously fixed in 70◦ alcohol, were scanned using a Skyscan 1276 mi-
crotomographic system (Bruker micro CT NV, Kontig, Belgium), with 70 kV, 100 µA, and
a 7.5 µm voxel size resolution. Scans were conducted with the following characteristics:
rotation step of 0.2◦, 360◦ rotation, and framing averaging. Images were reconstructed in
NRecon software (Bruker, Version 1.7.4.2) with defined parameters regarding ring artifact
correction [7], beam hardening correction (5%), and a minimum/maximum CS to image
conversion of 0.0 to 0.16. The reconstructed data were aligned along the sagittal axis using
the DataViewer software (Bruker, Version 1.5.6.3) to produce new transaxial image files,
which were subsequently exported to histomorphometric analysis, performed using the
CTAnalyser software (Version 1.17.7.2). Three-dimensional images were generated using
the CTVol software (Brucker, Version 2.3.2.1), and representative samples were acquired
with the CTVox software (Bruker, Version 3.3.0). Histomorphometric analyses of the bone
tissue around the mini-implants were performed on the CTAnalyser, following established
methodologies [26–28]. The volume of interest (VOI) for the morphometric analysis was
defined as a cylinder of 2 mm in diameter and 1 mm in height, centered on each implant
(Figure 2, left). Images were segmented with 2 distinct thresholds, varying the lower and
upper grey limits, for the definition of the densities of the implant and bone. Morphometric
analyses were conducted to determine the total volume (TV)—the integral volume of the
VOI, in mm3—bone volume (BV)—the volume of the VOI segmented as bone tissue, in
mm3—and bone surface (BS)—the surface of the VOI segmented as bone tissue, in mm2.
The defined parameters allowed the determination of the following indexes: bone volume
fraction (BV/TV), defined as the ratio of the segmented bone volume to the total volume
of the VOI; the specific bone surface (BS/BV), defined as the ratio of the segmented bone
surface to the segmented bone volume of the VOI; the bone surface density (BS/TV), de-
fined as the ratio of the segmented bone surface to the total volume of the VOI; and the
bone mineral density (BMD), defined as the coefficient of the linear attenuation converted
for the physical density of hydroxyapatite, in g.cm3 of hydroxyapatite, calibrated using
an appropriate phantom. The angulation of the tip (tipping) was further determined by
the deviation from the perpendicular plan, at the implant insertion location. In selected
conditions, independent analyses were conducted on the hemicylinders defined as new
VOIs, delimitating the regions submitted to “compression” or “tension” forces, in accor-
dance with the representation in Figure 2, right. All the used software were acquired from
a Bruker microCT NV, Kontig, Belgium.
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2.7. Statistical Analysis

Statistical assessment was conducted with the SPSS software (SPSS Statistics 27, Chicago,
IL, USA). In the quantitative analysis, the data are presented as the mean ± standard deviation
(SD), considering the different replicates of the same experimental condition. The variables
were compared using the Kruskal–Wallis nonparametric test, followed by Dunn’s multiple
comparison tests, with p ≤ 0.05.

2.8. Ethical Issues

All husbandry, protocols, and procedures involving the maintenance and use of the
animals in the frame of this study were reviewed and approved by the national compe-
tent authority (Food and Veterinary Directorate-General (DGAV)), under Project License
No. 010532/2018. All procedures were further performed under the European Directive
2010/63/EU and the National Law (DL No. 113/2013), considering possible replace-
ment, reduction, and refinement strategies. All procedures were conducted by certified
researchers for the practice with animals used for scientific purposes. The manuscript was
prepared according to the ARRIVE guidelines.

3. Results and Discussion

In the present study, the stability of functionally loaded orthodontic mini-implants
was evaluated in splinted and unsplinted conditions, by the microtomographic assessment
of tipping and distinct histomorphometric parameters within the neighboring bone tissue.
Given the data obtained, the null hypothesis that there is no significant difference in
mini-implant tipping and histomorphometric bone parameters, in splinted and unsplinted
orthodontic mini-implants submitted to a functional load, was rejected.

