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Abstract: Rapid, accurate, and portable on-site detection is critical in the face of public health
emergencies. Infectious disease control and public health emergency policymaking can both be
aided by effective and trustworthy point of care tests (POCT). A very promising POCT method
appears to be the clustered regularly interspaced short palindromic repeats and associated protein
(CRISPR/Cas)-based molecular diagnosis. For on-site detection, CRISPR/Cas-based detection can be
combined with multiple signal sensing methods and integrated into smart devices. In this review,
sensing methods for CRISPR/Cas-based diagnostics are introduced and the advanced strategies
and recent advances in CRISPR/Cas-based POCT are reviewed. Finally, the future perspectives of
CRISPR and POCT are summarized and prospected.
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1. Introduction

Nucleic acid-based tests have emerged as the gold standard for many diseases, including
pathogenic infections, despite the fact that there are various forms of clinical diagnosis. Quan-
titative polymerase chain reaction (qPCR)-based nucleic acid testing is also widely employed
in many fields including public health, food safety, environmental monitoring, etc., [1,2].
Because this method relies on specialist instruments and operators, point of care testing
(POCT), which is instrument-independent and user-friendly, has received a lot of attention,
especially during the global SARS-CoV-2 pandemic. In recent years, numerous technolo-
gies have been developed and applied to molecular diagnostics, such as nanotechnology,
nucleic acid amplification, interface modification and sensing, and molecular assembly
techniques [3–5]. In particular, CRISPR-based diagnostics have been hailed as a promising
candidate for next-generation diagnostics because of their capacity to detect nucleic acids
rapidly and accurately, without relying on technical expertise and assistive equipment [6].

CRISPR/Cas systems are the adaptive immune system of bacteria, which can resist the
invasion of exogenous genes [7,8]. CRISPR/Cas systems consist of the CRISPR array and
CRISPR-associated protein (Cas protein). The CRISPR array contains repeats and spacer
sequences to generate CRISPR RNA (crRNA), which combines with the corresponding
Cas protein to form a ribonucleoprotein (RNP) complex that functions as a genomic DNA
editor [9]. CRISPR/Cas systems have been divided into two classes, and class 2 systems are
widely used because they require only one Cas protein (e.g., Cas9, Cas12a, Cas13a) to fulfill
their corresponding functions [10,11]. Since the team led by Emmanuelle Charpentier and
Jennifer A. Doudna clarified the DNA-editing mechanism of the class 2 CRISPR system,
genome engineering has gained tremendous momentum [8,11]. With the comprehensive
understanding of CRISPR/Cas biology, the indiscriminate trans-cleavage activity of Cas12a
and Cas13a has been reported and can be used in combination with single-strand DNA
(ssDNA) or single-strand RNA (ssRNA) probes for the development of molecular diagnostic
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methods [12–14]. After target cleavage, the Cas9 protein goes into an inactive state, but
when the Cas12a and Cas13a proteins are activated, indiscriminate trans-cleavage activity
is maintained, in stark contrast to Cas9. Due to this unique property, both the Cas12a and
Cas13a proteins can be triggered by a single target sequence to acquire multiple nuclease
activities. These activities significantly increase sensitivity by acting as superior signal
amplifiers for nucleic acid detection. Furthermore, this reaction procedure can be carried
out speedily under room temperature, making it ideal for developing the CRISPR-based
POCT technology platform, and for use in clinical and field settings.

The powerful nucleic acid binding and broader cleavage capabilities of Cas proteins
lead to several detection modes, including fluorescence, electricity, electrochemistry, col-
orimetry, and more [15–18]. However, the CRISPR-based POCT technique that satisfies
the ASSURED criteria (Affordable, Sensitive, Specific, User-friendly, Rapid and robust,
Equipment-free, and Deliverable to end-users) is probably going to be a major research
trend in the future to improve potential for public health applications of CRISPR-based
biosensing [19,20]. In this review, we briefly summarize CRISPR-based sensing methods
and advanced strategies for the highly sensitive and accurate detection of different analytes.
Although CRISPR-based diagnostics have considerable obstacles in reducing uptime and
cost, advancements in these strategies hold promise for adapting CRISPR to point of care
and home settings.

