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Abstract: The intricate microenvironment at the wound site, coupled with the multi-phase nature
of the healing process, pose significant challenges to the development of wound repair treatments.
In recent years, applying the distinctive benefits of hydrogels to the development of wound repair
strategies has yielded some promising results. Multifunctional hydrogels, by meeting the different
requirements of wound healing stages, have greatly improved the healing effectiveness of chronic
wounds, offering immense potential in wound repair applications. This review summarized the
recent research and applications of multifunctional hydrogels in wound repair. The focus was
placed on the research progress of diverse multifunctional hydrogels, and their mechanisms of
action at different stages of wound repair were discussed in detail. Through a comprehensive
analysis, we found that multifunctional hydrogels play an indispensable role in the process of wound
repair by providing a moist environment, controlling inflammation, promoting angiogenesis, and
effectively preventing infection. However, further implementation of multifunctional hydrogel-based
therapeutic strategies also faces various challenges, such as the contradiction between the complexity
of multifunctionality and the simplicity required for clinical translation and application. In the
future, we should work to address these challenges, further optimize the design and preparation of
multifunctional hydrogels, enhance their effectiveness in wound repair, and promote their widespread
application in clinical practice.

Keywords: multifunctional; hydrogel; microenvironment; wound repair

1. Introduction

The skin, a crucial organ that envelops the body’s surface and directly interacts
with the external surroundings, serves multiple functions, including sensing external
stimuli, maintaining body temperature, and safeguarding the body against external harm.
Damage to its structural integrity and function can lead to diverse forms of wounds.
Research indicated that the process of skin wound repair is recognized as a dynamic
and intricate journey, encompassing four consecutive stages, primarily categorized as
hemostasis, inflammation, proliferation, and tissue remodeling [1–4]. In the early stage
of skin damage, platelets are recruited to the trauma site and begin to aggregate while
releasing thrombin to initiate the coagulation cascade reaction, catalyzing the conversion of
fibrinogen to fibrin, which combines with aggregated platelets to form a blood clot. During
the inflammatory phase, the release of inflammatory factors triggers the recruitment of
neutrophils and macrophages to the injury site to phagocytose necrotic tissue, foreign
debris and bacteria, and to provide local hemostasis. The proliferative phase is primarily
characterized by the development of granulation tissue, neovascularization, the deposition
of the extracellular matrix (ECM), and the re-epithelialization of the neo-epidermis. In
the proliferative phase, newly generated blood vessels are embedded into the granulation
tissue, providing ample oxygen and nutrients for cellular activity. Cytokines further activate
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fibroblasts, thereby enhancing cell proliferation and stimulating the secretion of collagen
into the ECM. Epithelial cells begin migrating inward from the wound edge, ultimately
covering the entire wound area. Finally, during the wound remodeling process, various
cellular components (primarily macrophages), growth factors, as well as the nerve and
immune systems, work in concert to regulate the synthesis and degradation of connective
tissue. This allows for the repetitive dissolution, deposition, and renewal of collagen,
leading to the gradual disappearance of scars and the continuous restructuring of the
ECM, ultimately resulting in complete wound healing [5–7]. Currently, skin wound repair
continues to be a prominent and formidable subject in both clinical and scientific research.

Common wound treatment strategies include ultrasound [8], electrotherapy [9], hyper-
baric oxygen therapy [10], negative pressure therapy [11], stem cell therapy [12], dressings
containing growth factors, etc. For skin injuries that involve the deeper layers of the dermis
but are not extensive in size, if tissue repair can be accelerated and scar formation reduced
using skin dressings, it would greatly facilitate the clinical treatment of skin injuries. Gauze,
as a traditional dry dressing, is still widely used in clinical practice. However, it tends to
adhere to the wound site, cause discomfort when removed due to its high water absorp-
tion, and offer limited protection against microbial invasion [13]. An ideal skin wound
dressing should possess good tissue compatibility and moisturizing properties and be able
to absorb tissue exudate while also having a certain level of mechanical strength, tissue
adhesiveness, and surface microstructure [14,15]. It should stably remain on the wound
surface, preventing external contamination, inhibiting bacterial growth, and promoting
cell adhesion, proliferation, and differentiation [16,17]. Based on the aforementioned
characteristics, hydrogels have gained prominence as the most promising skin wound
dressings among numerous candidate materials due to their soft consistency, high porosity,
excellent biocompatibility, and resilience [18–20]. It can maintain a moist environment for
the wound, promoting cell regeneration and wound healing. Additionally, the excellent
adhesive property of the hydrogel allows it to tightly adhere to the wound surface with-
out causing secondary damage due to easy detachment. Most importantly, the hydrogel
dressing possesses unique permeation regulation capabilities, enabling it to automatically
adjust the permeation rate based on the wound condition, providing appropriate humidity
and oxygen supply, thus accelerating wound healing. With innovative advancements in
hydrogel design and synthesis techniques, coupled with in-depth research into skin wound
repair mechanisms, the functionality of hydrogels has evolved from their early role of
simple wound coverage to today’s multifunctional and intelligent repair capabilities, and
the types of hydrogel dressings have also shown a trend of increasing year by year.