Overall, the postoperative period was uneventful for all animals, with no reported
signs of infection, ulceration, altered tissue structure or organization at the surgical wound,
or acknowledged adverse effects. All animals gained weight between the preoperative day
and the end of the experimental period—upon 8 weeks of healing. At the necropsy, no
significant clinical alterations or histopathological alterations were systemically noticed,
nor adverse tissue responses at the implantation area—in line with the verified functional
activity of all the placed mini-implants.

The primary stability of mini-implants, in the absence of osseointegration, seems to
derive from the mechanical interlocking with the subjacent bone tissue—substantiating the
importance of bone quality and quantity within the implantation region [5]. Accordingly,
the rabbit’s proximal tibia was selected as a suitable anatomical location for the implanta-
tion of the complex experimental splint design, allowing translational assessment of the
morphological and functional characteristics of the oral bone response [29]. The rabbits’
proximal tibia offers a standardized and easily accessible anatomical location, with a thick
cortical structure in which new bone formation derives from the endosteum, being regarded
as an adequate model for implant-related research [30]. This notwithstanding, translational
analyses must not disregard the distinctive morphological arrangement, composition, and
remodeling kinetics of rabbits’ bones, as compared to those of humans [30].

The explanted tibias were subsequently characterized and analyzed by microtomogra-
phy regarding distinct histomorphometric parameters, according to the defined experimen-
tal groups. The tipping of the mini-implants was also evaluated and quantified (Figure 3).
Briefly, a low deviation from the perpendicular was verified both in the Unloaded and
2 Splinted conditions, while a higher deviation was attained in the 1 Splinted and Loaded
conditions, as verified in the microtomographic analysis (Figure 3, left). The quantitative
assessment revealed a low angulation—lower than 3◦ in both the Unloaded and 2 Splinted
groups—while a significantly higher tipping value (over 10◦, p ≤ 0.05) was verified in the
1 Splinted and Loaded conditions (Figure 3, right). Overall, regarding the mini-implants
submitted to the orthodontic load, microtomographic data evidenced that splinting was
effective in lessening tipping. The splinted mini-implants presented tipping levels similar
to those of unloaded implants and significantly less than those of unsplinted mini-implants.
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Previous studies reported that, despite providing good anchorage quality, unsplinted
mini-implants are subjected to both primary and secondary displacement, which may
reach the millimeter range in diverse directions [15]. Controlled tipping seems to be the
most-common type of movement, ranging from mean values of around 2 mm in the same
direction to −1 mm in the opposite direction of the established orthodontic force [31,32].
On the other hand, whole mini-implant displacement seems to reach mean levels of about
2.7 mm, with maximal values up to 5.5 mm [33,34]. Displacement seems to further relate to
the intensity of the orthodontic loading—low forces broadly induce tipping, while high
forces also induce displacement at the mini-implant head, with further alterations in the
velocity of migration with time [18]. From a biological point of view, the immediate or-
thodontic loading may preclude the integration of the surrounding tissues with the implant
surface, leading to localized resorption—as a mechanical reaction, given the viscoelastic
properties of the bone [35]. Splinting is expected to augment the functional surface area
accountable for the interaction and support by peri-implant tissues, improving stability and
allowing for an improved load distribution [36]. This could possibly reduce the focalization
of the initial peri-implant tissue strain, at the bone–implant interface, providing a decreased
mini-implant displacement and/or tipping upon functional loading [37].
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Splinting may, thus, be regarded as a mechanical upgrade, able to increase the thera-
peutic versatility of mini-implants in orthodontic therapeutic approaches, in particular in
clinical situations in which tipping and mini-implant displacement may be prejudicial to
the neighboring anatomical structures or significantly influence the treatment outcomes.
By increasing the area of anchorage with the splinting apparatus, the interaction with the
teeth’s center of resistance may be modulated, allowing modifications and fine-tuning of
the mode and direction elements of the tooth movement, further improving the clinical out-
comes [38]. On the other hand, splinting requires the placement of multiple mini-implants,
which widens the surgical area and the soft and hard tissue healing requirements, poten-
tially increasing the risk of trauma or tissue damage. Complementary techniques, such as
digital treatment planning and surgical guides, may be used to overcome these hindrances
and facilitate the clinical implementation of splinting in orthodontic applications [39,40].