2. Sensing Methods for CRISPR/Cas-Based Detection
2.1. Fluorescence Signal Sensing

The variety of nucleic acids that can be detected have been enriched by the discovery
of Cas proteins with various properties (Table 1). After activation, both Cas12a and Cas13a
proteins show a trans-cleavage activity and can cleave single-stranded DNA (ssDNA) and
single-stranded RNA (ssRNA) nonspecifically, respectively [12,13]. Upon the recognition
of the target sequence by Cas12a or Cas13a, the Cas effector proteins can indiscriminately
cleave short ssDNA or ssRNA bearing both a fluorophore and a quencher, reporting a
fluorescent signal [21,22]. CRISPR-based nucleic acid diagnosis is usually divided into four
steps. Firstly, nucleic acid extraction. Commercial kits can be used to swiftly extract the
target nucleic acid in clinical samples such as blood, urine, and nose/throat swabs, etc.
Secondly, nucleic acid amplification. Isothermal amplification is frequently used for the
second step. Thirdly, CRISPR-based detection, with CRISPR system selection according
to different nucleic acid types. Finally, signal output. Fluorescence signals are common
CRISPR sensing signals that facilitate analysis. The viral genomic nucleic acid detection
limits of the specific high-sensitivity enzymatic reporter unlocking (SHERLOCK) and
the DNA endonuclease-targeted CRISPR trans reporter (DETECTR) developed following
this principle, are at the aM level [12,23]. CRISPR diagnosis based on fluorescence signal
has great advantages in responding to public health emergencies (such as SARS-CoV-2),
especially when combined with isothermal amplification technology, which can rapidly
detect infectious disease pathogen nucleic acids under isothermal conditions, and only
requires a portable light-emitting diode (LED) device to visualize detection results [24].
Meanwhile, isothermal amplification and CRISPR-based diagnostics can be integrated
into one pot, avoiding the aerogel contamination of pathogenic nucleic acids, while also
reducing detection costs (Figure 1A) [25,26]. The CRISPR detection outcomes based on
fluorescence signals are generally simple to see with the naked eye, requiring no specialized
analytical tools and significantly lowering the cost of CRISPR-based POCT.

To employ CRISPR/Cas-based diagnostics in the field, a lateral flow assay was com-
bined with the CRISPR/Cas system to create a convenient detection platform [21,27].
Typically, carboxyfluorescein (FAM)-biotin reporters are used to carrying out lateral flow
strip-based CRISPR/Cas12a detection assays. The first detection line (control-line) captures
undegraded reporters, whereas the second detection line produces a signal from indiscrim-
inate Cas12 trans-cleavage activity (test-line) [27]. Contrarily, in a different approach, the
biotinylated ssDNA reporters are degraded by Cas12a in the presence of the target, making



J. Funct. Biomater. 2023, 14, 97 3 of 14

it invisible on the test-line of a lateral flow strip since it is unable to connect to DNA probes
that have already been fixed there (Figure 1B). By using a one-pot method that combines
genome release, isothermal amplification, and CRISPR/Cas detection, the nucleic acid
detection of pathogens can be accomplished relatively quickly. The CRISPR/Cas-cleaved
fluorescent molecules can be sensitively excited by the LED, enabling visualization of the
detection signal. Meanwhile, this operationally friendly detection mode has been applied in
a variety of pathogen detection, such as SARS-CoV-2, Plasmodium, and African swine-fever
viruses, which makes it a convenient tool for public health detection in resource-constrained
areas and on-site detection [28–31].

Table 1. An overview of key features of each class 2 CRISPR system.

Features
Type

Cas9 Cas12a Cas13a Cas14

PAM NGG TTTN - -
Target dsDNA (ds/ss)DNA ssRNA ssDNA

Trans-cleavage No Yes Yes Yes
Trans-cleavage substrates - ssDNA ssRNA ssDNA
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Figure 1. Fluorescence sensing strategy for CRISPR-based diagnosis. (A) The scheme of one-pot
visual CRISPR-based (opvCRISPR) detection method. (ns = no significant, ** p < 0.01, *** p < 0.001)
Reproduced with permission from Ref. [25]. (B) Schematic diagram of CRISPR/Cas-based lateral
flow assay. Reproduced with permission from Ref. [31].

