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Abstract: The aim of this study was to investigate the antimicrobial efficacy of different disinfection
protocols in a novel Enterococcus faecalis biofilm model based on a visualization method and to
evaluate the potential alteration of dentinal surface. A total of 120 extracted human premolars were
allocated to 6 groups with different irrigation protocols. The assessment of the effectiveness of
each protocol and the alteration of dentinal surface were visualized by using SEM and fluorescence
microscopy (DAPI). A dense E. faecalis biofilm with a penetration depth of 289 µm (medial part
of the root canal) and 93 µm (apical part) validated that the biofilm model had been successfully
implemented. A significant difference between the 3% NaOCl groups and all the other groups in both
observed parts of the root canal (p < 0.05) was detected. However, the SEM analysis revealed that the
dentinal surface in the 3% NaOCl groups was severely altered. The established biofilm model and
the visualization method based on DAPI are appropriate for bacterial quantification and evaluation
of the depth effect of different disinfection protocols in the root canal system. The combination of
3% NaOCl with 20% EDTA or MTAD with PUI allows the decontamination of deeper dentine zones
within the root canal but simultaneously alters the dentinal surface.

Keywords: bacterial penetration; biofilm model; DAPI method; dentinal tubules; Enterococcus faecalis;
root canal irrigants

1. Introduction

The goal of an endodontic treatment should be the elimination of microorganisms
and the prevention of a possible reinfection. A successful root canal therapy relies on
the combination of proper instrumentation, irrigation, and obturation of the root canal
system. The etiology behind endodontic treatment failures is mainly a persisting infection
with a biofilm structure in the root canal system [1]. Unfortunately, the root canal system
with its anatomical complexity represents a challenging environment for the effective
removal of bacteria and biofilm [2]. A plethora of chemical irrigants activated by different
technical devices are used to eliminate residual microbes in root canals [2,3]. One of the
most common techniques is passive ultrasonic irrigation (PUI) [4–6].

A microorganism that has been intimately associated with treatment failures is
Enterococcus faecalis (E. faecalis) [7,8]. The reported prevalence of E. faecalis ranges from
24% to 77% in post-treatment root canal infections [9]. To date, it is still not possible to
explain this prevalence since the origin of E. faecalis infections remains unknown. Since its
first description in 1906, it is termed Streptococcus faecalis or “Streptococcus of faecal origin”
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as it has often been recovered from fecal matter or sewage [10]. It is both a commensal
pathogen of the gastro-intestinal tract and a common nosocomial pathogen. Its transi-
tion from commensal to pathogenic is far from being completely understood. E. faecalis
is most likely not derived from the endogenous flora or from nosocomial transmission
but is instead a food-borne pathogen in root canal infections [11]. However, E. faecalis is
considered a suitable model for studying bacterial infections in root canals [12], specifically
in in vitro studies.

Extensive research has been accomplished in the field with regard to bacterial reduction
of biofilm within the root canal system [13,14]. However, there are limited studies that
compared the synergistic effects of passive ultrasonic irrigation with different irrigants
against E. faecalis biofilm in the root canal system, as well as their effects on the dentinal
root canal surface. The use of passive ultrasonic irrigation has been limited to endodontic
irrigants, such as NaOCl and EDTA, and its use over CHX or MTAD (mixture of tetracycline,
acid, and detergent), whereas the combination of different irrigants has not been studied in
detail [6,15].

Microscopic techniques have been used for the evaluation of the effects of various
endodontic irrigants on biofilms [16,17]. The dentinal root canal surface was evaluated by
scanning electron microscopy (SEM) in this study. Fluorescence staining with DAPI—a
fluorescent dye to visualize bacteria by binding to the AT-rich regions of nucleic acids of
double-stranded DNA, thereby forming fluorescent units—was used to detect bacteria in
the depth of dentinal tubules [18,19]. In the present study, the degradation and removal
effects of different disinfection protocols were investigated using a visualization method.
The aim of our study was to establish a biofilm root canal model in order to visualize and
quantify bacterial colonization within the dentinal tubules after the application of different
disinfection protocols and to identify the synergistic effects of the different irrigants in
combination with PUI on the dentinal surface for the first time.

