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Abstract: Tissue and organ regeneration are challenging issues, yet they represent the frontier of
current research in the biomedical field. Currently, a major problem is the lack of ideal scaffold
materials’ definition. As well known, peptide hydrogels have attracted increasing attention in recent
years thanks to significant properties such as biocompatibility, biodegradability, good mechanical
stability, and tissue-like elasticity. Such properties make them excellent candidates for 3D scaffold
materials. In this review, the first aim is to describe the main features of a peptide hydrogel in
order to be considered as a 3D scaffold, focusing in particular on mechanical properties, as well as
on biodegradability and bioactivity. Then, some recent applications of peptide hydrogels in tissue
engineering, including soft and hard tissues, will be discussed to analyze the most relevant research
trends in this field.
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1. Introduction

The final goal of tissue engineering is repairing and replacing injured tissues by pro-
viding human-made biocompatible constructs containing cells, biomaterials and bioactive
molecules that are able to recreate the desired structures [1–7]. In recent years tissue en-
gineering applications have been promoted significantly by the paramount advances in
the fields of 3D/4D bioprinting [8–10], stem cells [11], novel genetic tools, [12,13] and
biomaterials [14] and bioelectricity [15]. Biomaterials could provide 3D scaffolds, which
should closely match the features of the physiological extra cellular matrix (ECM), and
interact with desired cells to modulate cellular behaviors, giving rise to the generation of
new tissue and organs [16–18]. Biomaterial scaffolds with an accurate design are crucial for
tissue engineering development and applications.

Hydrogel materials, consisting of 3D cross-linked macromolecular networks capa-
ble of entrapping a high amount of water molecules, could be good candidates for bio-
materials for applications in tissue engineering [19]. In fact, hydrogels’ structure and
composition are highly similar to the ECM, which enables entrapped cells to survive and
proliferate [20,21]. Self-assembling peptides are an interesting class of hydrogels which
could promote application in tissue engineering [22]. Peptides with appropriate sequences
are able to self-assemble spontaneously, leading to the formation of porous hydrogels in
definite environmental conditions (e.g., pH, ionic strength, temperature) (see Figure 1). The
formed porous hydrogels can assume a wide variety of different morphologies such as
nanotubes, nanovesicles and nanospheres, which can encapsulate cells and biochemical
factors [23–25]. The molecular interactions present in these hydrogel scaffolds are usually
non-covalent, such as van der Waals, electrostatic interactions, hydrogen bonds and π-π
stacking. Various secondary structures (α-helix, β-sheet, β-hairpin) can be formed [26–28].
Such non-covalent structures with reversible assembly can lead to the formation of hydro-
gels which are self-healing [29,30], shear thinning [31,32] or with shape memory [33,34].
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Due to the mentioned features, peptide hydrogels have significant potential to acquire a
prevalent place as scaffolds in tissue engineering.
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In this review, we will focus on some relevant properties for peptide hydrogels to be
considered as 3D scaffolds and then discuss recent advances in their application for the
regeneration of various tissues.

2. Main Features of Peptide Hydrogels as 3D Scaffolds

Peptide hydrogels need to possess some specific features to be applicable in tissue engi-
neering as 3D scaffolds. For example, they need to possess adequate mechanical properties,
as well as porosity and permeability, needed for cell seeding and growth. As it is clear, since
these materials serve as temporary scaffolds in tissue engineering, biodegradability is also
another important feature of hydrogels, and they should not hinder new tissue generation.
Last but not least, bioactivity is essential for various regeneration applications [35,36]. As an
example, for cardiac tissue repair, the electromechanical coupling of cardiac cells is crucial
for ensuring the regular functionality of the heart tissue. Therefore, artificial scaffolds
for cardiac tissue regeneration should have an acceptable conductivity [37]. As a result,
the composition and structure optimization of peptide hydrogels is crucial to meet the
requisites for tissue engineering.

2.1. Mechanical Features

Hydrogels are polymeric networks which have the ability to absorb a large volume
of water; flexibility, versatility, stimuli-responsivity, and a soft structure are their main
properties [3]. In particular, the viscoelastic behaviour of hydrogels is the property of the
materials that exhibits both viscous and elastic characteristics when undergoing deforma-
tion. It is generated as a result of the conformational changes inside the polymeric structure
which take place in order to find an equilibrium state when it is subjected to a stress. On
this basis, some attention has been recently directed to tuning hydrogels’ viscoelasticity
thanks to studies demonstrating that viscoelastic biomaterials regulate various aspects of
cell behavior [20]. Viscoelastic biomaterials, notably hydrogels, provide time-dependent
mechanical cues (i.e., stress relaxation) that affect cell behavior, including cell spreading,
migration, proliferation, differentiation, and ECM deposition.

The mechanical characteristics of hydrogels are considered as key properties for as-
sessing the possibility of the prepared constructs to be used as scaffolds for the regulation



