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Abstract: Additive technologies allowed for the development of medicine and implantology, enabling
the production of personalized and highly porous implants. Although implants of this type are used
clinically, they are usually only heat treated. Surface modification using electrochemical methods can
significantly improve the biocompatibility of biomaterials used for implants, including printed ones.
The study examined the effect of anodizing oxidation on the biocompatibility of a porous implant
made of Ti6Al4V by the SLM method. The study used a proprietary spinal implant intended for the
treatment of discopathy in the c4–c5 section. As part of the work, the manufactured implant was
assessed in terms of compliance with the requirements for implants (structure testing—metallography)
and the accuracy of the pores produced (pore size and porosity). The samples were subjected to
surface modification using anodic oxidation. The research was carried out for 6 weeks in in vitro
conditions. Surface topographies and corrosion properties (corrosion potential, ion release) were
compared for unmodified and anodically oxidized samples. The tests showed no effect of anodic
oxidation on the surface topography and improved corrosion properties. Anodic oxidation stabilized
the corrosion potential and limited the release of ions to the environment.

Keywords: scaffold; porous implant; Ti6Al4V; SLM; anodic oxidation; biocompatibility

1. Introduction

Titanium and its alloys (including Ti6Al4V) are materials widely used in medicine.
Due to their properties, i.e., favorable plastic and strength properties, high corrosion resis-
tance and biocompatibility, electromagnetic properties, availability and processing ability,
they are widely used [1,2]. In orthopedy, they are used to manufacture permanent (joint
endoprostheses) and temporary (plates and stabilizers) implants, stents, screws, etc. [3]. Ti-
tanium alloys are also a material that can be surface modified, thus providing the products
with even better properties. The modification methods include acid etching, anodic oxida-
tion and plasma treatment, as well as coating with layers, including inorganic layers [4–6].

Thanks to the development of technology, new production methods, such as additive
methods, are available. 3D printing, including the SLM method, is widely used in all
branches of science and industry [7]. Elements produced with additive methods are
increasingly entering operating theaters [8]. Additive methods enable the production
of elements impossible to obtain with conventional methods [9,10]. Scaffolds and high
porosity implants enable the creation of cell scaffolds that better replace the removed tissues
and enable a more stable connection of the implant with the surrounding tissues [11–13].
Additive methods make it possible to produce elements with a strictly defined porosity
and architecture [14–17]. The research has shown that the size and shape of the pores affect
the ingrowth and maturation process of the bone tissue inside the implant. Obtaining
mature bone tissue inside the implant provides an extremely stable, durable connection
that prevents relocation of the implant [15,18–20]. In addition, this type of structure is
characterized by more favorable mechanical properties and allows to avoid stiffening of the
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system and degradation of the bone tissue surrounding the implantation site [15,19,21,22].
Good mastery of the technique of producing implants with the use of additive methods also
allows for the development of personalized medicine. 3D printing, supported by reverse
engineering and CAD, allows for the production of implants ideally suited to the needs
and anatomy of the patient [15,19,23,24].