2. Materials and Methods
2.1. Sample Preparation

A total of 120 extracted human single-rooted premolar teeth were used in this study.
The anatomic crown of each tooth was resected horizontally at 16 mm with a diamond disk
(Diamond Disc 330 CA, Struers, Willich, Germany). The working length of each root canal
was measured at 15 mm. The roots were prepared using the file F1 (020/06) of the rotary
endodontic nickel–titanium system, ProTaper Universal (Dentsply-Maillefer, Switzerland),
and were irrigated with 2 mL of NaCl (0.9%). Finally, the root canals were rinsed with
2 mL of 20% EDTA for 1 min under agitation with the ultrasonic tip IRRI S/25 mm (Satelec-
VDW GmbH, Munich, Germany) for the removal of the smear layer and again with
0.9% NaCl. In order to prepare all samples for the splitting of the roots at the end of the
procedure, two lines were drawn longitudinally on the buccal and lingual planes of each
root. Longitudinal grooves were then carved with a diamond bur under the caution of
not invading the root canal along the drawn lines (Figure 1). The complete longitudinal
fracture of the roots was performed with a razorblade (Herkenrath, Solingen, Germany)
and a hammer (Braun, Tuttlingen, Germany), providing two root halves from each sample.
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(TSB—Merck, Darmstadt, Germany), followed by autoclaving (10 min, 121 °C). To check 
the sterility of the samples, the teeth were incubated in the TSB for three days at 37 °C to 
prove that no contamination, as indicated by the cloudiness of the TSB, took place. 
Afterward, the teeth were embedded in a 5 mL Eppendorf tube (Eppendorf AG, Hamburg, 
Germany) with 3% Agarose (Merck, Darmstadt, Germany). Again, each root was filled 
with the TSB medium using a fine 27-gauge needle (3/4 0.4 mm × 19 mm) (Transcodent, 
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Lastly, the teeth were cleaned in an ultrasonic bath (Sonorex Digital 10P, Bandelin,
Berlin, Germany) with 20% EDTA (10 min) and finally in distilled water (1 h) (Aqua
destillata, Weinert Wassertechnik GmbH, Dresden, Germany). The apical foramen of each
root and the lateral grooves were sealed with silicone (Provil novo, Heraeus Kulzer GmbH,
Germany) to avoid bacterial leakage through the apex and the lateral canals or through
the dentinal tubules during the procedure of inoculation with E. faecalis. Afterward, the
teeth were placed in an ultrasonic bath for 10 min with tryptic soy broth (TSB—Merck,
Darmstadt, Germany), followed by autoclaving (10 min, 121 ◦C). To check the sterility
of the samples, the teeth were incubated in the TSB for three days at 37 ◦C to prove that
no contamination, as indicated by the cloudiness of the TSB, took place. Afterward, the
teeth were embedded in a 5 mL Eppendorf tube (Eppendorf AG, Hamburg, Germany)
with 3% Agarose (Merck, Darmstadt, Germany). Again, each root was filled with the TSB
medium using a fine 27-gauge needle (3/4 0.4 mm × 19 mm) (Transcodent, Germany) to
keep the dentine moistened.

2.2. Inoculation of the Roots with E. faecalis and Incubation

The E. faecalis strain was obtained (clinical bacterium isolated from a patient with
persistent root canal infection and approved by the ethics committee of the University of
Freiburg 140/09) and cultivated in a S2 laboratory. A day prior to the inoculation procedure
of the roots, a tryptic-soy-broth (TSB) bouillon, including 2 mg/mL of Streptomycin and
0.2 µg/mL of Amphotericin B, was inoculated with a single E. faecalis colony on an agar
plate and incubated at 37 ◦C. Streptomycin (2 mg/mL) was added as an antibacterial
agent to the TSB in order to inhibit the growth of other bacteria and Amphotericin B was
added as an antimycotic agent. On the first day of the inoculation procedure, each root in
the Eppendorf tube was inoculated with E. faecalis culture bouillon (1.6 × 108/mL) after
the removal of the old TSB medium and incubated at 37 ◦C. The next day, the bacterial
suspension within the root canal was again removed with a 27-gauge needle, and new
E. faecalis culture bouillon was applied to the roots and incubated at 37 ◦C. After two days,
the bacterial suspension was removed, but this time, it was not renewed; instead, fresh
TSB medium was applied to the roots. Furthermore, the infected root canals underwent a
renewal of the TSB medium every day for 6 weeks. The incubation time lasted 6 weeks to
allow the formation of E. faecalis biofilm.

