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Abstract: Zn-based biodegradable alloys or composites have the potential to be developed to next-
generation orthopedic implants as alternatives to conventional implants to avoid revision surgeries
and to reduce biocompatibility issues. This review summarizes the current research status on
Zn-based biodegradable materials. The biological function of Zn, design criteria for orthopedic im-
plants, and corrosion behavior of biodegradable materials are briefly discussed. The performance of
many novel zinc-based biodegradable materials is evaluated in terms of biodegradation, biocompati-
bility, and mechanical properties. Zn-based materials perform a significant role in bone metabolism
and the growth of new cells and show medium degradation without the release of excessive hydro-
gen. The addition of alloying elements such as Mg, Zr, Mn, Ca, and Li into pure Zn enhances the
mechanical properties of Zn alloys. Grain refinement by the application of post-processing techniques
is effective for the development of many suitable Zn-based biodegradable materials.

Keywords: biodegradable materials; biodegradability; biocompatibility; Zn alloys

1. Introduction

Orthopedic prostheses are used for the repair of bone fractures or the replacement
of fractured bones. Several types of prostheses are used according to the severity of bone
fractures. Conventionally, metallic devices are used to fix bone fractures, but these devices
induce many adverse effects such as bone necrosis, osteoporosis, and delayed bone healing
inside the human body [1,2]. Many other problems associated with conventional fixation
devices are allergic reactions, the release of ions, corrosion, fatigue failure, the release of
hydrogen, stress shielding, and revision surgeries [3–7]. A second surgery is needed to
remove the non-degradable device after serving the required function and bone healing. To
overcome the problems associated with non-degradable devices, biodegradable prostheses
have been introduced. These devices resorb or degrade in the physiological environment
over sometime during the healing process [8–12].

Many metal-based and polymer-based materials are well-known options for man-
ufacturing biodegradable prostheses. Among these materials, magnesium-based and
Zn-based materials are the most suitable biomaterials for the fabrication of biodegradable
devices. Their rapid degradation, as well as the excessive release of degradation products
of magnesium-based biomaterials, has limited their use in biomedical applications [13–17].
Biodegradable Zn alloys show medium degradation rates (DR) in contrast to magnesium-
based biodegradable materials; their biodegradation products are fully biodegradable
without releasing excessive hydrogen gas. Compared to magnesium alloys, Zn alloys
exhibit a lower corrosion rate because of their lower electrode potential [18–20].

To improve the properties of biodegradable materials, researchers are focusing on
optimizing the properties of biodegradable materials by making alloys or composites. A
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huge chunk of the commercial sector is conducting research and investing its resources in
developing efficient and effective biodegradable materials for orthopedic implants. From
orthopedic to cardiac and from plastic surgery to oncology, the range of applications of
these materials is of no limit. Similarly, the awareness, acceptability, and utility of these
materials are on a continuous rise. Currently, numerous Zn-based alloys have been utilized
by integrating bioactive substances or adjusting material processing methods with an
objective on the optimization of their biodegradation and mechanical properties. These
materials have the potential to be developed into next-generation orthopedic implants
as alternatives to conventional implants, in order to avoid revision surgeries and reduce
biocompatibility issues. Several challenges such as controllable biodegradation behavior
and comparable mechanical properties need to be overcome for acceptance in the industrial
sector.

In recent years, many review articles have been published on Zn-based biodegradable
materials. Yuan et al. [21] summarized the surface modification methods for Zn-based
biodegradable materials. Li et al. [22] summarized the challenges and opportunities for
the development of Zn-based biodegradable materials. Various processing and fabrication
methods were discussed. Kabir et al. [23] discussed the biocorrosion and biochemical
perspectives of Zn-based biodegradable materials. Shi et al. [24] discussed the effect of the
second phase and alloying elements on the mechanical properties of Zn-based biodegrad-
able materials. Huang et al. [25] discussed the effect of alloying elements on the softening
phenomenon of Zn-based biodegradable materials. Possible strategies to minimize strain
softening were proposed. Yang et al. [26] discussed the effect of Zn and other nutrient
elements on the wound-healing process. Chen et al. [27] discussed the challenges in the
development of metal-based biodegradable membranes for bone regeneration. In this
review, we summarize the current research status on Zn-based biodegradable materials.
Many novel Zn-based biodegradable materials developed in recent years are evaluated in
terms of their biodegradation, biocompatibility, and mechanical properties. This review
will help researchers to make suitable alloy compositions to meet the required clinical
demand.