J. Funct. Biomater. 2023, 14, 233 3 of 21

of cellular behaviors, which is based on mechanotransduction signal mediation [22,38–40].
Therefore, for withstanding physical stress in the physiological environment, identical me-
chanical characteristics of the scaffolds with healthy tissue or ECM are required [31,41–43].
In particular, the stiffness of hydrogels’ biomaterials is critical for the adjustment of cell be-
haviors [32,44]. However, sometimes preparing peptide hydrogels with enough stiffness to
match the desired hard tissues is challenging. This may be related to some of their features
such as low molecular weight, non-covalent interactions, and non-uniform and reversible
self-assembly [45–47]. Nonetheless, it is possible to overcome these issues by modifying or
functionalizing peptide hydrogels, by changing the parameters required for self-assembly,
(i.e., peptide sequence, concentration, pH, temperature, ionic strength) [48–57]. Chemical
crosslinking is an effective strategy for enhancing the mechanical properties of hydrogels,
but it requires additional synthetic steps that may not be suitable for in situ hydrogel forma-
tion [58]. Functionalization with selected molecules is an alternative approach of improving
mechanical properties, since appropriately chosen macromolecules could provide strong
covalent interactions or co-assemble with peptides [59–61]. Some macromolecules, such as
FDA-approved polyethylene glycol (PEG) [61–67], heparin [68], hyaluronic acid [69], algi-
nate [70] and also proteins [71], may be incorporated in hydrogels, tuning their mechanical
properties but also introducing new functions. In addition to stiffness, the viscoelasticity
of the hydrogel is another important parameter [72]. For tuning hydrogel viscoelasticity,
different approaches, such as the altering cross linker concentration [73] or the structure of
the monomers [73,74], have been attempted. As is well-known, hydrogel elasticity refers to
its capability to deform instantly, responding to a mechanical loading, and then to restore
upon removal of the load. This property depends on the hydrogel’s intrinsic swelling
properties which cause a penetration of a solvent into the polymer network, changing its
volume. Such approaches are generally very useful to be applied for controlled drug release
from hydrogel-based materials.

2.2. Biodegradability

Overall, the presence of peptide hydrogels that are used as 3D scaffolds in tissue
engineering and regeneration applications must be temporary. The degradation of peptide
scaffolds simultaneously with the rate of tissue regeneration is desired [75,76] (see Figure 2).
The ratio of the scaffold/tissue mechanical response is affected by scaffold degradation.
Before its degradation, the scaffold is subjected to a mechanical load, which it must be
able to bear without deformation occurring. When tissue growth initiates and progresses,
the scaffold should start degrading at an appropriate rate, until the newly formed tissue
ends bearing the mechanical stress on its own [77]. So, the degradation rate of the scaffold
must be adjusted with that of tissue regeneration. In literature, different ways to provide
biodegradable peptide hydrogels have been reported. One of them is using proteases
such as endothelial cells-derived matrix metalloproteinase (MMP) [76,78–82]. Apart from
cleavable sequences, the secondary structure of peptide hydrogels also affects MMP-based
degradation. Since MMP collagenases only attack collagens [83–86] by changing the
peptide sequences, the resulting hydrogels will become sensitive to other proteases, such
as proteinase K (with broad cleavage activity), trypsin (that mainly hydrolyzes peptides at
the carboxyl side of K or R aminoacids) [87,88], polymorphonuclear elastase (that usually
cleaves at the carboxyl side of A, G and V aminoacids) [89] and papain (that preferentially
cuts peptides after a K or R aminoacid preceded by a hydrophobic one and not followed by
a V) [90]. With this strategy, the biodegradability of peptide hydrogels can be modulated
for tissue engineering applications. However, we must mention that for designing peptide
hydrogels with controlled degradation, the effect of other important parameters such as
functional motifs and water uptake also needs to be taken into account [76,91].
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Figure 2. Schematic illustration of a biodegradable hydrogel for tissue engineering.

2.3. Bioactivity

Another significant factor that is considered crucial for making peptide hydrogels
applicable for tissue engineering is bioactivity. Bioactive peptide scaffolds provide suitable
conditions for cell interaction, growth, migration, and differentiation. Peptide motifs
derived from the ECM are capable of binding with integrins which can be found on the
cell membrane and activate signaling pathways leading to ECM generation. The presence
of bioactive peptides in the sequence of synthetic peptides could guide cells to assume
desired cellular behaviors in appropriate environments [92,93]. In particular, peptides
with small side chains are favored for ECM-mimicking because small motifs generally
do not interfere with peptide self-assembly [94]. Various peptide motifs are valuable
when fabricating bioactive peptide hydrogel scaffolds (see Table 1). In addition to peptide
motifs, growth factors (GFs) also have an effect on the bioactivity of scaffold hydrogels.
Attachment of GFs to peptide hydrogels leads to particular cell responses, which could
increase the bioactivity of the scaffolds [95,96]. Despite their appreciated functions for
covalent attachment to different peptide hydrogels [97–104], GFs are instable and their high
costs limit their current clinical applications.

Table 1. Some of the most common bioactive motifs used in the structure of peptide hydrogels for
tissue engineering applications.

Peptide Motif Bioactivities Origin Integrin(s), Cell/Proteins
Binded Ref.

RGD Cell adhesion enhancement ECM proteins (Fibronectin,
collagen, vitronectin)

α5β1, α8β1, αvβ1, αvβ3,
αvβ3, αvβ5, αvβ6, αvβ8,
αIIbβ3

[105,106]

IKVAV

Cell growth enhancing along
with neural differentiation
promoting and nerve
regeneration

Laminin (α1 chain) α3β1, α4β1, α6β1 [107,108]

YIGSR Enhancement of cell adhesion
and migration Laminin (β1 chain) α3β1, α4β1, α6β1 [109]

PHSRN Cell adhesion enhancement ECM proteins (same as
RGD) α5β1 [110,111]

KLPGWSG Neuronal differentiation
enhancement Stem cells proteins Neural stem cells (NSCs) [112]

PFSSTKT
Neural cell proliferation and
differentiation; human adipose
stem cell homing promotion

Bone marrow homing Nerve and spinal cord [113]
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Table 1. Cont.

Peptide Motif Bioactivities Origin Integrin(s), Cell/Proteins
Binded Ref.