Degradation of spinal structures is a common phenomenon, and the incidence of
changes increases with age [25]. The treatment of spinal lesions depends on the stage of
the lesion. In the case of significant degradation of the vertebrae or intervertebral discs,
there may be pressure on the nerves, which results in chronic pain, numbness and sensory
and locomotor problems. Surgical treatment consists in replacing the damaged tissue
fragment with a fixed implant (arthrodesis) or a mobile implant (arthroplasty), which is
to provide support to the structures and prevent compression [26]. Insertion of a fixed
implant causes fusion of the vertebrae and a slight decrease in the mobility of the spine,
but it is usually well tolerated. For a large group of patients, vertebral fusion provides a
better therapeutic effect than treatment with a mobile implant while reducing potential
complications [27–30]. Implants intended for spondylodesis are usually made of PEEK,
less often of carbon fiber and titanium. Another solution is bone autografts taken from the
iliac crest, but this procedure carries a higher risk and involves a wider operating field due
to the need to collect material from the patient. One of the main risks when using implants
of this type is obtaining an unstable or incorrect mechanical system at the implantation
site. While solid implants made of PEEK are more similar in elasticity to bone tissue,
studies have shown that the tissue surrounding the implant is very often characterized
by high fibrosis, a thick layer of biofilm and an unstable implant-bone connection. This
may lead to the relocation of the implant or the formation of pseudoarthrosis and the
need for reoperation [13]. Replacing a solid implant with a scaffold, the porosity of which
allows complete overgrowth of the implant with bone, gives hope for a better, more durable
fixation. Particularly beneficial seem to be implants made of titanium alloy, which is
characterized by high osteoconductivity. Highly porous titanium implants, despite the
fact that the titanium alloys themselves have a higher Young’s modulus than bone, can be
characterized by properties that perfectly imitate healthy bone tissue [15,18,21,22].

In clinical practice, there are numerous publications on the use of titanium implants
produced in SLM technology [21,22,31]. However, these implants are not subjected to
any additional surface modification, and their post-production processing is limited to
cleaning, thermal treatment and sterilization. From the research of biomaterials, it is known
that there are a number of techniques related to chemical, electrochemical and mechanical
treatment that can ensure better biocompatibility, stability and corrosion resistance of metal
implants. Modification of the surface of biomaterials is an important issue in biomedical
engineering. The top layer in direct contact with the tissues affects the biocompatibility of
the implant. The tissue response translates into the dynamics of the response at the cellular
level, i.e., adhesion, migration, proliferation, differentiation leading to tissue maturation
and bone formation [32,33]. Properly developed surface and roughness stimulate the
differentiation of osteoblasts responsible for bone maturation and the formation of a stable
implant-bone connection [34].

Despite all the advantages of SLM high-porosity implants, some caution is required.
Although the properties and methods of modification of the Ti6Al4V alloy seem to be well
tested, along with the change of the production method, it is necessary to verify. Surface
modification, which has been successfully applied to items produced in a conventional
manner [5,6,35,36], may not be optimal for the same material processed in the 3D printing
process. Therefore, it is necessary to continue research and check whether the methods of
modification of biomaterials, well researched by many scientists, still work well in the case
of 3D printing [4]. The existing few works on the modification of implants printed from
titanium alloys will not exhaust the subject, and the works on the clinical application of
this type of implants are based on unmodified implants [21,22,31,37–39].
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The aim of the work was to determine the effect of anodic oxidation on the corrosion
properties of spinal implants made of Ti6Al4V produced by the SLM method. In particular,
the influence of the environment imitating the tissue environment on the corrosion potential
was determined and the number of ions released into the environment was examined. In
addition, the microstructure of the implants, true porosity (micro-CT, helium pycnometry)
and surface structure were assessed.

The obtained test results will allow to increase the corrosion resistance and, thus, the
biocompatibility of the implants produced by the SLM method. Currently, the standard is
the use of implants printed without the use of surface modification. These modifications for
implants produced by conventional methods have a positive effect on the biocompatibility
of the implanted elements.

2. Materials and Methods
2.1. Sample Preparation

The samples were designed using INVENTOR 2020 (AutoDESK, San Rafael, CA,
USA) (Figure 1). The shape of the implant enables it to replace the intervertebral disc
in the C4-C5 segment. The sample was given an internal, open, highly porous structure
based on a diamond mesh that allows for spherical inter-beam spaces. The pore size was
determined to be 600 µm. The mesh and size of the pores were selected based on the
literature analysis [14–17].
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Figure 1. Model of the designed implant.