Despite the acknowledged displacement of mini-implants upon immediate orthodon-
tic loading, the bone formation process does not seem to be hindered at the bone–implant
interface [41]. In order to disclose potential differences in the tissue response to both
splinted and non-splinted mini-implants, the bone histomorphometric parameters of the
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region neighboring the placed constructs were determined, based on microtomographic
datasets (Figure 4). Microtomography has become a methodology of relevance for the
analysis of the three-dimensional morphology and architecture of the bone-to-implant
interface and neighboring bone parameters, exceeding the limitations associated with the
methodological preparation of samples for histological analysis and restricted bidimen-
sional assessment of the structures [42,43]. Briefly, the BV/TV was found to be high on
the assessed VOIs. Comparatively, implants from the 2 Splinted, 1 Splinted, and Loaded
groups presented significantly higher levels than those of the Unloaded group (p ≤ 0.05),
with no significant differences between loaded conditions. A similar trend was attained for
the BS/BV, with all experimental groups presenting significantly higher levels than that
of the Unloaded condition (p ≤ 0.05), with no significant differences between conditions
submitted to a functional orthodontic load. Regarding the BS/TV, no significant differences
were verified between the conditions. The BV/TV is regarded as the main parameter
to evaluate the bone quantity, reflecting the proportion of mineralized tissue within the
volume of interest. The BS/BV and BS/TV are structural parameters disclosing the measure
for the bone surface per given bone volume, or tissue volume, respectively, being valu-
able for the characterization of the complexity of the bone structure [44]. Comparatively,
increased BV/TV levels suggest increased bone formation, while increased BS/BV levels
reflect an increased active surface area per unit of bone, correlating with an increase in bone
remodeling, at a specific site [45].
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Previous studies have suggested that immediate orthodontic loading does not hamper
the success rate of mini-implants within experimental in vivo assays [46] and clinical
trials [47]. In fact, despite the acknowledged tipping, as presently verified, orthodontic
loading seems to modulate the structure and properties of the bone tissue at the peri-
implant region. In distinct experimental models, an increased bone remodeling associated
with an increased deposition rate has been verified in functional orthodontic loading
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conditions [48–50]. Functional loading has been found to increase the turnover from
immature to mature bone tissue, increasing the velocity of lamellar bone production [48].
The increased remodeling might further contribute to the prevention of microdamage
and crack accumulation at the interfacial bone–implant tissue, increasing the overall peri-
implant bone properties [51].

In order to disclose potential dissimilar influences of tension or compression forces on
the biological outcomes, the defined VOI around the mini-implants was segmented into
volumes submitted to tension or compression forces (Figure 2, right), in which the BV/TV
and bone mineral density were determined (Figure 5). Briefly, loaded mini-implants—
either splinted or unsplinted—presented significantly higher levels of the BV/TV in either
tension or compression regions, than those attained for the unloaded control (p ≤ 0.05). In
addition, no significant differences were disclosed between the experimental conditions.
In regard to the bone mineral density assessment, no significant differences were verified
between the experimental conditions and control, regardless of the region being submitted
to tension or compression forces. Overall, the assessment of the segmented datasets
supports increased bone formation upon loading, regardless of the established stresses
at the interfacial region, with a similar degree of mineralization to the unloaded control.
This sustains a physiological distribution of the mineral content within the increased newly
formed bone volume, in response to functional orthodontic loading.
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Bone formation at the peri-implant region submitted to functional and constant or-
thodontic loading, in regions of tension or compression, remains a controversial topic
in the literature. Some works have reported significant differences in bone deposition,
morphometric parameters, and/or biomechanical properties, between regions submitted to
dissimilar forces [52,53]. Broadly, a trend for an increased remodeling on the compression
side has been determined when the differences were reported between the two sides [54,55]
and attributed to a specific range of the applied force magnitude and biological response
of the deformed bone [56]. More recent reports, in line with the data obtained in this
study, identified no significant differences in the bone parameters, between tension or
compression regions submitted to a functional orthodontic load [57,58]. It is possible that
the obtained differences may relate to variations within the experimental design, including
dissimilarities in the selected animal model, the characteristics of the used mini-implants,
the force and loading protocols, the location of implantation, the period of evaluation, the
methodology, and the characterization methodologies, among other variables. Regardless
of the outcomes, it has been recently suggested that the stress induction at the mini-implant
interface—in spite of the prevalence of tension or compression forces—may be the trigger
for bone remodeling, further enhancing the appositional process, leading to enhanced
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bone formation [18]. At the molecular level, whether no significant differences were ob-
tained regarding the osteocytic gene expression program, variations in the expression of
CTSK—coding for cathepsin k, a protease acknowledged as a major marker of the osteo-
clastic activity [59]—and those of RUNX2 and SP7—coding for Runt-related transcription
factor 2 and Osterix, respectively, two major transcription factors regulating the osteogenic
program [59]—were obtained in a site- and time-dependent manner [18]. Histological
analysis [18] further evidenced the presence of active cells—osteoclasts, osteoblasts, and
respective precursors—supporting the increased remodeling, in close association with in-
creased angiogenesis—the formation of vascular structures from pre-existing ones through
sprouting—a recognized vital process for bone homeostasis, in both remodeling and healing
activities [60].