KPSS
Promotion of accumulation of
ECM; induction of bone
marrow MSCs migration

Morphogenic proteins
derived from bone β-Kdo-transferases [114,115]

Substance P
(RPKPQQFFGL)

Cartilage regeneration
improvement; wound healing
promotion

Neuropeptides
(endogenous type) β2 [116]

Link N
(DHLSDNYTLD-
HDRAIH)

Stabilization of proteoglycan
aggregates

Derived from link protein
exists in disk tissues N/A [117]

REDV
Induction of angiogenesis;
enhancement of endothelial
cell adhesion

Fibronectin α4β1 [118]

KLT Acts as an analog of VEGF. VEGF mimetic peptide VEGF receptors [103]

PRG
Possesses homology to the
lipid phosphate phosphatases
(LPPs) in nervous system

Integral membrane protein
β1
(Protein phosphatase 2A,
PP2A)

[119]

SNVI Displaying bone morphogenic
peptide-7 (BMP-7) bioactivity

Bioactive sequence of
BMP-7 N/A [120]

SVVYGLR

Angiogenesis, production of
collagen III, and fibroblast
differentiation into
myofibroblasts

Osteopontin protein α4β1, α9β1, α4β7 [121,122]

HAVDI Cell adhesion
N-Cadherin
(calcium-dependent
cell-cell adhesion) protein

Extracellular domain 1
(ECD1) of N-cadherin
protein

[123]

QLK
Covalent binding to
transglutaminase to protect
GFs from proteolytic

N/A N/A [124]

LRK Joining angiogenic inducers
(HGF, and VEGF) N/A Kinases in plants [124]

3. Peptide Hydrogel Scaffolds in Tissue Engineering Applications

Self-assembling peptide hydrogels are increasingly studied for tissue engineering
applications thanks to their unique properties [125,126]. The nanofibrous microarchitecture
of these hydrogels is more able to resemble the native ECM, compared to conventional
hydrogels made from synthetic polymers [127]. So, they can be used as nanofibrillar
scaffolds which create a biocompatible 3D microenvironment for host cells. Moreover,
structural changes of these scaffolds can be performed by incorporating various functional
peptide sequences, a relatively simple approach to enhance the biological effectiveness
of this type of hydrogels. It has been investigated that self-assembling peptide hydrogels
with β-sheet structure play a critical role in tissue engineering. Hydrophobic/hydrophilic
and electrostatic interactions between amino acids motifs are the most common features of
those self-assembling peptides with a β-sheet structure (Table 2) [1]. In the next paragraphs,
we will review the recent development of self-assembling peptide hydrogels as 3D scaffolds
in tissue engineering applications [128].
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Table 2. Main features of common self-assembling peptides and examples of their application.

Self-Assembling
Peptides Abbreviation Self-Assembly Mechanism Higher-Order

Structure Application and Features

CH3CO-RATAR-
AEARATARAEA-
CONH2

RATEA16
Hydrophobic interactions,
intermolecular hydrogen bonds,
electrostatic interactions

β-sheet nanofibers

Use in controlled release of
therapeutics through
pH-response and in
diffusion release [129]

CH3CO-(RADA)4-
CONH2

RADA16
Hydrophobic interactions,
intermolecular hydrogen bonds,
electrostatic interactions

Antiparallel β-sheet
structure

Stable fibril units with high
water content for making
three-dimensional scaffolds
for cell culture [130]

Fmoc-DIKVAV - π-π, and electrostatic
interactions, hydrogen bonds β-sheet structure

Petide-based biomaterial
combined with
polysaccharides to afford a
wide range of achievable
physico-chemical
properties [131]

CH3CO-
KLDLKLDLKLDL-
CONH2

KLD-12 Electrostatic interactions,
hydrogen bonds β-sheet structure

Protein-based
nanostructured templates
with enhanced versatility
for tissue engineering of
bones and teeth [132]

CH3CO-
IEIKIEIKIEIKI-CONH2

IEIK-13 Hydrophobic and electrostatic
interactions, hydrogen bonds β-sheet structure

Hemostatic potential and
safety of RADA16 and
IEIK13 for hemostasis in
the rat brain [133]

FEFEFKFK - π-π, and electrostatic
interactions, hydrogen bonds β-sheet structure

The self-assembly and
gelation properties of
FEFEFKFK depend on pH
media [134]