2. Biological Functions of Zn

Zn is the second most abundant element in the human body after iron. In the human
body, 11% of Zn presents in the liver and skin, 85% of Zn exists in bone and muscles,
and the remaining presents in other tissues [28–31]. Zn plays important role in different
biological functions. The presence of Zn plays a significant role in enzymes performing their
regulatory or catalytic actions [32–35]. Zn performs a significant role in bone metabolism
and the growth of an organism. Zn supplementation enhances bone formation, meanwhile,
increasing bone strength by stimulating osteoblast and differentiation of osteoclast [36–38].
Zn deficiency is associated with the weakness and health of bones.

The addition of Zn into biodegradable materials can enhance osteoblast differentiation
by promoting bone marrow genes such as osteopontin, osteocalcin, collagen, and alkaline
phosphatase [39]. Zn acts as a strong inhibitor of osteoclastic bone resorption as compared
to other metals. Furthermore, Zn performs a significant role in protection against cardiomy-
opathy and heart disease. Zn supplementation can improve cardiac function and prevents
damage in case of infarction and ischemia. Zn is important in maintaining the integrity
of normal endothelial cells. In addition, it can also stimulate endothelial cell proliferation
by enhancing basic growth factor-dependent endogenous fibroblast proliferation. Zn is
also involved in the integrity and development of the immune system. Zn has a significant
impact on the activity of certain important immune mediators composed of cytokines,
thymic peptides, and enzymes [40]. For its part, Zn is essential for the intracellular regu-
lation of lymphocyte apoptosis. Zn is involved in neurotransmission, neuronal growth,
synaptogenesis, and neurogenesis. It is selectively stored in the presynaptic vesicles of
specific neurons and released as a neuromodulator.
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Although Zn is essential for many physiological functions, excessive Zn exposure
or intake can have adverse effects on various organs in addition to insufficient Zn intake.
Zn deficiency can lead to various pathological symptoms, including growth disorders,
birth defects, and hypotension, among others. Many diseases are also associated with Zn
deficiency, such as gastrointestinal diseases, kidney diseases, sickle cell disease, etc. On
the other hand, an excess of Zn can also have detrimental consequences. Zn2+ is capable
of inhibiting electron transport in uncoupled mitochondria. It is teratogenic or lethal for
embryogenesis in case of excessive intake of Zn. Zn2+ is now reported to have a biphasic
effect on cell viability, adhesion, and proliferation. A high concentration of Zn2+ would
lead to a suppressive effect on cytocompatibility. Figure 1 presents the biological functions
and roles of Zn in the human body.
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(b) Effect of Zn excess and deficiency in the human body [21].

3. Design Criteria for Orthopedic Devices

The most important characteristics of the biodegradable devices are their biodegrad-
ability, biocompatibility, mechanical properties, corrosion behavior, and antibacterial activ-
ity. The biodegradable device should be hypoallergenic, non-inflammatory, and non-toxic
with no harmful retention or release of particulates [41–44]. The biodegradable device
must be capable to promote the growth of new cells and bone generation. The mechani-
cal properties, such as ultimate tensile strength (σUTS) > 300 MPa, tensile yield strength
(σTYS ) > 230 MPa, and elongation (δ) > 15–18%, are required, and the elastic modulus (E)
should be similar to bone (10–20 GPa) [45,46]. The service time of a device must be equal to
1–2 years for performing the particular function till full absorption of a device. The integrity
of a device must be equal to 3 to 6 months for screws, pins, and staples [21]. Another
important concern is the corrosion behavior of a biodegradable device. In vitro corrosion
test experiments should show a degradation/penetration rate (DR) < 0.5 mm/year and
hydrogen evolution should be less than 10 µL/cm2-day.