This trend is supported by integrative studies, combining finite-element analysis with
biological data, which have showcased increased bone formation in regions submitted
to a higher strain intensity in both mini-implants [61] and natural teeth [62], in response
to a functional load. Comparatively, mini-implants seem to allow a higher concentration
of maximal stress responses upon loading, in relation to natural teeth. The periodontal
ligament—exclusively associated with natural teeth—is expected to contribute to the ab-
sorption and dissipation of the mechanical stresses, given the acknowledged viscoelastic
properties. The structural rigidity and stiffness of the mini-implants may further con-
tribute to the increased stress levels at the bone interface [63] and, expectedly—within a
selected range—contribute to an enhanced bone formation outcome [64]. In this regard,
active bone cells—including both osteoblasts and osteoclasts, as well as their respective
precursors—have been shown to activate distinct mechanical transduction pathways that
are known to modulate cellular behavior, including proliferation, differentiation, and
functional activity, in response to distinct forms of mechanical stress of the local mi-
croenvironment, in which both compressive and tensile stresses are included [65]. Of
additional relevance, the induction of fluid shear stress—by the flow of tissue fluid at
the lacunar-canalicular bone system [66]—has recently been found to modulate the me-
chanical transduction of the osteoblastic behavior at the bone-to-implant interface, via the
enhancement of the cell proliferation and differentiation [67], potentially contributing to
the attained outcomes.

Even if the obtained data have been observed upon 8 weeks of healing in a translational
rabbit model, this may not disclose the biological differences regarding the bone structure
and the metabolism of bone healing between humans and rabbits, nor the need to address
the biological evaluation for longer time periods, in order to translate the long-term efficacy
of splinting into the clinical orthodontic setting.

Splinting may, thus, be regarded as a mechanical upgrade, able to increase the thera-
peutic versatility of mini-implants in orthodontic therapeutic approaches, in particular in
clinical situations in which tipping and mini-implant displacement may be prejudicial to
the neighboring anatomical structures or significantly influence the treatment outcomes.
By increasing the area of anchorage with the splinting apparatus, the interaction with the
teeth’s center of resistance may be modulated, allowing modifications and fine-tuning of
the mode and direction elements of the tooth movement, further improving the clinical
outcomes. On the other hand, splinting requires the placement of multiple mini-implants,
which increases the surgical area, soft and hard tissue healing requirements, and potentially,
the risk of trauma or tissue damage. Complementary techniques, such as digital treatment
planning and surgical guides, may be used to overcome these hindrances and facilitate the
clinical implementation of mini-implant splinting in orthodontics.

4. Conclusions

Overall, splinting of mini-implants submitted to orthodontic functional loading was
found to significantly reduce tipping to values similar to those attained in unloaded mini-
implants, in a rabbit experimental model. Additionally, immediate loading was found to
increase the bone volume fraction in either splinted or unsplinted mini-implants, with no
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significant differences between the tension and compression regions of the neighboring
bone tissue. This study, to the best of the authors’ knowledge, is the first to address the
mini-implant displacement and bone morphometric indexes in splinted mini-implants
submitted to orthodontic loading. In general, splinting is, thus, expected to lessen tipping,
as well as the displacement of mini-implants, without affecting the biological events at the
peri-implant tissues—characterized by increased bone formation—acknowledged to be
induced by a functional orthodontic load.
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