3.1. Angiogenesis and Vascularization

As a fundamental process in tissue engineering and regeneration, angiogenesis relates
to the sprouting of new blood vessels from pre-existent ones, including a series of highly
dynamic and complex interactions among the supporting cells and growth factors [135,136].
Angiogenesis is a key process during tissue repair following ischemic diseases, because for
every regrowth of damaged cells and tissues there is a necessity to establish an adequate
blood supply [137]. Besides, vascular networks are vital for carrying bioactives, cell
nutrients and oxygen to regenerate the damaged tissue [138]. Recently the significant
advancement in hydrogels fabrication along with deep studies in vascular biology paved
the way for designing three-dimensional (3D) tissue and organs comprising a highly
complex vascular system [139] (see Figure 3). In 2021 Roy et al. reported the incorporation of
an RGD peptide motif and an antivascular endothelial growth factor receptor-2 (VEGF-R2)
DNA aptamer into a thiolated hyaluronic acid (HA) polyethylene diacrylate hydrogel to
prepare a bifunctional scaffold [140]. Their results showed that RGD peptides improved
cell growth whilst the DNA aptamer promoted cell viability, triggered cell migration
and initialized angiogenesis. This study shows that these scaffolds can be studied for
wound healing applications. Zhang et al. prepared RATEA16 hydrogels and reported the
viability of human umbilical vein endothelial cells (HUVECs) and human stem cells of the
apical papilla (SCAPs) seeded in this scaffold [141]. The authors also developed RATEA16-
based drug delivery systems and studied the release features of VEGF and BMP-2 from
the scaffold. The in vitro effect of the scaffolds on HUVECs angiogenesis was assessed,
confirming the capacity of this scaffold to ensure HUVECs and SCAPs survival and promote
angiogenesis. In addition, the drug-loaded scaffolds demonstrated biodegradability and
biocompatibility. In another study, RADA16 was modified with QLK and LRK [142]. In this
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system, QLK sequence was used to begin crosslinking by endogenous transglutaminase
and improve mechanical properties, while LRK motif was employed to bind heparan
sulfate (HS) [24]. HS is a main component of glycosaminoglycans present in the ECM, and
it is able to preserve the activity of GFs by preventing their enzymatic degradation [128,129].
The authors showed that the HS-modified scaffold provided a controlled and prolonged
release of two GFs for 28 days. The HUVECs-seeded scaffold with the entrapped GF formed
a tube-like structure in vitro, showing a fast hemostasis within 10 s in a rat defibrinated
blood model. Moreover, the proangiogenic features of this material were studied. Results
confirmed the blood vessel growth in chicken chorioallantic membrane [3].
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Cell-free peptide scaffolds with angiogenetic properties were also designed and stud-
ied. For instance, Dos Santos et al. reported a cell-free and growth factor-free hydrogel
containing elastin-like polypeptides (ELPs), PEG and IKVAV peptide [143]. Zhou et al.
reported the use of an MMP-2 self-assembling peptide for the delivery of MSC-derived
extracellular vesicles [144]. The in vitro response of MMP2, allowed for the extracellu-
lar vesicles release, increasing endothelial cell proliferation, and promoting angiogenesis
within the hydrogel implanted in an injured tissue. PRG (PRGDSGYRGDS) and KLT
(KLTWQELYQLKYKGI) are two different functional motifs, used for enhancing, respec-
tively, cell adhesion and vascularization. The angiogenetic ability of RADA16/PRG and
RADA16/KLT self-assembling peptides both in vitro and in vivo in a mouse model was
evaluated [145]. RAD/KLT and RADA16/PRG peptide mixtures with bone marrow MSCs
(BMSCs) were also studied in a mouse model for the treatment of acute myocardial in-
farction [146]. The presence of RADA16/PRG improved the localization and survival of
BMSCs in the infarcted myocardium. KLT, a peptide mimicking VEGF, was studied to
enhance the biological activity of peptide amphiphile (PA) molecules [147]. The authors
showed, in in vitro studies, that VEGF-PA improved proangiogenic activity in endothelial
cells through the selective activation of VEGF receptors. For the in vivo study of this
system, the authors used nanofiber VEGF-PA gels in a mouse ischemia model, showing
an increase in microcirculation density and functional recovery [128]. In 2008, Wang et al.
modified RADA16 by functionalizing it with the KLT or the PRG motif [148]. These two
nanofiber scaffolds showed proangiogenic potential and significantly improved endothelial
cell proliferation, tubulogenesis and migration in vitro.

Overall, none of the synthetic peptide scaffolds described in the literature possesses
angiogenic properties alone. Therefore, peptide functionalization with appropriate bioac-
tive sequences or the incorporation of GFs are the two main successful strategies for
inducing vascularization. Cell-free scaffolds are also very promising systems that may
overcome some difficulties faced when transplanting exogenous cells [149]. In addition to
the composition and structure of scaffolds, the bioavailability, biodegradability, and route
of administration must be detected related to distinct tissue type.
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3.2. Neural Tissue Engineering

The nervous system is considered as one of the most complex organizations of the
body, and it consists of two parts: the peripheral nervous system (PNS) and the central
nervous system (CNS). The damage of the nervous system threatens human health and can
result in permanent and serious neurological deficiencies and even death, due to its limited
regeneration potential. Thus, repairing injured neural tissues is a major challenge for
scientists [150]. The advancement of cellular therapies has provided promising therapeutic
strategies for repairing the nervous system, in which biomimetic self-assembling peptide
hydrogels may act as a favorable microenvironment to improve the activity of transplanted
cells as well as promoting the healing of damaged tissues [151,152]. In recent years,
the interaction of self-assembling peptide hydrogels with neurons has been investigated
in vitro [128]. To facilitate the repair of the CNS several factors should be considered,
including enhancing angiogenesis, lessening the generation of glial scar tissue as well as
concurrent inflammation processes. Although there is a plethora of studies on self-assembly
systems for CNS regeneration, both in vivo and in vitro, no complete functional recovery
has been observed to date.