This review focused on the recent research and advancements in utilizing multifunc-
tional hydrogels for wound repair (Figure 1). Firstly, we summarize the preparation and
mechanisms of various types of multifunctional hydrogels, including injectable, responsive,
conductive, shape-memory, and other types of hydrogels. Secondly, we discuss the di-
verse roles of these multifunctional hydrogels in wound repair, encompassing antibacterial,
anti-inflammatory, antioxidant, pro-angiogenic, and combined therapeutic effects, demon-
strating their efficacy. Finally, considering the current research landscape and clinical needs,
we address the challenges associated with the use of multifunctional hydrogels in wound
repair, with the objective of offering valuable insights for future research and applications
of multifunctional hydrogels in the field.
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Figure 1. The applications of multifunctional hydrogels in the context of wound repair. 
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2. Types of Multifunctional Hydrogels

Hydrogels are large polymer molecules composed of a network of crosslinked polymer
chains [21]. The physicochemical properties and network structures of hydrogels vary
depending on the preparation methods employed [22]. Based on the different crosslinking
mechanisms, the preparation methods of hydrogels can be broadly classified into two cate-
gories: physical crosslinking and chemical crosslinking [23]. Physical crosslinking mainly
involves non-covalent bonding interactions such as hydrophobic interactions [24,25], hy-
drogen bonding [26], subject–object interactions [27], electrostatic interactions [28], and
biomolecular recognition [29]. These interactions are relatively mild and fast in response,
but they are typically reversible, capable of being disrupted and restored under certain
conditions, thus imparting shear-thinning and self-healing properties to the gel. However,
hydrogels that are purely physically crosslinked tend to have lower mechanical strength
and poorer stability. Chemical crosslinking refers to the formation of a hydrogel network
through the establishment of covalent bonds. Common chemical crosslinking strategies
include free radical polymerization [30], click reactions [31], Schiff base formation as dy-
namic covalent bonds [32], and enzymatic crosslinking reactions [33]. In comparison to
physical crosslinking, chemical crosslinking typically requires precise structural design
of the polymers, and the gelation rate and mechanical properties are directly influenced
by the chemical reactivity between specific functional groups. Chemical crosslinked hy-
drogels exhibit higher strength and stability. However, they can also result in residual
initiators, crosslinking agents, and unreacted monomers, which can potentially induce
adverse reactions in living organisms and reduce the biocompatibility of the synthesized
hydrogel materials. Therefore, they are not suitable for medical applications that require
high biocompatibility standards.

The preparation method of hydrogels is a crucial factor that determines their physic-
ochemical properties and applications. Researchers have developed various advanced
functional hydrogels by applying different preparation methods to meet the different re-
quirements of wound healing at different stages. With the pursuit of precision therapy, the
development of more advanced hydrogels has attracted considerable attention. Different
types of skin wounds have different shapes (size, thickness, etc.) and clinical manifestations
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(necrosis, decay, etc.), and the ideal hydrogel wound dressing should have the functions of
rapidly forming an anti-infective barrier, promoting rapid blood coagulation, absorbing
wound exudate, blocking nerve endings to reduce pain, and providing nutrients to promote
tissue regeneration, etc. To meet these varying requirements for wound repair, researchers
have developed various functional types of hydrogels, and the common ones include
injectable, smart-response, conductive, and shape-memory.