2.3. Application of the Disinfection Protocols

After the incubation period, the bacterial suspension was removed from all the roots,
and the samples were randomly divided into five experimental groups (n = 20) and one con-
trol group (n = 20). Group 1 (CTR): control group with no disinfection protocol; Group 2
(NECPUI): NaOCl 3% + EDTA 20% + CHX 2% + NaCl 0.9% under passive ultrasonic ir-
rigation (PUI) with Irri S 25 (Satelec-VDW GmbH, Munich, Germany); Group 3 (NEPUI):
NaOCl 3% + EDTA 20% under PUI with Irri S 25; Group 4 (CEPUI): CHX 2% + EDTA 20%
under PUI with Irri S 25; Group 5 (NMPUI): NaOCl 3% + MTAD under PUI with Irri S25;
and Group 6 (NaCLPUI): NaCl 0.9% under PUI with Irri S 25 (Table 1). Before the disin-
fection procedure of any group (including the control group), the roots of all groups were
instrumented up to file F4 (040/0.6) of the ProTaper system (Dentsply-Maillefer, Ballaigues,
Switzerland) and were rinsed intermittently with 0.9% NaCl solution.

Table 1. Disinfection/irrigation protocols in each group.

Group 1 CTR Group 2 NECPUI Group 3 NEPUI Group 4 CEPUI Group 5 NMPUI Group 6 NaClPUI

Control group no
disinfection protocol

NaOCl 3% + EDTA
20% + CHX 2% + NaCl

0.9% under passive
ultrasonic irrigation
(PUI) with Irri S 25

NaOCl 3% + EDTA
20% under PUI with

Irri S 25

CHX 2% + EDTA
20% under PUI with

Irri S 25

NaOCl 3% + MTAD
under PUI with

Irri S 25

NaCl 0.9% under
PUI with Irri S 25
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2.4. Preparation of the Specimens for Visualization Techniques

The splitting of the roots was performed directly after the application of each disinfec-
tion protocol, providing two halves of each sample. One-half of the root was used for the
analysis by scanning electron microscopy (SEM), and the other half was used for the analy-
sis by fluorescence microscopic staining with 4′,6-Diamindin-2-phenylindole (DAPI). The
halves for DAPI staining were transferred directly into a 15 mL centrifugal tube (Sarstedt,
Nürnberg, Germany) with 4% formaldehyde to fixate the bacteria. The fixation lasted 48 h at
4 ◦C. Subsequently, the roots were placed in Osteosoft® (Merck, Darmstadt, Germany)—for
the decalcification of the dentinal roots—until the specimens were sliceable with a scalpel.
Then, every root canal half was cut transversally into two pieces: the medial part and the
apical part (1 mm before the apex). Shortly after, the embedding of the medial and apical
root pieces in paraffin was carried out. The sectioning of the root pieces into 2 µm sections
with a microtome (Leica Biosystems Nussloch GmbH, Nußloch, Germany) took place. The
object carrier was silanized, and the test species were placed on glass on a histological slide.
These final steps were performed for visualization with the DAPI method.

2.5. DAPI

DAPI staining (Merck, Darmstadt, Germany) was conducted as described in previous
research [20,21]. DAPI (4′,6-diamidino-2-phenylindole) stains DNA unspecifically by
binding to the AT-rich regions of double-stranded DNA. The following steps were used
for the DAPI staining. The test species were covered with the DAPI stock solution (1.5 µL
of stock solution in 500 µL of PBS (phosphate-buffered saline—Invitrogen Ltd., Bend, OR,
USA)) in a dark chamber. This DAPI solution was removed after 15 min by rinsing several
times with the PBS (phosphate-buffered saline, Invitrogen Ltd., Bend, OR, USA) before the
samples underwent fluorescence microscopic analysis [19]. Thereafter, the samples were
dried at room temperature and coated with the Vectrashield mounting medium (Sigma-
Aldrich, Taufkirchen, Germany). The analysis by epifluorescence microscopy (Axioplan,
Zeiss, Oberkochen, Germany) was conducted. The root canal samples with the dentinal
tubules were analyzed at 1000-fold, 400-fold, and 100-fold magnifications using a light filter
for DAPI (BP 365, FT 395, LP 397 Zeiss, Oberkochen, Germany). The area of the ocular grid
allowed the visualization of the total length of the dentinal tubules.