4. In Vivo Corrosion

The corrosion occurs on the implantation of biodegradable materials in a physiologi-
cal environment through the degradation process, which may result in health issues due
to the formation of H2 gas and the release of metal ions [47]. Therefore, shifting of the
pH region in the surrounding corroding surface is an important concern for orthopedic
applications [48–51]. Generally, in the corrosion mechanism of metal-based biodegradable
devices, the metals are oxidized into cations and H2, hydroxides, and oxides are produced
by electrochemical reactions [52–54]. Finally, the metal oxide layer is formed on the surface
of biodegradable metals, which acts as a kinetic barrier or passive layer and prevents
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the further electrochemical reaction or release of ions across the substrate’s surface [53,55].
However, this metal oxide layer can be dissolved in the electrolyte, and the pitting corrosion
process starts after it [56,57]. Pitting is localized corrosion and occurs with the breakdown
of the passive film. This form of corrosion harms biodegradable material, as it is not easy to
observe the pits on the biodegradable material surface in an aggressive environment due to
the presence of corrosion products. After the initiation of pitting corrosion, biodegradable
materials corrode rapidly and the load-carrying capability of the implant is reduced. Addi-
tionally, the increase in localized stress due to pitting has the potential to produce cracks,
and the implant may fail due to stress corrosion and fatigue cracking within the pits. So,
the rate of evolved H2 should be minimum to control degradability.

In vitro electrochemical and immersion tests are used to evaluate the corrosion be-
havior of biodegradable implants. In these physiological environments, biodegradable
metals are susceptible to corrode due to their electrochemical potential. Corrosion current
density (Icorr) and corrosion potential (Ecorr) are measured in electrochemical tests. The
corrosion in vitro and in vivo environment is influenced by many factors such as types of
released ions, pH concentration, biological response of surrounding tissues, and protein
absorption on the implant surface. The condition of corroding implant material can be
assessed by monitoring the amount of released ions. The pH is monitored in immersion
tests to assess the corrosion rate (CR) of biodegradable material. The lower pH value
indicates a lower corrosion rate and an increasing pH value is unfavorable for cell adhesion.
Fast corrosion may cause structural failure, unwanted degradation, alkaline pH shift, and
hydrogen evolution in the surrounding corroded sites [54].

5. Zn-Based Biomaterials

Zn-based biodegradable materials are receiving attention for orthopedic applications
due to their good combination of biocompatibility and degradability. The present Zn-based
alloys are not sufficiently biocompatible, nor necessarily wear-resistant and mechanically
strong [58]. Pure Zn materials show poor mechanical characteristics, and they cannot be
used for most orthopedic applications. In addition, the relatively low creep resistance, low
fatigue strength, high susceptibility, and low-temperature recrystallization of Zn has limited
its use for the development of implant materials. In recent years, many alloys or composites
of Zn-based biodegradable materials have been established with improved biocompatibility,
bio-corrosion, and mechanical properties [59–63]. Many essential trace elements for the
human body have been used for making Zn-based biodegradable alloys, and many types of
reinforcement materials have been used for making Zn composites [64–67]. Among these
reinforcements, calcium phosphate-based reinforcements are the most widely used [41].
Many types of fabrication methods such as casting, powder metallurgy, transient directional
solidification, additive manufacturing, spark plasma sintering, or other advance processing
techniques are used for making alloys or composites of Zn [68–74]. Among the different
fabrication methods, casting is the most common method for the mass production of
Zn-based alloys.