2.1. Injectable Hydrogels

The significant advantage of injectable hydrogels is their ability to conform to irreg-
ular wound shapes and serve as a platform for the delivery of drugs/cells and bioactive
molecules (genes, proteins, growth factors, etc.), rendering them exceptionally promis-
ing for various wound repair applications. Injectable hydrogels can be categorized into
two distinct types based on their gelation state and injection behavior: in situ gel-forming
and shear-thinning hydrogels [34,35]. Among them, in situ gel-forming hydrogels mainly
form a polymer network through certain physical effects or chemical crosslinking of two or
more precursor solutions in vivo. A shear-thinning hydrogel is in a solid state (formed
through reversible physical crosslinking) before injection. It transforms into a sol under
the action of shear force, allowing flow injection in the needle tube. After the injection is
completed, it can quickly self-repair to its original gel state. Amphiphilic block copoly-
mers have been widely reported for preparing injectable hydrogels through self-assembly
behaviors [36]. For example, Segura et al. [37] synthesized a tetra-armed poly(ethylene
glycol)-poly(propylene sulfide) (PEG-PPS) block copolymer, where the hydrophobic self-
assembly of PPS at the ends of the molecular chains could act as physical crosslinks to
form injectable hydrogels, and this dynamic physical action could confer the gel with
both shear-thinning and injectable properties. Injectable hydrogels have been extensively
investigated as viable cell delivery systems due to their capability to mimic the extracel-
lular matrix, uniformly encapsulate cells, facilitate effective mass transfer, accommodate
chemical and physical modifications, and enable minimally invasive delivery. For instance,
Chen et al. [28] synthesized polyglutamic acid-polyethylene glycol-polyglutamic acid
(PGA-PEG-PGA) and polylysine-polyethylene glycol-polylysine (PLL- PEG-PLL) two block
polymers. Among them, polyglutamic acid and polylysine have negative and positive
charges, respectively. After mixing the two, they can quickly form an injectable hydrogel
by relying on electrostatic interaction to achieve cell loading and passed function. Hu
et al. [38] synthesized an injectable hydrogel that can demonstrate controlled delivery of the
drug curcumin (Cur) and customized recombinant humanized collagen type III, precisely
targeting the site of myocardial infarction. Chi et al. [39] developed an injectable hydrogel
using thioglutamic acid (γ-glutamic acid) (γ-PGA- SH) and oxidized glycidyl methacrylate
modified hyaluronic acid (OHA-GMA). This hydrogel exhibited remarkable properties such
as biodegradability, biocompatibility, self-healing ability, and robust mechanical strength.
Additionally, it demonstrated the capability to regulate fibroblast migration and infiltra-
tion through stiffness modulation, serving as an effective in situ scaffold for skin tissue
regeneration. Wang et al. [40] constructed a straightforward, injectable, and multifunctional
hydrogel (DNA-FKNa/Ag+) dressing by grafting DNA subunits, comprising cytosine (C)-
rich strands and an fractalkine aptamer (FKNa), and it demonstrates remarkable suitability
and significant potential for clinical translation in promoting and accelerating the healing
of a methicillin-resistant staphylococcus aureus (MRSA)-infected wound (Figure 2).
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Figure 2. The schematic diagram depicts the DNA-FKNa/Ag+ hydrogel, which is designed for the
treatment of methicillin-resistant staphylococcus aureus (MRSA)-infected wounds. (A) The compositions
of the DNA-FKNa/Ag+ hydrogel. The enlarged picture presents the structure of C-Ag+-C bridges.
(B) DNA-FKNa/Ag+ hydrogels were formed in situ by injecting DNA subunits into the bacterial
infection defect using a three-way syringe. (C) MRSA-infected full-thickness wound repair using the
dual functionalized DNA-FKNa/Ag+ hydrogel in an animal experiment. Adapted with permission
from Ref. [40]. Copyright 2023 Elsevier.

2.2. Responsive Hydrogels

Responsive hydrogels are novel smart biomaterials capable of undergoing polymer
chain conformational transitions or network changes under external environmental stimuli
(e.g., specific temperature, light, pH, magnetic field, etc.), resulting in a series of specific
responses, such as significant volume contraction/expansion, color change, and phase
transition, making them injectable and self-healing with other properties [41]. These char-
acteristics endow them with injectability, self-healing properties, shape memory, and more.
The factors influencing wound healing include environmental factors (light, temperature,
pH, CO2, etc.) that encounter the wound’s surface and physiological factors (cells, ex-
tracellular matrix, growth factors, ROS, enzymes, etc.) within the wound. Based on this,
researchers have developed a series of responsive hydrogels in recent years, including physi-
cally responsive hydrogels responding to physical signals (temperature, light, electric fields,
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ultrasound, etc.) [42–46], chemically responsive hydrogels reacting to chemical signals (pH
and ROS, etc.) [47–50], biologically responsive hydrogels responsive to biomolecules (en-
zymes and glucose, etc.) [51–53], and multi-responsive hydrogels [54,55]. For instance, Hu
et al. [56] utilized caffeic acid-grafted ε-polylysine and phenylboronic acid-grafted oxidized
dextran as the foundation to fabricate an injectable hydrogel. This hydrogel exhibits dual
responsiveness to pH and ROS, and it encapsulates pH-responsive micelles (MIC@MF) that
effectively promotes angiogenesis and anti-inflammatory DS. This feature facilitated the
precise release of drugs at specific times and locations, aligning with the well-coordinated
progression of wound healing in diabetic wounds. In another work, they exploited a pH-
responsive, mussel-inspired, double-crosslinking injectable, and adhesive smart hydrogel
to address the challenges associated with chronic diabetic wound repair. Importantly,
the hydrogel exhibits antibacterial and angiogenesis-promoting characteristics, achieved
through effective encapsulation of silver nanoparticles (AgNPs) and the pro-angiogenic
drug deferoxamine (DFO), respectively [57] (Figure 3). Guo et al. [58] prepared a series of
multi-stimulus response (NIR, ROS, and temperature) cryogels with controllable NO release
capability based on methacryloyl carboxymethyl chitosan, poly(N-isopropylacrylamide),
and composite nanoparticle enzyme (MSPA) for the adaptive treatment of drug-resistant
bacterial-infected wounds.
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Figure 3. (A) The formation and mechanisms of the smart hydrogels. (1) Oxidative self-cross-linking
mechanism of dopamine. (2) Schiff base cross-linking mechanism. (B) The antibacterial and wound
healing mechanisms of the smart hydrogels. Reprinted with permission from Ref. [57]. Copyright
2023 Elsevier.