The samples (Figure 2) were produced at ChM sp. z o.o. in Białystok on SLM-250 Metal
3D Printer (SLM Solutions Group AG, Lubeka, Niemcy) with the use of Ti6Al4V powder
(TLS Technik GmbH, Bitterfeld-Wolfen, Germany). Finished samples were annealed at
920 ◦C for 4 h and then cleaned in isopropanol with ultrasound. After receiving the samples,
their mechanical strength was verified with the use of a static compression test in order to
demonstrate the resistance to physiological mechanical loads occurring in the body area
dedicated to the implant [39].
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Figure 2. Implant produced by the SLM method.

2.2. Structure Evaluations

Metallurgical microsections were prepared for the produced samples. A resin (Poly-
Fast, Struers, Cleveland, OH, USA) was used to enable SEM imaging. The samples were
embedded in such way that it was possible to image longitudinal and transverse sections.
Abrasive papers with gradations of 120, 320, 600, 800, and 1200 were used for grinding.
The samples were polished with OP-S SUSPENSION (Struers, Cleveland, OH, USA) and
etched in 8% HF acid. The photos of the structures were taken using a scanning micro-
scope (TESCAN VEGA, SE detector, Brno, Czech Republic). The structure was assessed in
accordance with ISO 20160.

2.3. Surface Modification

The produced samples were divided into implants in the initial state and modified
state. The test group was subjected to anodic oxidation using the Titan Color solution
(phosphoric acid + sulfuric acid). The samples were oxidized at the voltage U = 97 V for
2 min at room temperature.

2.4. Surface and Porous Structure Characteristics

The dimensional compliance of the produced samples was checked to assess the
correctness of the printout. Due to the extensive internal structure, the samples were cut
with a precision cutter (SECOTOM 15, Struers, Cleveland, OH, USA) with diamond friction
so that the central part of the implant could be assessed. A digital microscope (Zeiss SteREO
Discovery.V8, Oberkochen, Germany) was used to measure the sample size, pore size and
pore shape. The measured values were compared with the dimensions of the model. In
addition, for a more accurate assessment of the surface morphology, SEM images (TESCAN
VEGA, Brno, Czech Republic) were taken.

2.5. Real Porosity Assessment

Porous structure and real porosity were assessed by micro-CT (CT-Compact, Casp
system, Jaworzno, Poland) and helium pycnometry (1305 Micromeritics, Norcross, GA,
USA). Based on the tomography scans, the actual shape and size of the pores, especially
in the central part of the implant, were measured. The expected volume and the apparent
volume necessary to determine the actual porosity were defined in the INVENTOR on the
basis of the geometric model that was used during the sample production. The determined
real volume was compared with the value of the expected volume.

2.6. Incubation of Samples

In order to evaluate the influence of environmental factors on implant degradation,
the samples were incubated in PBS solution (0.14 M NaCl, 2.7 mM KCl, 0.01 M PO4

3−,
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pH 7.4). The initial and anodized samples were placed in sealed sterile containers filled
with 0.1 dm3 of incubation solution and placed in an incubator at 37 ◦C for 14, 28 and
42 days.

2.7. Corrosion Potential Assesment

The assessment of the corrosion potential was performed with the use of a potentiostat
VoltaLab PGP 201 (Radiometer Analytical SAS, Villeurbanne Cedex, France) with Volta-
Master4 software (Radiometer Analytical SAS, Villeurbanne Cedex, France). A platinum
electrode (auxiliary electrode) and a AgCl electrode (reference electrode) were used for the
study. The study was carried out in PBS at 37 ◦C. Measurement of polarization curves was
carried out for 2 h for each of the samples.

2.8. Ion Release Assessment

The mass density of ions released into the solution was assessed using plasma atomic
emission spectroscopy (spectrometer ICP-AES JY 2000, HORIBA JOBIN YVON GMBH,
Bensheim, Niemcy). The tests were carried out on filtrates with samples in their original
state and anodized for 14, 28 and 42 days. The studies assessed the amount of Ti, V, and Al
ions in the solution. The results were converted to the density of ions released from the
sample surface. Standard curves prepared with the use of Merck standard materials were
used to carry out the measurements.