2.2. Electrical Signal Sensing

The high sensitivity of CRISPR/Cas-based detection is typically based on isothermal
amplification that can amplify nucleic acid molecules; however, the use of the isother-
mal amplification reagents raises the cost of CRISPR/Cas-based diagnosis. Because of
its high sensitivity, electrical signal sensing could be a candidate for amplification-free
CRISPR/Cas-based diagnosis [32,33]. Electrical signal-based CRISPR/Cas diagnosis is typ-
ically performed using a defective Cas protein such as dCas9, which can only bind and not
cleave target nucleic acid molecules. Hajian et al. fixed the CRISPR/dCas9 to a field effect
transistor (gFET), and when the RNP recognized and bound a target nucleic acid molecule,
the gFET conductivity changed, therefore reporting the detection result [34]. Their sensor is
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based on the idea that charged DNA molecules can be captured by dCas9 immobilized on
graphene, which lowers the system’s resistance and results in a larger current response. To
prevent the nonspecific adsorption of charged molecules, the remaining graphene surface
was blocked. A drop of the sample was applied to the apparatus while it was in use; it was
left while it was incubated, washed, and eventually had the electrical conductivity of the
platform evaluated by two platinum electrodes. The method has a detection limit of 15 fM
without amplification, and the detection time is about 15 min. The nanopore sensor can
also be used as a signal sensing method for CRISPR/dCas9-based diagnostic by detecting
the characteristic blockade signal of dCas9-DNA as it passes through the nanopore [35].
The nanopore signals (ion current) for different dCas9-binding sites can be resolved, which
could lead to a multiplexing strategy. Signal barcodes can be created to distinguish the
different sequences of the DNA using different crRNAs, which can bind to different sites
on the same DNA (Figure 2A) [36]. This method’s ability to discriminate between different
DNA sequences in DNA mixture demonstrates its specificity and potential for multiplex-
ing. Although dCas9 can detect and type single DNA, its application is limited by low
throughput. Additionally, because there is a decreased probability of the target DNA strand
passing through the nanopore in samples containing less target DNA, a longer measuring
time is needed. The trans-cleavage of Cas12a may be able to provide a solution to this
issue. The Cas12a trans-cleavage can degrade the DNA probes of nanopore, causing the
electrical signal of the DNA probes to change significantly. The Cas12a-based nanopore
sensing technology can amplify the detection signal, using its trans-cleavage activity to
achieve rapid and sensitive detection of HIV-1 and SARS-CoV-2 (Figure 2B) [37,38].
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Figure 2. Electrical sensing strategy for CRISPR-based diagnosis. (A) Schematic diagram and results
of nanopore-based CRISPR/dCas9 test. Reproduced with permission from Ref. [36]. (B) Schematic
diagram and results of nanopore-based CRISPR/Cas12a assay. Reproduced with permission from
Ref. [37].

2.3. Electrochemical Signal Sensing

Methylene blue (MB) is a classic electrochemical tag, and the MB-based CRISPR
diagnostic technique has high sensitivity. The ssDNA-MB was immobilized onto the
gold electrode surface via sulfhydryl groups, and the MB was released when the ssDNA
was trans-cleaved after the CRISPR/Cas12a was activated by the target sequences. The
detection signal was reported using the current peak of the electrode measured by square
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wave voltammetry (SWV), which decreases with the release of MB [39]. The use of hairpin
ssDNA allows MB tags to be positioned closer to the electrode surface, resulting in larger
initial current peaks and more significant current peak changes after CRISPR/Cas12a-
based detection (Figure 3A) [40]. The strategy of removing electrochemical tags from the
electrode surface after the CRISPR/Cas system is activated leads to significant changes in
the electrode’s electrochemical signal, which appears to be a promising route of CRISPR-
based POCT [41].
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The use of oxidative enzymes to amplify electrical signals appears to be a promis-
ing strategy. Bruch et al. immobilized glucose oxidase on the electrode surface using
ssRNA, and the trans-cleavage activity of Cas13a cleaved ssRNA after being activated
by the target sequence, releasing the glucose oxidase (Figure 3B). Glucose oxidase can
oxidize the glucose in a solution to produce D-glucose-δ-lactones and H2O2, which can be
measured amperometrically. The current signal will be lower than the blank if target RNA
is present [42]. Additionally, independent of the electrochemical tag, the use of electrochem-
ical impedance spectroscopy (EIS) as the detection signal may improve the electrochemical
CRISPR-based diagnostic sensitivity. The electrode surface was modified with ssDNA,
which was degraded after the CRISPR/Cas12a system recognized the target sequence, and
the electrochemical impedance spectral transition of the electrode was reported as the detec-
tion signal [43]. In summary, the electrochemical CRISPR/Cas-based assay has achieved a
highly sensitive detection of pathogens such as human papillomavirus 16 (HPV-16), human
immunodeficiency virus (HIV), parvovirus B19 (PB-19), and Listeria monocytogenes, with
great potential for POCT of infectious diseases [39,44,45]. Table 2 provides a summary of
the performance of the electrochemical sensing-based CRISPR detection method described
previously. Overall, the electrochemical sensing technique has a high sensitivity, allowing
CRISPR detection without nucleic acid amplification.