3.2.1. Peptide Hydrogels

Chai et al. [153] synthesized a temperature-sensitive peptide hydrogel decorated with
IKVAV with a regular 3D porous structure, good biological activity, and rapid (de)swelling
performance. The authors used this scaffold to treat spinal cord injury and showed its im-
proved angiogenesis, inhibition of keratinocytes differentiation and adhesion, reduction of
glial scar tissue generation. Their work demonstrated that this hydrogel is high-performing,
promoting angiogenesis, and reducing the production of pro-inflammatory cytokines.
More importantly, the biomaterial prevented the generation of glial scar tissue, which
resulted in the healing of the damaged tissue. Wiseman et al. [154] synthesized a unique
self-assembling peptide hydrogel, Fmoc-DIKVAV, as a valuable candidate for cell and drug
delivery systems to brain tissues. The Fmoc group, containing an aromatic moiety, was
used as it was known to promote supramolecular aggregation, thanks to the establishment
of π-π interactions among aromatic groups. The authors studied the application of this
scaffold in Fischer F344 rats for delivering mesenchymal precursor cells after mild thoracic
contusion spinal cord injury. They showed that the Fmoc-DIKVAV scaffold could provide
a beneficial microenvironment to promote cell infiltration and axonal regrowth. Hivare
et al. synthesized an IKVAV-grafted DNA hydrogel using a chemical crosslinker [155].
They reported that the functionalized hydrogel scaffold was associated with a prolonged
neurite length, enhanced neuronal differentiation, dynamic movement of cytoskeleton
and microtubules, and changed endocytosis processes in the associated stem cells. Zhang
et al. [156] synthesized a peptide hydrogel suitable for preparing an artificial neurovas-
cular microenvironment by grafting the brain-derived neurotrophic factor (BDNF) and
the vascular endothelial growth factor (VEGF). The hydrogel improved the neurite off-
shoot of pheochromocytoma cells (PC12) and the formation of tubular arrangements of
HUVECs in vitro. Moreover, the in vivo tests in a rat brain lesion model evidenced a pro-
moted fast cell infiltration in the injured tissue. The authors showed that this hydrogel
initiated an effective mutual regulation of the production of paracrine factors from neural
and vascular cells in indirect co-culturing experiments. Furthermore, for the direct co-
culturing of the two cell types, an enhanced communication among the two cell types was
detected that promoted the differentiation and maturation of both PC12s and HUVECs.
Thus, this dual-functionalized hydrogel was successfully tested for the formation of a
synthetic neurovascular microenvironment for regulating the properties of neural and
vascular cells, improving their mutual interactions and communication by direct cell—cell
contact and paracrine signaling. Wang and co-workers [120] reported the synthesis of a
peptide hydrogel modified through the chemical attachment of a short functional motif
with the C-terminus of RADA16. In particular, the SNVI motif (SNVILKKYRN), having
BMP-7 bioactivity, was used for the preparation of the novel RADA16-SNVI peptide. The
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authors used this hydrogel for culturing adipose-derived stem cells (ADSCs): the hydrogel
showed a good biocompatibility and triggered cell differentiation. Compared with control
cells, ADSCs grown in the RADA16-SNVI scaffold showed a higher formation of the ECM
marker collagen type II and aggrecan. For these cells (in SNVI-RADA16 gel), the balance
between aggrecan and collagen was found to be about 29:1 after 21 days. Additionally,
the results demonstrated that the gel supported the differentiation of ADSCs into nucleus
pulposus-like cells, qualifying this system as an optimal material for neural tissue engi-
neering applications. Another study developed a peptide-based hydrogel which is able to
mimic the hydrophobic surface of a jigsaw-shaped moiety of glycophorin A, as a synthetic
ECM for brain regeneration [157]. The authors showed that the peptide could form several
micrometer-long supramolecular nanofibers that gave rise to a hydrogel in physiological
conditions, which allowed the efficient incorporation of VEGF and its sustained release.
Moreover, in cell-free experiments restorative effects were observed in a mouse stroke
model. Other researchers synthesized an RGD/IKVAV-grafted RADA16 peptide [158]
to promote the differentiation of neural progenitor cells/stem cells into neurons and as-
trocytes, and improve axons regeneration in a sciatic nerve defect model. The authors
demonstrated that these amphiphilic peptide nanofibers are suitable scaffolds for regener-
ative applications [159,160]. Recently, a study reported the modification of the RADA16
peptide with the functional motif SVVYGLR, possessing the ability of promoting cell adhe-
sion, migration, and differentiation [161]. In a zebrafish brain injury model, this hydrogel
showed its capability to improve both neurogenesis, angiogenesis, and tissue regeneration.
In recent years, artificial nerve guidance conduits have been studied for curing injuries
with an extended gap [162]. For instance Zhan et al. used RADA16 as an intraluminal filler
and implanted it to repair a 10 mm nerve gap after a sciatic nerve transverse cut [163]. This
work showed that the RADA16 scaffold enhanced axonal remyelination and regeneration,
as well as functional regaining.

3.2.2. Hydrogels Made of Peptides and Organic/Inorganic Components

The functionalization of PAs with IKVAV and RGD sequences (IKVAV-PA, RGD-PA)
aligned with poly(lactic-co-glycolic acid) (PLGA) for promoting schwann cells prolifer-
ation was reported [160]. When a PLGA/RGD-PA hydrogel was used in the treatment
of a rat sciatic nerve defect, a significant amount of cytoskeletal actin organized along-
side the peptide was detected, with an enhancement of motor/sensory function and
optimal axonal regeneration. More recently, Nam and co-workers synthesized a hybrid
hydrogel containing the self-assembled β-peptide betaVhex (hKhKhVhKhE-hVhFhFhVhK-
hEhVhFhFhV-hKhEhVhYhK) and carbon nanotubes (CNTs), in order to be able to interact
with neurons [164]. CNTs were used to promote neural signal transmission. The composite
showed good biocompatibility and its mechanical properties fitted well with those of the
native tissue, resulting in the complete integration of the composite. A dramatic neural
signal enhancement was detected during seizures in the epidural tissue. When this scaffold
was administered to the cortex layer of epileptic mice through injection, a 2.4-fold signal
amplification was observed.