3. Results
3.1. Structure Evaluations

The microscopic observations (Figure 3) show the microstructure of the material in
the transverse plane for the solid part of the frame (a) and for the beams from the porous
part (b) and in the longitudinal plane (consistent with the direction of building the element
during production) for the solid part (c). The obtained images confirm the α+β structure
of the tested material. SEM images were compared with standards from the norm. The
structure in the longitudinal and transverse planes showed a slightly different character
and corresponded, respectively, to the A3 and A4 standards from the ISO 20160 and ISO
52908:2022 standard.
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Figure 3. Microstructure of the material: (a)—for the solid part of the frame in the transverse
plane; (b)—for the beams from the porous part in the transverse plane; (c)—for the solid part in the
longitudinal plane; SEM.

3.2. Surface and Porous Structure Characteristics

The macroscopic observations showed that in the produced samples, it was possible
to obtain an open porous structure. The microscopic evaluation showed that the pores
produced are spherical and slightly flattened, and their size is 450–600 µm (Figure 4).
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Figure 4. (a) Sample surface with measured pore size; (b) sample surface with a marked amount of
powder deposited on the surface, SEM.

The size of the measured pores was reproducible for all samples, both for the outer
layers of the sample and in its central part. Although the pores produced differ in size from
the intended value (600 µm), their size is within the range of values favoring the growth of
bone tissue through the porous implant.

Comparing the SEM images of as-is and anodically oxidized samples, the modification
had no effect on the amount of powder deposited on the surface of the sample (Figure 5).
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Observations on the cut samples showed no significant differences between the top
and inner layers of the scaffold. At the intersection site, no material discontinuity was
observed in the solid beam structures, and no closed pores were present.

3.3. Real Porosity Assessment

The micro-CT images (Figure 6) showed a uniform pore geometry throughout the
sample volume. The scans obtained were confirmed by microscopic observations. The
pores produced throughout the sample are open and spherical. The examination did not
show the presence of closed pores or narrow structures impossible to colonize by bone
tissue. Based on the geometric models in the INVENTOR program, the porosity of the
samples was estimated at 65%. Helium pycnometry showed that the samples obtained had
49.0(10)% porosity. The density of the material determined on the basis of the actual volume
and weight of the samples was convergent with the density characteristic for Ti6Al4V.
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3.4. Corrosion Potential Assessment

The determined polarization curves showed that anodic oxidation significantly influ-
enced the corrosion properties of the implants (Figure 7, Table 1). The corrosion potential
of the samples in the initial state was close to zero. The corrosion potential of anodized
samples was positive.
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Table 1. The average value of the corrosion potential Ecor[mV] for individual groups of samples.

Time of Exposure, Weeks 0 2 4 6

Initial state [mV] −11 (19) −468 (11) −430.0 (33) −415.0 (20)
Anodic oxidated [mV] 403 (29) −551.0 (60) −547 (18) −568 (12)

The tests carried out after 14, 28, and 42 days of incubation in PBS solution showed that
the electric potential, both among the modified samples and in the initial state, decreased
and became negative. It is worth noting that the determined corrosion potentials in the
following weeks for anodized samples have a constant value. For samples in the initial state,
the highest decrease in the value of the corrosion potential was determined for samples
incubated for 14 days. In the following weeks, a gradual return to pre-incubation values
was observed.

3.5. Ion Release Assessment

The conducted research has shown that the anodic oxidation of Ti6Al4V scaffolds
produced by the SLM method slows down the process of penetration of metal ions into
the environment (Figure 8). In all the tested samples, the level of the determined ions
was higher for the native samples. Considering that the tested Ti, V and Al ions were not
present in the incubation solution before the sample was placed in it, the most significant
diffusion of ions into the environment took place in the initial phase of incubation. The
gains between weeks 2 and 4 and 4 and 6 were the same for both periods and were much
lower for all the ions tested.
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4. Discussion

Comparing the observed structures to the micrographs of the ISO 20160 standard,
it was confirmed that the processed material is suitable for medical applications. The
disclosed metallographic structure in the transverse and frontal planes is not the same,
which can be considered characteristic of elements produced by the SLM technology [40].
Nevertheless, individual microsections were homogeneous and characterized by a fine-
grained α + β structure.