Table 2. An overview of performance of CRISPR detection based on electrochemical signal sensing.

Method Target Test Time Sensitivity Reference

E-CRISPR Viral nucleic acids (HPV-16 and PB-19) 30 min 50 pM [39]
CRISPR/Cas12a-Mediated

Electrochemical Nucleic
Acid Sensing

DNA 60 min 30 pM [40]

E-DNA Sensor DNA 60 min 10 fM [41]
CRISPR/Cas13a-Powered

Electrochemical Microfluidic Biosensor microRNA 4 h 10 pM [42]

Label-free Impedance Biosensing bacterial DNA (E. coli and S. aureus) 1.5 h 3 nM [43]
Electrochemical Strategy for Low-Cost

Viral Detection Viral nucleic acids (HIV and HPV) 3 h 104 copies [44]

RAA-based E-CRISPR bacterial DNA (L. monocytogenes) 1 h 26 CFU mL−1 [45]
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2.4. Colorimetric Signal Sensing

Colorimetric sensors are popular because they can read the detection results di-
rectly with the naked eye, and colorimetric lateral flow assay (LFA) also has many
applications in CRISPR/Cas-based detection (Figure 4A). The sample pad, control-line
(C-line), and test-line (T-line) of commercial universal test strips were precoated with gold
particle-bound anti-FAM antibodies, biotin ligands, and anti-rabbit antibodies, respec-
tively. Biotin- and FAM-modified ssDNA served as reporters for CRISPR/Cas12a-based
diagnostics, the reporters were cleaved and captured by T-line when the CRISPR/Cas sys-
tem was activated, and a positive result was reported. Additionally, a negative result was
reported when the reporters were captured by C-line [46]. A similar strategy is used for
the on-site detection of Pseudomonas aeruginosa, Leptosphaeria maculans, and African swine
fever virus, with miniaturized equipment and friendly operations flexibly applied in dif-
ferent fields; it is a promising POCT candidate for response to public health events [47–49].
Although the LFA-based CRISPR diagnosis is challenging to quantify, its benefits of rapid
detection and high sensitivity have significant field application value. Furthermore, LFA
sensing methods are also available for Cas9-based diagnostics. After isothermal amplifi-
cation, the target sequence can be introduced to biotin by biotin-modified primers, while
being bound to the avidin-modified T-line. The gold nanoparticles labeled dCas9/crRNA
complexes via surface binding ssDNA, which can partially hybridize with crRNA, simi-
lar to gold nanoparticle labeled nucleic acid antibodies [50]. Another Cas9-based LFA
assay also similarly requires the introduction of special chemical groups (digoxin, biotin,
and fluorescein isothiocyanate isomer (FITC)) to the target sequence during isothermal
processing using primers with specific chemical modifications. The Cas9nAR specifically
selects isothermal amplification sites, and chemically modified primers introduce specific
groups to the amplicon that can be captured by the T-line [51].