Zn-based alloy compositions are multiphase systems, and their mechanical, degrada-
tion, and corrosion behaviors are strongly dependent on the microstructural parameters
and the distribution of the secondary phase in the alloy matrix. Refined microstructures and
uniform distribution of the second phase throughout the alloy composition are expected
to result in improved properties of biodegradable Zn alloys. The microstructures and
resultant mechanical properties of Zn-based materials can be tailored by the application of
various conventional metal-forming processing techniques such as hot extrusion, rolling,
selective laser method (SLM), spark plasma sintering (SPS), drawing, and forging, and
severe plastic deformation techniques such as equal channel angular pressing (ECAP), high-
pressure torsion, twist extrusion, friction-stir processing, cylinder-covered compression,
and multi-directional forging. The grain refinement achieved in post-processing techniques
improves their corrosion resistance and mechanical properties. It is difficult to study the
influence of post-processing techniques on the mechanical characteristics of Zn alloys due



J. Funct. Biomater. 2023, 14, 1 5 of 21

to the small sizes of processed Zn-based materials or the softening of Zn-based materials at
high strains as a result of dynamic recrystallization. Capek et al. [75] studied the influence
of extrusion parameters such as the extrusion ratio and temperature on the microstructure
and mechanical properties of Zn–0.8Mg–0.2Ca alloys. The microstructures of the as-cast
and extruded Zn–0.8Mg–0.2Ca alloys are shown in Figure 2. The Zn-based metallic matrix
contains coarse grains (grain size varying between 100 and 40 µm) and particles of Mg2Zn11
(dark in SEM image with a grain size of 8.3 µm) and CaZn13 (encircled by red lines in the
SEM image with a grain size of 5 µm) intermetallic phases. The intermetallic particles
exist mainly at the Zn grain boundaries and in the internal Zn grain. The presence of α-Zn
dendrites and intermetallic phases (Mg2Zn11 and CaZn13) was confirmed by XRD and EDX
analyses. The XRD results shown in Figure 2b confirmed that the as-cast alloy contains
85 wt.% of Zn, 10 wt.% of Mg2Zn11, and 5 wt.% of CaZn13. The microstructures of extruded
materials as shown in Figure 2c,d indicate the improvement in microstructure due to the
recrystallization effect. The results clearly show that the sizes of both the Zn matrix and
intermetallic particles were significantly influenced by the extrusion conditions.
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Figure 2. Microstructures of Zn–0.8Mg–0.2Ca alloys (a) Microstructure of as-cast (cast and annealed)
alloy; (b) a detailed SEM view with corresponding X-ray elemental maps of Mg and Ca; (c) SEM
image of extruded material at 300 ◦C and an extrusion ratio of 11:1; (d) SEM image of extruded
material at 300 ◦C and an extrusion ratio of 25:1. Reprinted with modification and permission
from [75].

The refinement of microstructure leads to an enhancement of mechanical properties.
The influence of grain size on the elongation of Zn-based biodegradable materials is
presented in Figure 3a. Guo et al. [76] performed experiments to improve the microstructure
to achieve improved mechanical and degradation properties. The grain size was refined by
multi-pass drawing. First, the as-cast alloy samples were preheated and extruded. Then, the
extruded alloy samples were cooled, and a deformation method multi-pass drawing was
performed. The results suggest that plastic deformation affected the grain size effectively.
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A significant reduction in grain size was achieved by increasing the amount of deformation.
The results suggest that the multi-pass drawing had the potential to alter the MnZn phase
size, location, and distribution. The grain sizes of both the Zn and MnZn phases are shown
in Figure 3b,c.
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Figure 3. (a) The relationship between elongation and grain size for biodegradable Zn alloy, and the
grain size distribution of (b) Grain sizes of Zn alloys and (c) Grain sizes of ZnMn phase. Reprinted
with modification and permission from [76].