The assessment of the pore surface and structure showed a decrease in the actual
pore size in relation to the designed pore size. This discrepancy is a direct result of the
production technique [13–15,38,41]. Importantly, the obtained pore size (450–600 µ) was
within the range of pores which, in the studies by other teams, ensured optimal bone tissue
growth. Pores < 400 µm do not provide enough space to obtain a well-vascularized and
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thus nourished tissue. On the other hand, the use of larger pores > 900 µm delays the
maturation of bone tissue and a weaker structure of the extracellular matrix [16,38,41].

The observed spheres deposited on the surface, most likely originating from insuffi-
ciently melted powder used to produce this type of implant, were also observed in other
studies [15,20,39]. Smoothing the surface is possible by using a higher annealing tempera-
ture (>1300 ◦C), which could be observed, among others, in the studies of N. Taniguchi [16].
However, the use of such high temperatures can significantly affect the structure and,
thus, the properties of Ti6Al4V. In the future, in-depth studies are planned on the effect
of the annealing temperature of scaffolds produced from Ti6Al4V on the structure of the
material and the properties of this type of implant. The observed structure of the surface
carries a certain risk related to the possibility of grain detachment and its relocation in the
body. On the other hand, obtaining an unstructured, highly developed surface may well
stimulate osseointegration, constituting a favorable substrate for the migrating cells and
the intercellular matrix they create. Studies conducted on similar scaffolds have shown that
the proposed implants allow for a very stable implant-bone connection, which prevents
licking and relocation of the implant [14,16,42]

Due to the reduced size of the actual pores, the actual porosity of the implant was
also reduced. The research conducted by G. Li has shown that while the pore size has a
significant impact on the way of the growth and maturation of bone tissue, the very ratio
of the solid material to the pore volume does not affect the overgrowth of the implant [14].

Anodic oxidation caused the formation of a layer of TiO2 on the surface of the implant,
which affected the surface properties of the implant. Due to the high stability of the
TiO2 passive layer, this process is very beneficial because it increases the bio-compatibility
of the material. The modified implants immediately after anodic oxidation showed a
positive corrosion potential, which may indicate an improved corrosion resistance of
the material [35,36]. However, the assessment of the corrosion potential in terms of the
beneficial effect on the implant overgrowth with bone is not unambiguous. Bacakov’s
research shows that the positive corrosion potential of the sample surface promotes the
aggregation of osteoblasts [43]. Nevertheless, Anaselme research shows that it is beneficial
to obtain a negative corrosion potential on the surface due to the need to promote protein
aggregation on the surface of the material. This is beneficial not only in the initial phase of
implantation (proteins aggregate on the surface earlier than cells) but also in the later phase,
where in order to obtain a permanent implant-bone connection, not only is proper cell
profiling on the implant surface necessary, but also tissue maturation, which is associated
with the formation of the extracellular matrix composed mainly of proteins [42]. Comparing
the corrosion potential of individual groups of samples after incubation in a liquid imitating
the tissue environment, it can be seen that all groups showed a negative corrosion potential.
Samples subjected to anodic oxidation showed higher stability, which should potentially
provide better conditions for bone tissue overgrowth.

5. Conclusions

On the basis of the tests carried out, the designed implant was positively evaluated.
Studies have shown that the implant is characterized by features that should translate into
good osseointegration and stimulation of bone tissue to overgrow into the implant.

The proposed surface modification method using anodic oxidation had a positive
effect on the properties of the Ti6Al4V implant produced by the SLM method. Oxidized
implants were characterized by a more stable corrosion potential and limited penetration
of metal ions into the external environment.

Further research is being carried out to optimize the methods of modifying implants
made of titanium alloys produced by additive methods.
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