In addition to LFA, other colorimetric probes have also been used to visualize
CRISPR-based detection. The gold nanoparticle solution changes from red to purple
after particle aggregation due to its electromagnetic properties, which is a promising
CRISPR colorimetric strategy. The ssDNA or ssRNA can be modified on the surface of
gold nanoparticles through sulfhydryl groups and prevent the aggregation of nanopar-
ticles. Upon trans-cleavage of ssDNA or ssRNA by Cas12a/13a, gold nanoparticles can
aggregate, and the change in solution color can serve as a reporter (Figure 4B) [52,53].
With this strategy, SARS-CoV-2 can be detected and the results are consistent with
those of clinical testing [54]. Furthermore, the nanozymes additionally seem to be
a valuable probe for visualizing CRISPR-based detection. When combined with the
CRISPR/Cas13a system, the nanozyme-based immunosorbent assay (NLSA) can am-
plify the reporter signal via the catalytic reaction of nanozymes and improve sensitivity,
allowing for amplification-free RNA detection [55]. NLSA is a signal amplifier for target
RNA detection, it is similar to the enzyme-linked immunosorbent assay (ELISA), which
involves adding reagents in steps to a functional surface to catalyze the substrate and
produce a color product that can be used to read the signal. NLSA was more sensi-
tive than ELISA because the substrate conversions of nanozymes with catalytic metal
particle compositions were higher than the comparable native enzymes. Although
colorimetric CRISPR-based diagnosis is challenging to quantify, its benefits of rapid
detection and high sensitivity have significant field application value. As shown in
Table 3, the colorimetric sensing strategy enables CRISPR diagnosis to achieve a short
test time without sacrificing sensitivity, increasing the chances that CRISPR detection
will be used in the field.
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Table 3. An overview of the performance of CRISPR detection based on colorimetric signal sensing.

Method Target Test Time Sensitivity Reference

RAA-Cas12a based system
(CORDS) African swine fever virus (ASFV) 60 min 1 fM [46]

RPA-CRISPR/Cas12a system L. maculans 45 min 4.7 copies per test [48]
CRISPR/Cas12a-LFD ASFV 60 min 20 copies per test [49]

CRISPR/Cas9-mediated Lateral
flow nucleic acid assay (CASLFA)

L. monocytogenes, genetically
modified organisms (GMOs), ASFV 60 min 102 copies per test [50]

Lateral flow strip combined
with Cas9 double food-borne pathogens 3 h 102 CFU mL−1 [51]

Combines the Cas12a with
universal AuNPs

strand-displacement probe
SARS-CoV-2 20 min 2.7 × 102 CFU mL−1 [53]

RT-RPA-coupled CRISPR/Cas12a
colorimetric assay SARS-CoV-2 60 min 1 copy per test [54]

3. Advanced Strategy for CRISPR/Cas-Based POCT

A POCT method should be sensitive, user-friendly, fast, powerful, equipment-independent,
and low-cost [20]. The integration of molecular diagnostics into small devices, while avoiding
environmental interferences for on-site detection, can effectively reduce patient and hospital
burden and improve response efficiency to public health emergencies. In particular, researchers
are very interested in introducing microfluidics and smartphones into CRISPR-based diagnostics
in order to achieve rapid, sensitive, and accurate POCT.

3.1. Diagnostics on a Chip

Microfluidic chips have the advantage of being integrated, high-throughput, portable,
and small in volume, which makes microfluidic-based POCT methods faster; they have
higher throughput and are less costly. The rapid (less than 50 min) detection of pathogenic
nucleic acids can be achieved by sequentially performing nucleic acid extraction, ampli-
fication, and CRISPR-based detection on the microfluidic chip by controlling the fluidic
flow through rotary valves. The nucleic acid detection limit of Vibrio parahaemolyticus
reaches 30 copies/reaction (Figure 5A) [56,57]. To eliminate the requirement for a cen-
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trifuge when releasing nucleic acids, Wu et al. further designed an on-chip nucleic acid
extraction method, push-pulled by syringe and magnetic beads, that was simple to use
and low-cost [58]. On the fluid chip, all test components are kept in advance. It is possible
to precisely control the flow and mixing of liquids with the use of a rotating valve and
syringe. Within 80 min, DNA extraction, isothermal amplification, and a CRISPR-based
assay can be completed. Furthermore, the integrated fully-closed nucleic acid detection
based on the microfluidic device can avoid the infection of operators with pathogens while
avoiding the contamination of nucleic acid aerosols, providing a promising POCT strategy
for coping with urgent public health safety events such as SARS-CoV-2 [59]. Nguyen et al.
also developed a paper-based CRISPR sensor for SARS-CoV-2 detection that could be
embedded in masks for convenient use in resource-limited areas [60]. Each module needed
for CRISPR diagnosis was placed on the outside or inside of the masks. For viral collection,
collection pads were placed inside the masks facing the patient’s mouth and nose. The
whole set of lyophilized reagents needed for CRISPR diagnostics is contained in µPAD,
which are microfluidic paper-based analytical devices that receive any liquid and viral
particles gathered from the sample collection pad.
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Figure 5. The CRISPR-based detection system on the chip. (A) A schematic diagram of CRISPR-
based diagnostic system based on a chip. Reproduced with permission from Ref. [56]. (B) A
multiplexed CRISPR-based microfluidic platform for respiratory-related virus detection. Reproduced
with permission from Ref. [64].