2.6. Scanning Electron Microscopy

Regarding the scanning electron microscopic (SEM) investigation, the other half of
the root was used. The sectioned root canal specimens with four roots from each group
were transferred into microtubes with 4% glutaraldehyde (Sigma-Aldrich, Taufkirchen,
Germany). The fixation with glutaraldehyde was continued for 2.5 h at room temperature.
The next step was washing with the PBS for 15 min twice and dehydration with Isopropanol
(Carl Roth GmbH Co. KG, Karlsruhe, Germany). Then, chemical drying through iterative
transfer into hexamethyldisilazane (HMDS) was performed. The specimens were fixed on
SEM stubs and sputtered with gold–palladium. The scanning electron microscopy took
place using a Philips ESEM XL 30 in the high-vacuum mode to detect secondary electrons
for imaging.

2.7. DATA Evaluation

First, the surface area of each sample was calculated, using the Image J2-Fiji program
(Curtis Rueden of UW-Madison LOCI, Madison, WI, USA), in the DAPI images with a
100-fold magnification [22]. Then, the number of bacteria per surface area was calculated
visually by two operators using a compact manual cell counter (FisherbrandTM, Schwerte,
Germany) in all the DAPI images of each group (apical and medial parts of the root canal).
The arithmetic estimation of bacterial penetration depth was performed using the Axio
Vision program (Zeiss, Jena, Germany). By that means, the distance between the entrance
of the dentinal tubules and the penetrated bacterial cells was measured. Moreover, all cells
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were counted between the entrance of the dentinal tubules and the deepest penetrated cell
in the specimens (Scheme 1).

Scheme 1. Flow chart of the experimental setup.

A four-point scoring system was adapted to evaluate the surface profile of the root
canal dentine after the application of the disinfection protocols by using the SEM data [23].
The scoring system was defined according to the representative images from the SEM data
(Figure 2):

Score 0: Absence of irregularities and dentinal tubules closed.
Score 1: Partially irregular and dentinal tubules partially opened.
Score 2: Damage of the surface and dentinal tubules opened.
Score 3: Severe erosion of the dentinal surface and dentinal tubules widely opened.

2.8. Statistical Analysis

The values were compared by using one-way analysis of variance (ANOVA), followed
by a post hoc test (Dunnett’sT3). The Dunnett’s T3 test was used to assess the differences
between the six groups based on the DAPI data. The level of significance was set at 0.001
for the one-way ANOVA test, with a statistical power of 95%, and at 0.05 for the Dunnett’s
T3 test, with a statistical power of 80%.
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Figure 2. Representative scanning electron micrographs of the surface profiles of root canal walls
characterized by a score of 0–3. (5000-fold magnification). Score 0: absence of irregularities of the root
canal wall and dentinal tubules closed—sample from the control group; Score 1: partially irregular
root canal wall and dentinal tubules partially opened—sample from Group 2; Score 2: damage of
the surface and dentinal tubules opened—sample from Group 3; and Score 3: severe erosion of the
dentinal surface, dentinal tubules widely opened, and collagen exposed—sample from Group 5.