2.3. Conductive Hydrogels

Electrical stimulation expedites wound healing processes across all stages by engaging
in multiple ways [59,60]. It relieves peri-electrode edema, directs keratinocyte migration,
enhances re-epithelialization, directs cutaneous angiogenesis, modulates a range of genes
related to wound healing, and produces antimicrobial action [61,62]. Consequently, strate-
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gies related to electrical stimulation for wound treatment have emerged. Conductive
hydrogel is a novel composite material that combines a hydrophilic matrix organically
combined with conductive fillers. Hydrogel with appropriate conductivity can maintain
the wet environment of skin-defective wounds in a variety of mammals and enhance the
electrical signaling of wounds, re-establish physiological functions related to electrical
conduction, and promote wound healing [6]. The conductive mechanism can be classified
into two categories: The first is through the introduction of ionic conductive materials
(salt solution, ionic liquids, or polyelectrolytes) into the hydrogel network, in which the
t network structure of the hydrogel provides a channel for the migration of ions so that
the free ions are transmitted within it, and ultimately achieve ionic conductivity [63,64].
Secondly, it is a combination of electronically conductive polymers (ECPs) [65,66], carbon-
based materials (e.g., carbon nanotubes and graphene oxide (GO)) [67,68], MXene [69],
and metal-based materials [70], to establish the network of electron transport in hydro-
gel and realize electronically conductive. As an instance, Zhao et al. [71] presented a
self-healing and highly conductive organogel composite. This composite structure was
constructed by incorporating a permeable network of Ag microflakes and Ga liquid metal
(LM) alloy microdroplets into a poly (vinyl alcohol)-sodium borate gel. It demonstrated
remarkable conductivity of 7 × 104 S m−1 and exhibited rapid and effective self-healing
properties. Guo et al. [72] proposed a “deswelling in situ aggregation” method to in-
duce colloidal particles of conductive polymer (PEDOT: PSS) to in situ aggregate into a
continuous conductive network within a polyvinyl alcohol (PVA) network, resulting in
a hydrogel with high electrical conductivity and high stretchability (breaking strain of
150%). Recently, Ge et al. [73] successfully created collagen-based hydrogels (CHLY) with
multiple functionalities for inducing full-thickness wound healing. They achieved this
by incorporating cysteine-modified ε-poly(l-lysine) (ε-PL-SH) and in situ-polymerized
polypyrrole (PPy) nanoparticles into the hydrogel formulation (Figure 4). The resulting
hydrogels demonstrated adhesive properties, conductivity, as well as antibacterial and
antioxidant activities, making them highly versatile in promoting wound healing. Zuo
et al. [74] successfully constructed SF/TA@PPy conductive hydrogels with stretchability,
skin compliance, antimicrobial properties, and biocompatibility by introducing the con-
ductive polymer polypyrrole (PPy) into the same gel network with filipin protein (SF)
and tannic acid (TA) via in situ polymerization. Guo et al. [75] constructed a series of
double dynamic bonded crosslinked hydrogels by combining sodium alginate oxide with
dopamine/carboxymethyl chitosan/Fe3+. These hydrogels exhibited excellent electrical
conductivity, self-healing capabilities, and photothermal antibacterial properties, thereby
significantly enhancing the process of wound healing.

2.4. Shape Memory Hydrogels

Shape memory hydrogels (SMHs) can retain a temporary shape and restore their initial
shape under specific stimuli, displaying a shape memory capability [76,77]. They have
extensive applications in various fields, including drug delivery, 3D printing, tissue engi-
neering, and sensors [78,79]. SMHs rely on two special crosslinking structures within their
3D network to achieve shape memory functionality: The first type of crosslinking structure
is called permanent crosslinking (e.g., irreversible chemical bonds), and SMHs form their
initial shape under the action of this crosslinking agent. The second crosslinking structure
is reversible dynamic crosslinking characterized by the stimulus response [76,80,81], in-
cluding hydrogen bonds, host–guest interactions, coordination interactions, and reversible
chemical bonds (dynamic borate bonds, dynamic Schiff base bonds, etc.). This dynamic
crosslinking structure allows SMHs to break and reassemble reversibly under external
forces, giving them the ability of shape memory. For example, Liu et al. [82] constructed a
novel type of radiopaque dual-stimulus-responsive shape memory hydrogels through a
straightforward one-step polymerization process. The hydrogels were prepared by com-
bining acrylonitrile (AN), N-acryloyl 2-glycine (ACG), and the crosslinker poly(ethylene
glycol) diacrylate (Mn = 700, PEGDA700). Mano et al. [83] reported a facile method to
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convert non-thermally responsive hydrogels into thermally responsive hydrogel systems
with shape memory capability. As a proof of concept, they provided hydrogel composites
with shape memory capabilities by embedding polyurethane networks in heat-sensitive
polyurethane chitosan methacrylate, gelatin, laminin, or hyaluronic acid hydrogel. Along
this line, researchers have developed shape memory hydrogels with a high shape fixation
rate (50–90%) and exceptional shape recovery rate (nearly 100% with almost instantaneous
recovery). Willner et al. [84] presented a redox switchable shape memory hydrogel system
composed of bipyridinium, which complexes as crosslinking units of carboxymethyl cel-
lulose and dopamine (Figure 5). Xing et al. [85] reported the development of a physical
crosslinked PVA hydrogel by introducing a high concentration of sodium hydroxide to
a high-density PVA polymer, thereby inducing crystallization. The resulting hydrogel
exhibited remarkable mechanical properties, reduced water content, enhanced damage
resistance, and demonstrated shape memory capabilities.
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3. Applications in Wound Repair

Combining the sequential stages of wound healing and their distinctive characteristics,
hydrogel-based wound repair strategies often focus on antimicrobial, anti-inflammatory,
antioxidant, pro-vascularization, and a combination of multiple therapeutic approaches to
promote rapid wound healing, as shown in Table 1.