Multiple target sequences are difficult to detect with a single CRISPR-based diagnostic
assay, and high-throughput microfluidics provide a multiplexed strategy for CRISPR-based
diagnostics [61]. Simple multiplexed chips are usually centrifugation-assisted and sym-
metrically separated into several separate detection zones, that can be detected without
interference with each other, using centrifugal force [62]. Similarly, paper-based microflu-
idic chips can also be designed to be multiplexed with multiple independent detection
modules, and CRISPR reagents against different targets are lyophilized in different regions,
enabling diagnosis when the sample solution is chromatographed to the detection re-
gion [63]. This paper-based CRISPR microfluidic diagnosis provides an extremely low-cost
strategy. In addition, to improve the detection throughput, Ackerman et al. developed
combinatorial arrayed reactions (mCARMEN) based on a CRISPR/Cas13a diagnostic
system and microfluidics that can detect up to 26 respiratory-related viruses, including
coronaviruses such as SARS-CoV-2 and multiple influenza viruses (Figure 5B) [64]. To
reduce costs and errors, mCARMEN uses a commercialized fluidic circuit (IFC) tailored to
Fluidigm Biomark. IFC can be manually loaded and created to order. Samples in reaction
chambers for detection are completely mixed by the Fluidigm controller, which offers fine
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control over fluid flow on the IFC. Using a customized automated process with a scan
time of 1–3 h, the Fluidigm’s fluorescence intensity was quantified as a signal output. The
mCARMEN platform is highly scalable and can detect infectious pathogens and mutations
using clinical laboratory instrumentation. Simultaneously, the high-throughput capability
of this technology has the potential to reduce physical effort, while improving diagnostic
efficiency, when dealing with public health emergencies.

3.2. Smartphone-Based Portable Detection

Most CRISPR-based diagnostics rely on fluorescence signals and changes as small as
1% can be sensed by smartphone-based detectors, so a combination of smartphone-based
CRISPR diagnostics is a highly sensitive strategy of POCT [65]. The smartphone-based
visual detection method can also fully close the detection system without uncapping
and avoid nucleic acid aerosol contamination, while maintaining the same positive and
negative rates as clinical test results [66]. To determine whether the detection results
were positive or negative, the acquired fluorescence images were quantified using custom
software equipped with binary classification models [67]. This smart strategy even has
the potential to share data with servers to track infectious diseases in real-time, which
would be extremely helpful in responding to public health emergencies. More importantly,
rather than just qualitative analysis, Fozouni et al. used the smartphone to convert the
fluorescence signal into a viral load, providing a potential quantitative strategy for nucleic
acid pocketing (Figure 6) [68]. This method offers amplification-free nucleic acid detection
since a single target RNA can activate several Cas13a RNPs, substantially doubling the
active enzyme concentration, by utilizing multiple RNPs that identify various sections of
the same viral target RNA. Instead of specialist equipment, devices that can be produced
in large quantities and are adequate to capture the minute fluorescent signal emitted by
CRISPR/Cas13a include a custom-built mobile phone fluorescence microscope and reaction
chamber. Additionally, this method’s sensitivity is roughly an order of magnitude higher
than that of utilizing a plate reader, since customized equipment decreases measurement
noise while enabling rapid signal collection.