3.3. Cartilage Regeneration

Aging and some diseases such as trauma and joints degeneration could cause le-
sions in chondral and osteochondral tissues, which is related to the disappearance of
vascular, neural, and lymphatic frameworks as well as progenitor cells. Therefore, re-
pairing articular cartilage is extremely challenging. These conditions even cause fur-
ther decline of the articular cartilage and may lead to disability [165,166]. Using self-
assembling peptides could represent a valuable strategy for dealing with the difficul-
ties of cartilage regeneration (see Figure 4) [167]. In 2022, Ye et al. [168] constructed a
LIANAK peptide (CM) mimicking the transforming growth factor β (TGF-β) and they
connected this sequence to the well-known self-assembling RADA16 peptide. The grafted
peptide (RADA16-CM) was able to stabilize TGF-β, which induces the differentiation of



J. Funct. Biomater. 2023, 14, 233 10 of 21

mesenchymal stem cells as well as the sprinkle of collagen II. The authors showed that
the fabricated RADA16-CM hydrogel enhances the expression of chondrogenic genes and
ECM formation. The constructed hydrogel was then paired with decellularized cartilage
ECM for the preparation of a scaffold for the repair of articular cartilage. The fabricated
composite showed adequate stability and bioactivity. In addition, its ability to induce
cartilage tissue regeneration was very promising. In this research, Ye and co-workers [168]
showed that by the incorporation of unstable TGF-β1 within the CM peptide sequence, the
final stable product could be used for in situ cartilage regeneration. In 2021, Zanotto et al.
described a KLD hydrogel linked to the trypsin treatment growth factor as an alternative
for microfracture reinforcement method, which is a high-cost technique for current cartilage
repair [169]. The results revealed that trypsin treatment in combination with the hydrogel
was able to improve microfracture augmentation. In small animal models this strategy
overall improved cartilage regeneration. In addition, a moderately improved joint effusion
and subchondral bone sclerosis were observed. From a microscopic aspect, this treatment
was able to improve various histologic variables and the quality of the repaired tissue was
overall improved. This research showed that this therapeutic strategy for microfracture
augmentation is a cost-effective way to improve cartilage healing, especially in patients
that are more active. Recently, Thomas et al. fabricated a peptide hydrogel consisting of
an amyloid-inspired amphiphile which self-assembled into nanofibers and was inserted
in a polysaccharide network of carboxymethyl cellulose dialdehyde and carboxymethyl
chitosan by a Schiff base synthesis [170]. It is worthwhile to mention that non-covalent
interactions in hydrogel structures play essential roles in the modulations of their mechan-
ical properties, necessary for designing cartilage scaffolds. The ability of the fabricated
scaffolds to promote chondrogenesis was evaluated in vitro using human chondrocytes.
Results revealed the improvement of cell growth and production of cartilage-specific ECM,
showing the ability of the construct to aid cartilage tissue regeneration and confirming the
importance of recreating a suitable microenvironment for optimal results. In 2022, Wang
and co-workers reviewed the use of self-assembling peptide hydrogels, including KLD-12,
RADA16 and IEIK13, as suitable candidates for the regeneration of cartilage [171]. Such
hydrogels could have a significant clinical role in the future by providing the conditions for
cell morphology and viability maintenance, increasing the release of cartilage-specific ECM,
and repairing defects in situ. Although they may have some limitations, the functionaliza-
tion of their structure is a strategy to promote desirable properties. For example, by the
introduction of short functional peptides, they would be able to show more powerful thera-
peutic effects. In addition, cells and cytokines take part in the repair activities after cartilage
damage. Composite hydrogels containing cells or cytokines can have improved therapeutic
functions, enhancing the proliferation and chondrogenic differentiation of the surrounding
cells. In another recent research, Huang and co-workers [172] used a PFSSTKT sequence
with an affinity to BMSCs and modified with chondrocyte ECM. The above structure was
combined with a Gelatin methacrylate hydrogel for evaluating the ability of the molded
scaffolds to repair cartilage defects. The results of the in vitro experimentation evidenced
that the porosity and pore-size of the scaffold were suitable, and this composite provided
a 3D microenvironment which was able to promote cell adhesion, growth and chondro-
genic differentiation. In addition, the results supported the conclusion that the composite
hydrogel may adjust the migration of BMSCs. In vivo experiments were conducted in
rabbits and demonstrated that the composite scaffold was able to induce the recruitment of
endogenous mesenchymal stem cells to the defect site after two weeks. Therefore, it seems
that the strategy of combining endogenous cell recruitment and chondrogenesis could be
applicable for repairing irregular cartilage defects. In 2021, Dufour et al. [173] conducted a
pilot study on the fabrication of an IEIK13 peptide hydrogel in combination with articular
chondrocytes supplied with a chondrogenic cocktail consisting of BMP-2, insulin, and
triiodothyronine, to investigate its ability in restoring large cartilage defects in the femoral
condyles of cynomolgus monkeys. In vitro results confirmed that the synthesized IEIK13
composite hydrogel was able to induce the production of a sufficient amount of cartilage
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articular chondrocytes treated with triiodothyronine. A contrast-enhanced micro-computed
tomography technique, histological analysis and immunohistochemical staining of the
condyles were employed to monitor implant integration in vivo. Based on the results,
IEIK13 implants were suitable for full-thickness treatment of injured cartilage, loaded or
devoid of chondrocytes. Another peptide hydrogel scaffold capable of chondrocyte encap-
sulation, named KLD-12, was fabricated by Kisiday et al. [174]. This hydrogel was able
to support the chondrocyte phenotype and enhance the production of cartilage-like ECM.
Furthermore, the accumulation of glycosaminoglycan (GAG) as a function of time, along
with a stiffness increase provided additional evidence for the formation of healthy cartilage.
In addition, the authors investigated the chondrogenesis of MSCs on this type of scaffold.
In another research conducted by Li et al. [175], a HAVDI-modified KLD-12 hydrogel was
studied. HAVDI is a bioactive peptide sequence, which promotes cell adhesion and chon-
drogenesis. The hydrogel showed significant biocompatibility with MSCs (viability: 94%).
The results showed that between a KLD-12 self-assembled hydrogel and the one incorpo-
rated with HAVDI, the second one was more successful at inducing an increased expression
of chondrogenic genes (collagen II, aggrecan, sox9) and it led to chondrogenic differentia-
tion within 14 days. Regarding the involved molecular mechanism, it was found that the
KLD-12 hydrogel/HAVDI composite hindered the β-catenin localization in the nucleus on
day three and it was suggested that the inhibition of normal Wnt/β-catenin signaling is the
reason of chondrogenesis enhancement. Florine et al. designed RADA16 hydrogel scaffolds
incorporating the fusion protein Heparin-binding insulin-like growth factor 1 (HB-IGF-1)
and they showed that this scaffold promotes the production of sulfated GAG and hydroxyl
proline within hydrogels seeded with chondrocytes [176]. In recent research, Liebesny
and co-workers prepared a KLD-12 peptide hydrogel functionalized with HB-IGI-1. Then
they encapsulated chondrocytes within the fabricated scaffold and loaded the hydrogel
with trypsin [177]. The function of the enzyme was removing the sulfated GAG from the
edge of defect sites, thus allowing the chondrocytes encapsulated in the scaffold to migrate
towards adjacent cartilage annuli. They reported that the use of this composite scaffold
leads to a significant enhancement of proteoglycan production degree, GAG deposition
within the chondrocyte-seeded scaffold and integration with native cartilage tissue in
four weeks. The functionalization of the RADA16 peptide hydrogel with the functional
motif PFS (PFSSTKT), which is a bone marrow homing peptide providing conditions for
stem cells binding [178,179], and encapsulation of the cellular cartilage matrix within the
hydrogel scaffold was described to investigate the recruitment of endogenous stem cells
for cartilage regeneration [180]. Results revealed that the RADA16/PFS peptide scaffold
supports the attachment and MSCs’ chondrogenic differentiation in vitro. In addition, it
was shown that the expression level of chondrogenic genes (aggrecan, Sox9, and Col2) of
MSCs seeded in the scaffold.
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At present, cartilage tissue engineering is developing rapidly. Hydrogels are widely
used in tissue engineering because of their similarity to ECM. They possess excellent
biological characteristics, an injectable ability for cartilage in situ repairing and play a
therapeutic role.
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3.4. Bone Regeneration