3. Results

The bacterial colonization in the samples was successful. After six weeks of incubation
with E. faecalis, the cells had already migrated into the dentinal tubules. The examination
with the DAPI method gave insight into the remaining bacterial cells inside the dentinal
tubules after the application of the different disinfection protocols. All cells were counted
between the entrance of the dentinal tubules and the deepest penetrated cell in the speci-
mens. The overall penetration depths of the deepest remaining E. faecalis cells in all groups
and both parts of the root canal (medial and apical) were measured to validate the biofilm
model. A deeper penetration pattern of E. faecalis into the dentinal tubules was observed in
the medial part of the root canal compared to the apical part of the root canal in the control
group (Figure 3).
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in each group, but the bacterial count was higher as well. More specifically, in the control 
group, the bacterial count in the medial part was 1492.0 ± 768.4 bact./µm2, and in the apical 
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Figure 3. DAPI results: bacterial penetration depth (µm) of the deepest remaining E. faecalis cells in
the control group from both parts of the root canal (medial and apical) presented in the boxplots. The
dots represent all the values, including outliers. Mean scores—mean of value (mv)—are outlined by a
dashed line, and median scores are outlined by a straight line: medial part: 289.4 ± 121.554 µm (mv),
and apical part: 93.45 ± 118.554 µm (mv).

Bacterial cells were traceable in all specimens by the DAPI method in the control group.
The root canals inoculated with E. faecalis were heavily infected, and microorganisms
were observed in all areas of the dentinal tubules in the control group, even after the
instrumentation up to ProTaper file F4 (040/0.06). In general, not only a deeper penetration
of E. faecalis was observed in the medial part compared to the apical part of the root canal
in each group, but the bacterial count was higher as well. More specifically, in the control
group, the bacterial count in the medial part was 1492.0 ± 768.4 bact./µm2, and in the
apical part of the root canal, the count was 172.3 ± 222.1 bact./µm2. The representative
images from each group visualize the penetration depth of the deepest remaining bacterial
cells, as well as the residual infection of the dentinal tubules with the remaining bacteria
in general, after the application of the different disinfection protocols. These images from
the DAPI data are representative examples of each group from both parts of the root canal
(medial and apical) (Figure 4a,b).

Specifically, less bacteria were detected in Group 2 (NaOCl 3% + EDTA 20% + NaCl
0.9% + CHX 2% with PUI) when compared to Group 4 (CHX 2% + EDTA 20% with PUI)
and Group 6 (NaCl 0.9% with PUI). These Groups—4 and 6—yielded comparable amounts
of bacteria. Hardly any bacteria were detected in Group 3 (NaOCl 3% + EDTA 20% with
PUI) and in Group 5 (NaOCl 3% + MTAD with PUI) after the application of the disinfection
protocols. The post hoc comparisons using the Dunnett’s T3 test indicated that the mean
score for the control group was significantly different from all the other tested groups
regarding the medial part of the root canal. However, at the apical part of the root canal, the
control group did not significantly differ from Groups 2 (NaOCl 3% + EDTA 20% + NaCl
0.9% + CHX 2% with PUI), 4 (CHX 2% + EDTA 20% with PUI), and 6 (NaCl 0.9% with PUI).
There was also no significant difference between Groups 3, 5, and 2 at the medial/apical
part of the root canal, but the difference was statistically significant between Groups (3 and
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5) and (1, 4, and 6) at the medial part. No statistically significant association could be found
between Group 3 and Group 5 (Figure 5).
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Figure 4. (a) DAPI staining; typical examples for the penetration depth and remaining bacterial
colonization/cells for each group in the medial (A,C,E) and apical (B,D,F) parts of the root canal.
Measured penetration depth of E. faecalis in a representative sample of the control group: in the
medial part, it is 271 µm (A), and in the apical part, it is 259 µm (B). Measured penetration depth in
the medial part of Group 2 is 309 µm into the dentinal tubules (C) and 95 µm in the apical part of
the root canal (D). In Group 3, only one specimen sample is found with a penetration depth of 233 µm
in the medial part of the root canal (E), and there are no bacteria in the apical part of the root canal
(F). Remaining E. faecalis cells (white) are distributed randomly in small aggregates, and the stars (red)
outline the artifacts. Group 1: control group; Group 2: NaOCl 3% + EDTA 20% + CHX 2% + NaCl 0.9%
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with PUI; and Group 3: NaOCl 3% + EDTA 20% with PUI. (b) DAPI staining: typical examples
for the penetration depth and remaining bacterial colonization/cells for each group in the medial
(A,C,E) and apical (B,D,F) parts of the root canal. No bacteria are detectable in the dentinal tubules
of the apical part of Groups 4, 5, and 6 (B,D,F). Measured penetration depth of E. faecalis cells in
the medial part of Group 6 is 323 µm into the dentinal tubules (E), and it is 372 µm in Group 4 (A).
In a sample of Group 5 (medial part), the measured penetration depth of the deepest remaining
E. faecalis cells is 333 µm (C). Remaining E. faecalis cells (white) are distributed randomly. Group 4:
CHX 2% + EDTA 20% with PUI; Group 5: NaOCl 3% + MTAD with PUI; and Group 6: NaCl 0.9%
with PUI.
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Figure 5. DAPI staining: aggregated presentation of data representing the number of bacteria
both at the medial (m) and apical (a) parts of the root canal in all groups. Control Group 1:
1492.0 ± 768.4 bact./µm2 (m) and 172.3 ± 222.1 bact./µm2 (a); Group 2 (NaOCl 3% + EDTA 20% +
NaCl 0.9% + CHX 2% with PUI): 157.8 ± 239.3 bact./µm2 (m) and 19.6 ± 31.1 bact./µm2 (a); Group 3
(NaOCl 3% + EDTA 20% with PUI): 66.2 ± 188.2 bact./µm2 (m) and 0.5 ± 1.4 bact./µm2 (a); Group 4
(CHX 2% + EDTA 20% with PUI): 483.8 ± 409.9 bact./µm2 (m) and 7.9 ± 16.9 bact./µm2 (a); Group 5
(NaOCl 3% + MTAD with PUI): 33.2 ± 44.3 bact./µm2 (m) and 0.5 ± 1.6 bact./µm2 (a); and Group
6 (NaCl 0.9% with PUI): 329.5 ± 275.8 bact./µm2 (m) and 49.8 ± 109.3 bact./µm2 (a). Outliers are
represented by + (red) in the boxplot. Statistical significances are outlined by * between the various
conditions. One-way ANOVA (p < 0.001); Dunnett’s T3 test (p < 0.05).