Table 1. Hydrogels with different therapeutic strategies in wound repair.

Hydrogels Functional Elements

Therapeutic Strategies

ReferencesAntibacterial
(Bacterial
Species)

Anti-Inflammatory
and Antioxidant
(Evaluating Test)

Pro-Angiogenic
(Effect Cargos)

PPG hydrogel HBPL +
MRSA [86]

QCS/OD/TOB/
PPY@PDA TOB

+
Pseudomonas

aeruginosa
(PA),

Staphylococcus
aureus

(S. aureus)

[87]

PFG/M
microneedle

polydopamine
(PDA)-loaded

iron oxide

+
Escherichia coli

(E. coli),
S. aureus

[88]

quaternized
chitosan
hydrogel

quaternized
chitosan

and EGCG

+
1,1-diphenyl-2-picrylhydrazyl (DPPH)

free radical and reactive oxygen
species assay

[89]

PEG-DA/
HA-PBA
hydrogel

myricetin

+
DPPH, 2′,7′-

dichlorodihydrofluoresceindiacetate
(DCFH-DA),

interleukin-6 (IL-6), IL-10

[90]

SGPA
hydrogel

poly(citrate-ethylene
glycol-alendronate)

(PCA) and Gd3+

+
c

+
PCA [91]

maleimide-based
oxidized sodium

alginate and
sulfhydryl

carboxymethyl
chitosan hydrogel

sodium alginate
and sulfhydryl

carboxymethyl chitosan

+
E. coli,

S. aureus

+
DHE probe [92]

DFO@G-QCSFP
hydrogel DFO +

DFO [93]

PEGS-PBA-BA/
CS-DA-LAG

hydrogel

metformin and
graphene oxide

+
DPPH

+
metformin (Met) [94]

Fe\PPHP15
hybrid hydrogel Fe2+ and Fe3+

+
E. coli,

S. aureus

+
Fe2+\Fe3+ [95]

Ag-SH-PEG
hydrogel Ag+ and DFO +

S. aureus
+

DFO [96]

HMP
hydrogel HBPL and NO +

MRSA

+
DPPH, superoxide

anion free radical (·O2
−), hydroxyl

radical (·OH)

[97]

MP composite
hydrogel

molybdenum
disulfide-

polydopamine
nanozyme

+
E. coli,

S. aureus

+
·OH scavenging

efficiency, DCFH-DA
[98]
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3.1. Antibacterial

The occurrence of bacterial infections during wound healing presents an unavoidable
and urgent challenge. Regrettably, the improper utilization of antibiotics has resulted in
the emergence of multidrug-resistant bacteria, thereby exacerbating the already formidable
challenges associated with antimicrobial therapy for wound treatment. Addressing the
medical bottleneck of achieving efficient antimicrobial efficacy while effectively promoting
the wound healing process remains a paramount challenge that necessitates the collective
efforts of researchers. There are many kinds of antimicrobial materials, including antibiotics,
metal ions (Ag+, Cu2+, etc.), cationic polymers (quaternized chitosan), biomimetic nano-
enzymes (MoS2), antimicrobial peptides, etc. [99,100]. Antimicrobial methods also include
chemodynamic therapy (CDT), phototherapy (PDT, PTT), and magnetic hyperthermia
therapy (MHT), etc. [101,102]. Researchers have constructed corresponding antimicrobial
hydrogels to effectively promote healing [22,103]. S. aureus stands as the primary pathogen
responsible for skin infections, and the presence and dissemination of MRSA have presented
a significant hurdle in treating wound infections due to its formidable drug resistance and
potent virulence. Moreover, the excessive production of reactive ROS at the site of skin
wounds exacerbates inflammation, resulting in delayed healing and extensive scarring.
Drawing from this information, Lu et al. [86] designed an ROS-scavenging hydrogel con-
taining hyperbranched poly-L-lysine (HBPL), a bacterial population-sensing inhibitor,
demonstrating effective elimination of MRSA, whether in planktonic form or within biofilm
structures. In vivo, this hydrogel effectively promoted the healing of MRSA-infected whole
skin defects by impeding quorum sensing (QS), eradicating bacteria, and suppressing
inflammation, ultimately promoting the healing process, and this study provided new in-
sights into scarless healing of methicillin-resistant S. aureus-infected skin wounds (Figure 6).
Hu et al. [56,104–108] developed a series of smart-responsive hydrogels loaded with an-
timicrobial drugs for on-demand, controlled release of drugs at the site of the wound to
facilitate the healing process. Guo et al. [87] reported a self-healing hydrogel that possessed
favorable electrical conductivity and antimicrobial properties. The hydrogel was fabricated
using quaternized chitosan (QCS), oxidized dextran (OD), tobramycin (TOB), and surface-
modified polypyrrole nanowires with polydopamine (PPY@PDA NWs). Additionally, it
was crosslinked by Schiff base and could thus achieve the on-demand release of TOB in
response to weak acidic pH, killing high concentrations of PA and S. aureus within a short
period of time and promoting wound healing. Li et al. [88] integrated iron oxide nanoparti-
cles loaded with polydopamine (PDA) with glucose oxidase (GOx) and hyaluronic acid
(HA) grafting onto microneedle (MN) patches and introduced amine-modified mesoporous
silica nanoparticles (AP-MSN) into the substrate, resulting in PFG/M microneedle patches.
The experimental results showed that the microneedle patch combined chemical dynamic
therapy (CDT), photothermal therapy (PTT), and tip-Fe/PDA@GOx@HA-induced M2
macrophage polarization, exhibiting excellent antimicrobial and immunomodulatory prop-
erties. This innovative development holds great promise as a potential clinical candidate
for the treatment of infected wounds.
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3.2. Anti-Inflammatory and Antioxidant