3.3. Functional DNA-Assisted Detection of Non-Nucleic Acid Targets

The characteristic that ensures the CRISPR/Cas system can only detect nucleic acid
molecules (DNA or RNA) limits its application in the diagnosis of non-nucleic acid ana-
lytes. It is a flexible strategy to convert non-nucleic acid to nucleic acid signal by using
the functional DNA (fDNA, aptamer-based DNA walker) in order to fully exploit the
advantages of highly sensitive detection by CRISPR/Cas [69]. The presence of the analytes
can cause the functional DNA to be unlocked, which activates the CRISPR/Cas12a and
causes trans-cleavage of the fluorescent probe, which can be detected as a fluorescent signal
(Figure 7) [70]. The system was made up of an fDNA molecule that was matched to the
Cas12a RNP, an ssDNA reporter with fluorescent and quenching groups on both ends
(ssDNA-FQ), and Cas12a RNP. The fDNA is in a locked state without the target analyte,
which stops Cas12a from initiating trans-cleavage. When the target analyte interacts with
the fDNA, Cas12a trans-cleavage activity is activated, resulting in the degradation of the
ssDNA-FQ and the generation of a fluorescent signal that can be picked up by a portable
fluorometer. The adenosine 5′-triphosphate (ATP) and sodium ions (Na+) can be detected
at ambient temperature (25 ◦C) using this method, with a detection limit of 4.75 µM and
0.10 mM. This strategy expanded the detection objects of CRISPR/Cas-based diagnosis to
pathogens, cells, exosomes, metal ions, small molecule compounds, and so on, accelerating
the development of the CRISPR/Cas-based POCT [70–73]. Moreover, when a T7 promoter
is added to the functional DNA, the in vitro transcription reaction response begins only
after the functional DNA has been unlocked by the analytes [74]. An unlocked functional
DNA can be transcribed multiple times in vitro, which appears to be a promising approach
to further amplify the detection signal. In Table 4, functional DNA-assisted CRISPR meth-
ods for different non-nucleic acid target detection are summarized. The functional DNA
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has a broad variety of target recognition capabilities, therefore these methods could consid-
erably expand the use of the CRISPR-Cas system to many additional targets, opening up a
new toolbox for bioanalysis and biomedical research.
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Table 4. An overview of functional DNA-assisted CRISPR methods for different non-nucleic acid
target detection.

Method Target Signal Readout Sensitivity Reference

DNAzyme walkers-triggered
CRISPR assay

serum amyloid A-1 protein (SAA1)
and coagulation factor V (FV) Fluorescent 30.00 pg mL−1 for SAA1

and 200.00 pg mL−1 for FV
[69]

Functional DNA Regulated
CRISPR-Cas12a Sensor ATP and Na+ Fluorescent 4.75 µM for ATP and

0.10 mM for Na+ [70]

MDANs-Cas12a circulating tumor cells (CTCs) Fluorescent 26 cells mL–1 [72]
CRISPR/Cas12a exosome Fluorescent 103 particles µL−1 [73]

APC-Cas Salmonella Enteritidis cells Fluorescent 1 CFU per test [74]

4. Conclusions and Outlook

Many CRISPR-based diagnostic techniques have been reported over the past few
years, and the CRISPR-based POCT has developed rapidly. The potential of CRISPR-based
detection as a new generation of POCT method is not diminished despite the fact that there
are still some challenges, such as the need to scale up targets using isothermal amplification,
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the paucity of quantitative analyses, and the absence of established standardized proce-
dures [75]. These constraints are also being overcome. Additionally, a variety of signal
sensing techniques may be added to the detection system thanks to the scalability of the
CRISPR system, and these techniques can also be compatible with the commercial platform
to accomplish process automation and standardization [64]. In terms of both qualitative
and quantitative analysis, CRISPR-based POCT has significant potential and versatility, and
its customizable and flexible features offer a viable emergency strategy for the detection
of acute infectious disorders. At the same time, the SARS-CoV-2 pandemic also led to the
development of numerous sophisticated CRISPR-based POCT technologies, which not only
assisted with the public health management, but also significantly aided the development
of a new generation of POCT [27,64,68].

In this study, we reviewed the sensing methods for CRISPR-based diagnosis and the
advanced strategies for CRISPR/Cas-based diagnostic devices, and showed that CRISPR-
based POCT can not only achieve an accurate qualitative and quantitative analysis of
pathogens, but can also be extended to other fields of non-nucleic acid molecular diagnosis.
The majority of these reported diagnostic methods can achieve the rapid, portable, accurate,
and sensitive detection of epidemics, providing many candidate platforms for future public
health emergencies. Although CRISPR-based POCT tools have made ground-breaking
strides, it is complex to translate cutting-edge technologies into usable applications, and
there are few commercially accessible kits or clinically useful devices. Future work may
need to focus more on convenience, multiplexing, and the calibrability of diagnostic
methods, as well as sensing methods that can provide more standardized patterns of
signal processing.
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