The SEM data confirmed the results of the DAPI analysis. The visualization of bacteria
under the scanning electron microscope (SEM) indicated colonies of E. faecalis, especially at
the entrances of the dentinal tubules and the root canal surface. It was mainly observed by
the SEM how each disinfection protocol had affected the structure of the root dentine.

A considerable alteration of the dentinal structure in the root canal was observed in
Groups 3 and 5. This alteration resulted in the erosion of the dentinal ultrastructure. Partial
irregularities were observed in Groups 2 and 4. A morphological change of the dentine
surface was observed by the SEM in Group 6, as well. The dentinal tubules were partially
opened, and there were areas of the dentine surface that were apparently mechanically
prepared and instrumented due to the use of the ultrasonic tip (Figure 6).
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Figure 6. Representative images obtained by SEM from the six groups (1000×, 20,000×magnification)
characterized by the scoring system: (a) control group: (score 0) no irregularities on the dentine
surface; (b) Group 2: (Score 1) dentine surface morphology coated with collagen; (c) Group 3: (Score 0)
demineralization of dentine surface; (d) Group 4: (Score 1) limited non-instrumented areas with
partially closed dentinal tubules; (e) Group 5: (Score 0) severe erosion of the dentinal surface; and
(f) Group 6: (Score 2) partially irregular dentinal surface.

4. Discussion

With the intention of studying the effect of different disinfection protocols, it was
necessary to analyze the cleansing effect of different irrigations and to quantify the re-
maining bacteria after the decontamination. Therefore, a mono-species biofilm model was
established in order to quantify penetrated bacteria into the dentinal tubules of human
root dentine after the application of different disinfection protocols. The composition
and structure of the endodontic biofilms are highly variable. Although this study was
not in vivo and did not mimic complex multispecies endodontic biofilms, the established
mono-species E. faecalis isolated from a biofilm model with persistent root canal infection
provided a well-standardized anatomical and biologically relevant model that allowed the
comparison of different disinfection protocols against E. faecalis biofilms, as visualized with
the DAPI method.
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The analytical procedure based on the visualization by DAPI staining was established
by the present research group [24,25] to quantify the remaining penetrated E. faecalis cells
within the dentinal tubules and to evaluate the disinfection effect of five different irrigation
protocols. To a certain extent, this technique permits the two-dimensional imaging of bacte-
ria on the root canal surface and inside the dentinal tubules. The examination following
DAPI staining gave an additional insight into the remaining penetrated bacterial cells into
the dentinal tubules [24,25] and confirmed the penetration of bacteria into the dentinal
tubules. Furthermore, the examination with the DAPI method revealed a semi-quantitative
assessment of bacteria in the observed areas. Undeniably, the evaluation of the results,
specifically the calculation of bacteria, was time consuming. The compact manual cell
counter allowed us to register each individual colony prior to testing based on standard-
ized comparisons [26]. Notwithstanding the fact that the method was time-consuming, it
provided an accurate estimation of the number of bacterial cells.