During the second stage of wound healing, known as inflammation, immune cells se-
crete various inflammatory mediators such as cytokines, chemokines, adhesion molecules,
etc., to combat bacterial or viral infections and eliminate factors causing physical damage.
However, at the same time, oxygen consumption increases, and the accumulation of reac-
tive ROS generated by the “respiratory burst” can lead to DNA damage and apoptosis,
further exacerbating inflammation and affecting wound healing. Appropriate inflammation
is essential in wound repair, and therefore the regulation of inflammation is important
for wound repair. Antioxidants can aid in capturing and neutralizing free radicals, thus
eliminating their damaging substances to the organism [109]. The incorporation of well-
known natural antioxidants, such as catechins [110], resveratrol [111], anthocyanins [112],
and some flavonoids [113], etc., into hydrogels has been employed to harness their antioxi-
dant properties and facilitate the process of wound healing. For example, Xiao et al. [89]
developed an injectable self-repairing hydrogel with inherent antimicrobial properties by
utilizing the dynamic covalent bond formation between boric acid and catechol moieties
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within quaternized chitosan as a masonry block, coupled with the in situ encapsulation of
epigallocatechin-3-gallate (EGCG). The authors evaluated the antioxidant efficiency of the
hydrogel by measuring its ability to scavenge 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free
radicals. And the results revealed that the hydrogel demonstrated remarkable antioxidant
effects. Wu et al. [90] developed an innovative composite hydrogel with glucose-responsive
and antioxidant properties, specifically designed for the purpose of diabetic wound repair.
They first prepared glucose-sensitive phenylboronic acid (PBA)-modified hyaluronic acid
(HA), which was then combined with polyethylene glycol diacrylate (PEG-DA) to form a
novel composite hydrogel (PEG-DA/HAPBA). Next, the researchers immobilized poplar
plum flavonoid (MY) molecules, known for their potent antioxidant activity, within the
hybrid hydrogel (Figure 7). By measuring the DPPH clearance rate and the ROS indicator
2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA), the PEG-DA/HA-PBA/MY (PHM)
hydrogel was found to effectively scavenge ROS (>80.0%) and revitalize the microenvi-
ronment of oxidative wounds. Over the past few years, a series of nanomaterials that can
mimic natural antioxidants have been created, such as cerium oxide nanoparticles, iron
oxide nanoparticles, and carbon nanomaterials (ceria (CeO2) nanoparticles and manganese
oxide (MnO2, Mn2O3, Mn3O4, and MnO2) nanoparticles and carbon nanomaterials), etc.
These materials, compared to natural antioxidants, maintain high stability in more complex
disease environments [114]. Incorporating them into hydrogels can effectively eliminate
ROS at the wound site and promote wound healing [115–117]. For instance, Lei et al. [91]
prepared multiple coordination-derived bioactive hydrogels (SGPA) by simple multi-metal
coordination using sodium alginate, metal ions (Gd3+), and phosphoric acid-functionalized
polycitric acid as the raw materials. SGPA has good injectability, self-healing properties,
and controlled biodegradability. In addition, it exhibits favorable cytocompatibility and
hemocompatibility while also enhancing the migration of endothelial cells. Moreover, the
SGPA hydrogel demonstrated notable hemostatic efficacy in an in vivo liver hemorrhage
model. In the complete skin wound model, the SGPA hydrogel demonstrated significant
effectiveness in promoting wound healing by reducing the expression of inflammatory
factors and stimulating angiogenesis in the peri-wound area. Xie et al. [92] developed an in
situ hydrogel with a combination of antibacterial, antioxidant, immunomodulatory, and
wound-adaptive characteristics specifically for the effective treatment of infectious wounds.
The hydrogel formulation comprises two naturally derived biopolysaccharides, namely
sodium alginate (SA) and carboxymethyl chitosan (CMCS). By employing “click” chemical
reactions, Schiff base reactions, and other reaction principles, modified derivatives such
as sodium maleimido oxidized alginate (AM) and mercapto carboxymethyl chitosan (CS)
are crosslinked into gum AxCy (x, y = 3, 4, 5, 6, 7; x + y = 10), which exhibits certain ROS
scavenging abilities and can play a pro-infectious wound healing role through resistance to
E. coli, S. aureus infection, antioxidant, and macrophage polarization modulation properties.
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3.3. Pro-Angiogenic