Autogenous bone is considered as the “gold standard” in bone tissue engineering
practices. However, although several kinds of scaffolds used for the reconstruction of bone
tissue, such as ceramics and metal sand alloys, are available, the application of autografts is
limited by availability and donor site morbidity. The design of artificial scaffolds with the re-
quired osteoinductive or osteogenic properties is a challenging process [181,182]. Recently,
an innovative injectable self-healing hydrogel system for enhancing vascularization during
the regeneration of irregular bone defects was constructed [183]. The results revealed that
the fabricated GMO hydrogel showed an optimal injectability and is suitable for fitting
uneven defects, thanks to the presence of dynamic imine bonds between gelatin methacry-
loyl and oxidized dextran. The hydrogel bioactive properties were tailored through the
incorporation of KP (BMP2 knuckle epitope derived peptide) and KLT peptides, which
possess osteogenic and angiogenic properties; these were released at appropriate rates.
In vitro results revealed that the composite hydrogel improved the osteogenic differenti-
ation of BMSCs and angiogenetic properties of HUVECs significantly. According to the
in vivo results, the above-mentioned peptides synergistically cooperated in stimulating
ossification in rat calvaria. It was concluded that the use of such a peptide-loaded hydrogel
could be considered as an effective strategy for bone tissue engineering with minimal
invasiveness. Stüdle and co-workers recently studied bi-layer PEG hydrogels [184]. One
layer was embedded with endochondral ossification cells like BMSCs and TGF-β or BMP-2
growth factors. In another layer of the gel, chondrogenesis cells like nasal chondrocytes
(NCs) were encapsulated and this composite was implanted in mice without pre-culturing.
The goal of the research was to ascertain if these two cell types embedded in a bi-layered
hydrogel could directly lead to the formation of osteochondral tissues in vivo. Results
revealed that the layers containing BMSCs produced ossicles containing bone marrow. In
addition, the NC-embedded layers generated cartilage tissue, whose phenotype was lasting
when BMP-2 was present. This research revealed that the orderly connected osteochondral
composites have a high potential to be used as a model for the development of cartilage
bone interface. The fabrication of a supramolecular bioactive material consisting of an
amphiphilic peptide along with the IKVAV motif to lead neural transdifferentiation of BM-
SCs was reported by the Ji group [185]. The synthesized peptide was able to self-assemble
and form supramolecular nanofibers that enforce the commitment of neuroectodermal
lineage after 1 week. This was confirmed by the upregulation of the neural progenitor
gene Nestin and glial fibrillary acidic protein. However, results demonstrated that a sig-
nificantly higher expression of different neuronal markers was observed after two weeks.
BMSCs’ growth within the fabricated composite lead to a polarized cytoskeletal architecture
decreasing the cellular size, which is similar to neuron cells. This research could pave
the way for a transdifferentiation of adult human BMSCs into neuronal lineage. In 2019
Panek et al. [186] fabricated a (RADA16) hydrogel impregnated with different amounts of
dexamethasone (DXM) (4 × 10−3–10−5 M). In order to test the fabricated composite, MSCs
were isolated and cultured to be loaded on the composite scaffold in a perfusion bioreactor.
Scanning electron microscopy and histology were employed to analyze tissues, examining
the morphologies of cells, ECM, and minerals. Real-time polymerase chain reaction and
immunocytochemistry were employed to quantify the markers of osteogenic differentia-
tion. Osteoblast-related markers were quantified to confirm osteoblast differentiation. The
results of the immunocytochemical analysis of collagen I supported the conclusion that the
optimal concentration of loaded DXM is 4 × 10−4 M, which provides the conditions for the
production of the best-engineered bone tissue for 21 days at a perfusion rate of 0.1 mL/min.
Misawa et al. showed that a commercial RADA16 hydrogel scaffold (PuraMatrixTM) aided
the formation of new bone in an animal calvaria defect model [187]. It was also found by
He et al. that both D-RADA16 and L-RADA16 hydrogel scaffolds could promote bone
regeneration in a femoral condyle defect model with no functionalization [188]. This re-
search group also designed a D-RADA16 peptide hydrogel modified with the cell adhesion
motif RGD along with the basic fibroblast growth factor (bFGF) [189]. It was shown that
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the fabricated composite could promote osteoblasts’ growth and outspread, inducing neo-
vascularization in vivo [190,191]. Results demonstrated that after treatment of femoral
condyles with modified peptide hydrogels, a significant decrease in defect domains during
the eight weeks was observable, even in the absence of bFGF. In addition, a whole section
containing numerous bone defects was entirely repaired within 12 weeks.