A criticism often brought up in relation to all imaging techniques used to evaluate
intraradicular biofilms is that the observed areas are to some extent subjectively chosen by
the examiner. Using the DAPI method, which also provides a local estimation of remaining
bacteria, the cross sections of the root—and not of the whole root canal—were evaluated.
Certainly, the field of observation is more extended in contrast to other methods, such as
colony-forming units (CFU). Considering that the field of vision under the microscope is
limited, most of bacteria remain undetected. Regarding CFU, most of the studies are based
on the paper point sampling process for the analysis of bacteria, which is considered con-
troversial since it leads to a biased collection of biofilm material that are readily accessible,
while hidden bacteria in dentinal tubules are oftentimes disregarded [27]. A negative cul-
ture result by CFU does not necessarily imply a bacteria-free root canal system, as bacteria
may be retained in complex areas of the system or into the dentinal tubules embedded
within a biofilm, thus being inaccessible to the paper points used for sampling. Therefore,
the CFU method in combination with paper points for bacterial identification can result in
an underestimation of the bacteria present in an infected root canal [28]. Even though the
field of vision in the presented DAPI method in this study is limited, it offers insight into
the bacterial contamination within the dentinal tubules and the bacterial penetration depth.
Further analysis of the root canal wall using SEM gives additional insight into the bacterial
contamination of the root canal surface as well as the alteration of the root dentine caused
by endodontic irrigants.

It is apparent that the combination of different microscopic techniques is more likely
to facilitate a deeper and more realistic analysis of biofilm architecture in the root canal.
The combination with SEM provides more information regarding the visualization of
bacteria [29]. SEM also provides information concerning the condition of bacteria and
the ultrastructure [30,31]. SEM has been used to visualize the distribution of bacteria
on the surface of biofilm in the root canal wall, as well as the penetration inside denti-
nal tubules [24,32,33]. However, the resulting images are, therefore, only pseudo three-
dimensional. As biofilms are multileveled, SEM is unable to assess the full depth of these
structures [29,34,35]. Another aspect regarding SEM is that only topographical assessment
of the observed structures is possible, which makes it nearly impossible to quantify the
bacteria into the root dentine areas and, especially, inside the dentinal tubules. Therefore,
only qualitative assessment of observed specimens can be performed with this technique.
This is not surprising, considering the field of vision under a scanning electron microscope
contains only a few micrograms of dentine. For this reason, previous studies have used
SEM in order to visualize bacteria in the root canal and not to quantify them [12,29,36].
However, SEM is a very effective method to analyze ultrastructural surface alterations after
an irrigant application. Different studies have already shown the use of SEM to investigate
enamel [37,38] and dentine [39,40]. Nevertheless, a direct comparison of irrigant decon-
tamination efficacy using fluorescence microscopy (DAPI) and dentinal surface alteration
using SEM was performed for the first time in the present study.



J. Funct. Biomater. 2023, 14, 176 13 of 16

Regarding the viability of the remaining bacteria, the established DAPI method is
unable to provide knowledge about the viability of such bacteria. There is no evidence
regarding a live/dead staining with the advantages of the DAPI method, which has the
ability to detect the viability of penetrated bacteria located within the dentinal tubules of
the root canal. The fixation of bacteria—a necessary step in the analysis with the DAPI
method—destroys the viability state of cells. In general, it can be assumed that the differen-
tiation of viable and dead bacteria is possible using different live/dead staining methods.
These methods represent the viability state during the staining procedure. However, with
additional after dye accumulation inside the cells, bacteria, indeed, lose their viability [41].