Blood vessels are involved in the transportation of oxygen and other nutrients required
for wound healing; therefore, neovascularization is essential for the healing of wounds,
and it can be argued that the timely development of blood vessels in the early stages is
inherently linked to the rate of wound healing [118]. Over the years, there has been exten-
sive research into the use of growth factors to induce angiogenesis and enhance wound
closure in chronic wounds. However, treatment methods based on growth factors have
limitations, such as high cost and a short half-life, which restrict their application [119]. Uti-
lizing hydrogels as carriers to deliver small-molecule drugs, adipose-derived mesenchymal
stem cells, and other substances that promote vascular formation has become a common
treatment for diabetes-related wounds with poor neovascularization [120]. For instance,
Xu et al. [121] prepared a hyperbranched poly (β-amino ester) hydrogel using the Schiff
base reaction between an amine and acrylic ester. This polyethylene glycol-based hydrogel
can undergo controlled degradation and be loaded with adipose-derived mesenchymal
stem cells. The measurement of the number of blood vessels formed and the expression
levels of VEGF in the wound after treatment with this hydrogel revealed that it effectively
promoted angiogenesis and accelerated the healing of diabetic wounds. DFO is an iron
chelator that has been approved by the FDA for clinical use. Previous studies have demon-
strated that DFO can significantly accelerate the formation of new blood vessels under
normal and pathological conditions by upregulating the expression of hypoxia-inducible
factor-1α (HIF-1α) and its downstream gene VEGF [122,123]. Zhou et al. [93] synthesized
quaternized chitosan (QCS) and then grafted 3-carboxy-4-fluorophenylboronic acid onto
the QCS side chains, creating QCSF with grafted phenylboronic acid groups. They used the
dynamic boronate ester bonds between the phenylboronic acid groups on QCSF and the
hydroxyl groups on polyvinyl alcohol (PVA) to develop a drug delivery system involving
crosslinked gelatin microspheres for the drug DFO. This DFO-loaded DFO@G-QCSFP
hydrogel dynamically regulated the microenvironment by scavenging ROS and releas-
ing DFO as needed, thus promoting vascular regeneration and diabetes wound healing
(Figure 8). Guo et al. [94] constructed a pH/glucose dual-responsive metformin hydro-
gel dressing based on the dual dynamic bonds formed by Schiff base and boronic acid
ester. The Schiff base structure possesses pH sensitivity and exhibits instability in acidic
conditions, leading to enhanced drug release. The neighboring phenolic structure has
the ability to form dynamic boronate ester structures with boronic acid, responding to



J. Funct. Biomater. 2023, 14, 553 14 of 22

glucose. The results of immunofluorescence staining demonstrated that treatment with the
hydrogel significantly reduced the levels of the pro-inflammatory cytokine interleukin-6
(IL-6) in the wound and markedly increased the number of newly formed blood vessels.
This dual-responsive hydrogel improved wound healing in a rat model of type 2 diabetes
by inhibiting inflammation and promoting vascular regeneration. Nitric oxide (NO) has
been identified as a crucial molecule in wound healing, playing a vital role in vascular
regeneration. Guo et al. [124] developed a multifunctional conductive hydrogel with the
ability to release NO under near-infrared laser irradiation to accelerate vascular formation
and wound healing. Researchers have found that appropriate thermal stimulation can
enhance granulation tissue growth, promote vascular formation, and expedite skin wound
healing [125]. Wang et al. [126] developed an injectable, self-healing hydrogel formed
through Schiff base bonds between poly (ε-L-lysine) and oxidized hyaluronic acid, lever-
aging the thermal responsiveness of Pluronic F127. By incorporating exosomes into this
hydrogel, they effectively promoted neovascularization in chronic wounds, accelerating
their healing. Ren et al. [95] prepared a hybrid hydrogel, Fe\PPHP15, with pro-angiogenic
and targeted antibacterial properties. The phenol–iron complex (TA@Fe3+) in the hydrogel
served as a photothermal conversion agent, converting light energy into gentle heat at
an 808 nm excitation wavelength. The incorporation of iron ions in the hydrogel signif-
icantly facilitated the expression of genes related to blood vessel growth, such as bFGF,
bFGFR, and HIF-1. The mild thermal effect additionally induced the expression of VEGF.
The upregulation of these angiogenesis-related genes promoted vascular formation at the
wound site.
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accelerating diabetic wound healing. (b) The self-adaption of the hydrogel to wound microenvi-
ronment. The hydrogel reduced oxidative stress and released DFO@G on demand. Then DFO was
released and promoted angiogenesis. Reprinted from Ref. [93].