The mentioned approaches employed long peptidic sequences as well as other motifs
or functionalizations for the fabrication of hydrogel scaffolds; however, there are some re-
ports using short peptide sequences. For example, a biodegradable hydrogel comprising a
self-assembling FEFEFKFK octapeptide with no functional motifs was described [192]. The
hydrogel was compatible with MSCs and it supplied them with a favorable microenviron-
ment. The significant production of common osteogenic markers along with a paramount
deposition of hydroxyapatite following the treatment with osteogenic medium confirmed
the osteogenic differentiation of human MSCs after 12 days, which suggested successful
bone formation. It was also concluded that due to its uncomplicated sequence, affordability
and positive in vivo conduct, the use of such an octapeptide could be considered as a
good strategy for bone engineering and even clinical use [3]. In another investigation, the
dipeptide fluorenyl methoxycarbonyl diphenylalanine (FmocFF) along with the alginate
was reported to afford hydrogel formation and bone regeneration induction [178,179]. The
fabricated hydrogel was biocompatible and it induced the osteogenic differentiation of
MC3T3-E1 preosteoblast cells. Moreover, the composite was responsible for the rise in the
expression level of several osteogenic genes and calcification [193]. Another hydrogel, con-
sisting of an alginate modified with the peptides KLT and RGD was able to contemporarily
induce both angiogenesis and osteogenesis [194]. The effects of the grafted peptides were
calcification and proangiogenesis. The composite was tested in a rat calvarial defect model,
leading to higher angiogenesis and ossification than the control.

The reported results in this field demonstrated that an injectable peptide-based hydro-
gel is able to fulfill the multifold requirements of applications preserving a good biocom-
patibility and appropriate drug properties, and that it possesses a significant potential for
bone tissue engineering application.

4. Conclusions

In this review paper we have summarized a wide range of peptide hydrogels that are
frequently used to-date, or will potentially be useful in tissue engineering by focusing in
particular on mechanical properties, as well as on biodegradability and bioactivity. These
biomaterials resembled native cellular composition and morphology; they can exhibit
several biofunctional features and provide favorable micro-environments for cell adhesion,
proliferation, migration, and differentiation. A critical element in virtually all tissue engi-
neering approaches is the chemical feature of the polymer scaffold which potentially mimics
many roles of extracellular matrixes found in tissues. In recent years, various peptide se-
quences have been fabricated consisting of different types of natural amino acids used in
hydrogel structures with inherent biocompatibility. However, some of their properties must
be tailored by improving conditions such as self-assembly behavior, mechanical properties,
and bioactivity. In addition, for tissue engineering applications, different peptide sequences
have been studied such as KLD-12, RADA16, and HAVDI because of their significant
properties, which make them appropriate for designing hydrogel scaffolds. Recently, most
peptide hydrogels that are used for tissue engineering are functionalized with different
peptide sequences, drugs, growth factors or motifs to increase their efficiency. In addition,
advances made regarding stem cells has promoted the possibility for them to be more
available than before for tissue regeneration applications. This condition enables the use of
autologous cell sources. It also should be mentioned that a deep understanding of the inter-
play between peptide scaffolds and stem cells and their outcomes on cell differentiation are
providing worthwhile information for the future development of more specific peptidic
scaffolds with significant features. Apart from the advances in designing peptide hydrogels
for tissue regeneration described in this review, there are still some challenges especially
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for the use of hydrogels in the clinical environment. For example, a lack of information
regarding the outcomes of mechanosignaling on the destination of different stem cells
hinders the design of appropriate viscoelastic characteristics. Additionally, various peptide
scaffolds with numerous functional components have been fabricated to enhance the effects
of tissue regeneration but some drawbacks such as their toxicity on cells and tissues and
possible negative reactions on implantation sites prevents their use in biological media. As
a plan for the future, technical challenges of peptide hydrogels along with their scientific
issues should be revised by considering: (1) the importance of functional and structural
batch to batch reproducibility of peptide hydrogels, especially for those containing cells
and large biomolecules; (2) a fast and large-scale fabrication of complex cell-free peptide
hydrogels while maintaining reproducibility and functionality; since mass production of
cell-encapsulated hydrogel scaffolds is arduous, in the case they could be developed for
personalized medicine; (3) the sterilization process of peptide hydrogels for medical use
while avoiding disruption in assembly and functionality. Overall, despite all the mentioned
challenges in the field of peptide hydrogel scaffolds, continuous progress will finally pave
the way for fruitful clinical applications of tissue regeneration products.

In conclusion, we believe no one material will be able to satisfy all design parameters in all ap-
plications, but a wide range of materials will find uses in various tissue engineering applications.
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