The model in this study was based on a mono-species biofilm with E. faecalis within
the root canals and dentinal tubules. E. faecalis plays an important role in bacterial biofilm
invasion and is considered a suitable model for assessing root canal bacterial penetration.
Many in vitro investigations have been undertaken to examine the mechanisms involved in
bacterial penetration into dentine and to visualize this infection in dentinal tubules [12,42].
Confocal laser scanning microscopy (CLSM) and the DAPI method—which was used in
this study—allow the most precise assessment of bacterial penetration in the dentinal
tubules and generate less risk of creating artifacts, when compared to SEM [43]. Most of
studies with CLSM use colony-forming units (CFU) in order to quantify bacteria that have
invaded into dentinal tubules. Considering the drawbacks of CFU, the DAPI method can
be considered as an alternative visualization method for quantifying bacterial penetration.

In this study, the effectiveness of the five different disinfection protocols was examined
in comparison to the control group, and it was concluded that the disinfection protocols
in Groups 3 (NaOCl 3% + EDTA 20% with PUI) and 5 (NaOCl 3% + MTAD with PUI)
were the most effective (p < 0.001). There was a significant difference in the bacterial
count between both Groups 3 and 5 and all the other groups in the medial part of the
root canal (p < 0.05). Although PUI improved the effectiveness of conventional irrigation,
no significant difference was detected between the control group (only instrumentation
and conventional irrigation with NaCl 0.9%) and Group 6 (instrumentation and passive
ultrasonic irrigation with NaCl 0.9%) based on the Dunnett’s T3 test (p < 0.05). Obviously,
the irrigants play an important role in the decontamination of E. faecalis biofilm, but the
use of passive ultrasonic irrigation also enhances bacterial reduction from the root canal
systems when compared to other methods of irrigant activation and conventional syringe
irrigation [6,44–46].

Both groups (Groups 3 and 5) revealed the best results concerning decontamination
and biofilm dissolution capacity. NaOCl is appropriate as an irrigant because it is effective
in disrupting biofilm [47]. However, structural deformations/alterations were observed
in the dentine ultrastructure. The use of NaOCl in combination with additional irrigants
as the final irrigation provokes severe structural changes in the dentinal collagen. These
phenomena has also been observed in previous ultramorphological studies [48,49]. The
erosion of the dentine by proteolytic degradation is followed by the formation of fragile,
spongy-like root dentine. The worst-case scenario is root fracture due to the weakening of
the root. Therefore, it is a fine line between removing too much dental tissue, which would
strongly weaken the root, and leaving the infected dental tissue in the root canal, which
would reduce the possibility of achieving the best decontamination effects.

Intensive research is being conducted to develop disinfection protocols for the root
canal system. The ideal protocol of disinfection does not exist yet. In the near future,
nanotechnology might be applied to the endodontic field. In endodontics, there are no
techniques that promote total anti-biofilm removal while simultaneously do not affect the
root dentine ultrastructure. Nanomaterials and nanocarriers could open new opportunities
for the removal of biofilms and repair of tooth structure [50].

5. Conclusions

In conclusion, a clinically relevant E. faecalis biofilm model for in vitro studies—based
on visualization by DAPI staining—was established. The results of the present study



J. Funct. Biomater. 2023, 14, 176 14 of 16

suggest that the combination of 3% NaOCl under passive ultrasonic irrigation with an
additional final irrigant, such as 20% EDTA or MTAD, is the most effective disinfection
protocol against E. faecalis biofilm. Yet, the dentinal root canal surface is altered the most
after the application of 3% NaOCl with 20% EDTA or MTAD. The combination of epiflu-
orescence microscopy with DAPI staining and scanning electron microscopy (SEM) is a
novel approach of the present research group to visualize and quantify the decontamination
effects of different endodontic irrigants by evaluating the remaining bacteria on the root
canal surface and within the dentinal tubules. At the same time, the penetration depth of
bacteria and the bacterial ultrastructure/condition, as well as the alteration of the dentine
due to the endodontic irrigants, can be evaluated.
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