3.4. Combination Therapy

Wound healing is a complex process that can be impacted by diseases or infections
in diverse ways, such as changes in inflammatory responses, altered ROS signaling, and
more. Treating wound repair by addressing a single factor is insufficient. In recent years,
researchers have developed a variety of combination therapies to address the challenges
of wound healing. Wen et al. [127] designed a multifunctional DNA hydrogel by dynam-
ically crosslinking non-immunogenic DNA with polyethyleneimine and incorporating
heating-functionalized black phosphorus quantum dots. This DNA hydrogel exhibited
remarkable adjustable heating capability, mechanical properties, self-healing ability, and
antimicrobial properties. Furthermore, the incorporation of oligomeric proanthocyanidins
B2 (OPC B2) endowed the DNA hydrogel with potent free radical scavenging and an-
tioxidant properties. Additionally, the multifunctional DNA hydrogel dressing facilitated
the transition of macrophages from the pro-inflammatory M1 phenotype to the repair-
promoting M2 phenotype, thereby maintaining a stable remodeling state at the wound
site. Moreover, the DNA hydrogel dressing activated neurons, inducing them to enter
a reparative state and accelerating the regeneration of skin nerves and the formation of
blood vessels. Chen et al. [96] prepared a hydrogel through coordination crosslinking of
multi-arm thiolated polyethylene glycol with silver nitrate. This hydrogel’s self-healing
and injectable properties stemmed from dynamic disulfide bonds and ionic coordination
bonds. Silver ions endowed the hydrogel with antimicrobial properties. Furthermore,
the authors successfully enhanced the healing of diabetic wounds by incorporating the
pro-angiogenic drug DFO into the hydrogel. Gao et al. [97] developed a composite an-
tibacterial and antioxidant hydrogel based on hyperbranched poly (β-amino ester) (HBPL)
with inhibitory effects on bacterial quorum sensing and manganese dioxide nanosheets
(Figure 9). They crosslinked this material with a poly (PEGMA-co-GMA-co-Aam) (PPGA)
polymer to create a multifunctional injectable hydrogel dressing. This dressing was em-
ployed for effective antibacterial and antioxidant actions as well as continuous oxygen
supply in the treatment of diabetic-infected wounds, achieving the goal of inflammation
inhibition and repair promotion. Li et al. [98] designed a novel antibacterial and antioxidant
dual-functional, low hysteresis, stretchable hydrogel (MPH) through copolymerization
of N-isopropylacrylamide, acrylamide, and acrylate Pluronic 127 (PF127-DA), along with
functionalization of molybdenum disulfide-polydopamine nanoparticles (MP). This hy-
drogel, suitable for close adhesion to moving body parts and wound healing, displayed
excellent mechanical properties that allowed it to tightly adhere to the wound, resist the
invasion of E. coli and S. aureus, and avoid secondary fixation of dressings. Furthermore,
the hydrogel’s dual functionality, stemming from its photothermal characteristics and
enzyme-like activity, effectively eliminated bacterial infections, mitigated oxidative stress,
enhanced the wound microenvironment, and facilitated the process of wound healing.
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4. Conclusions and Future Perspectives

The process of wound healing is intricate and time-consuming, significantly impacting
the quality of life of countless individuals worldwide. Recently, significant progress has been
made in the research of various multifunctional hydrogels, which also show great potential
and application in wound repair. We reviewed the therapeutic strategies of multifunctional
hydrogels in different stages of wound repair, such as antimicrobial, anti-inflammatory,
antioxidant, pro-angiogenic, and a combination of multiple strategies, which provide strong
support for wound healing. In addition, multifunctional hydrogels have been combined with
other advanced fabrication technologies, such as 3D printing, for personalized wound repair
strategies [128,129]. Designing flexible skin sensors is another direction that may significantly
impact chronic wound therapy [130–132]. In this context, the utilization of hydrogel-based
bioelectronic devices offers a promising platform for wound therapy. These devices have the
capability to monitor the real-time status of wounds while also enabling the controlled and
targeted release of bioactive molecules or drugs as needed.

However, we must also face the challenges faced by multifunctional hydrogels in
practical applications, including how to rationally design and combine the functionality
and therapeutic strategies of hydrogels, how to prepare hydrogels on a large scale and
effectively preserve them, and how to design and screen them more efficiently with the
help of artificial intelligence. In addition, patients are not only pursuing the filling of simple
defects in the treatment of wounds, but they also have the demand for full functional
recovery and aesthetics, and there remains ample opportunity for the further develop-
ment of therapeutic strategies based on multifunctional hydrogels in the prevention and
treatment of scarring, regeneration of hair follicles, and improvement of pigmentation
abnormality. It is worth noting that achieving multifunctionality of hydrogels typically
involves complex designs of hydrogels, which is contradictory to the simplicity required
for clinical translational applications. Therefore, to further enhance the efficacy and clinical
application of multifunctional hydrogels in wound repair, we need to actively explore
advanced preparation techniques, expand wider application areas, and strengthen the
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integration of clinical practice and scientific research. Last but not least, multifunctional
hydrogels used for wound repair must possess superior safety, biocompatibility, and non-
immunogenicity for their clinical application. This ensures that the hydrogel, when in
contact with human tissues, does not cause any harmful side effects, including allergies,
tissue necrosis, inflammation, or excessive immune system reactions. Therefore, strict
control over the selection of raw materials, preparation processes, and quality assurance is
necessary to guarantee the effectiveness and safety of hydrogel in clinical use. Overall, the
research and application of multifunctional hydrogels in wound repair will bring important
innovations and advances to the medical field and substantially improve the health and
quality of life of patients.
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