Among many Zn-based materials, the Zn–Mg alloys are expected to become potential
candidates for orthopedic applications with improved biocompatibility and mechanical
properties. The addition of Mg to Zn matrices resulted in the formation of hypoeutectic
microstructures. These microstructures are comprised of α-Zn dendrites and a eutectic
mixture of α-Zn and Mg2Zn11 phases [71,77–79]. The presence of intermetallic particles
(Mg2Zn11) due to the addition of Mg in Zn significantly enhanced the mechanical properties
of Zn matrices. To improve the microstructure and to reduce the grain size of Zn–Mg binary
alloy compositions, Pachla et al. [80] performed the hydrostatic extrusion on hot extruded
samples of Zn–Mg alloys. The alloy compositions were prepared by gravity casting under
an argon atmosphere. The as-cast samples were conventionally extruded at 250 ◦C. Then,
the samples were hydrostatically extruded to reduce the grain size and to compose both
alloy phases. The highest degree of refinement was achieved by deformation and the
synergistic effect of cumulative hydrostatic extrusion. It was suggested that three to four
passes of hydrostatic extrusion are effective for minimizing the maximum temperature of
the plastic deformation process. The uniform distribution of alloy phases plays a more
important role in the enhancement of mechanical properties. The variation in toughness,
with varying grain sizes for Zn-based alloys, is presented in Figure 4.
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Reprinted with modification and permission from [80].

Guan et al. [81] prepared Zn–2Fe–WC nanocomposites by adding 8 v.% of WC nanopar-
ticles in ZN-2Fe alloy systems using stir casting and ultrasound processing. The defor-
mation process of hot rolling was carried out to improve the mechanical properties. The
ultimate tensile stress was increased from 121.1 to 155.8 MPa and elongation was increased
from 8.6 to 15.3% as the result of hot rolling. The enhanced mechanical properties of hot-
rolled specimens are attributed to the improved porosity and dispersion of nanoparticles.
Moreover, immersion and electrochemical tests were carried out to study biocompatibility
and the corrosion of composites. The study reveals that WC particles are non-reactive and
inert in the physiological environment with no leached W ions. The cytotoxicity results
showed that WC nanoparticles exhibit no toxicity to cell lines.

Many post-processing deformation methods have been used to improve the microstruc-
ture of Zn-based biodegradable materials. Among these, hot extrusion, hot rolling, and
ECAP are most effective to improve the microstructure and reducing the grain size. There-
fore, few comparative studies on these deformation methods have been performed to find
the optimized method. Huang et al. [82] studied the influence of extrusion, rolling, and
ECAP on the microstructural and mechanical performance of Zn–Mg alloys. The maxi-
mum improvement in ductility and strength was achieved using ECAP. The influence of
multiple passes was also studied. The improved properties were achieved for eight passes
as compared to four passes. There are only limited studies on the comparison of different
deformation methods. It is difficult to select the optimized deformation method based on
the available comparative studies. Among different deformation methods, hot extrusion is
the most widely used method for improving the microstructure of Zn-based alloys.

The mechanical stability of orthopedic prostheses is an important concern that is
highly dependent on corrosion behavior. Kannan et al. [83] compared the degradation
characteristics and biocompatibility of Zn and Zn–5Al–4Mg alloys. Using in vitro corrosion,
the Zn alloy samples were immersed in SBF solution for a period of seven days. The
SEM images of immersed samples are shown in Figure 5. The SEM images verify the
limited corrosion strike on both Zn alloys. The degradation behavior with the function of
immersion time was analyzed. The degradation rate of Zn was recorded as being less when
compared to Zn–5Al–4Mg alloy.
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In vitro and in vivo studies are performed to analyze the corrosion and degradation
performance of Zn-based biodegradable materials. Lin et al. [58] developed different
compositions of Zn–1Cu–0.1Ti alloys by casting. The rolled alloy specimens were compared
with as-cast specimens, and various parameters were investigated (including mechanical
properties, corrosion resistance, biocompatibility, and antibacterial ability). Hot-rolled
specimens exhibit improved mechanical performance. The corrosion behavior was assessed
from the polarization curves of alloys, which are displayed in Figure 6a. The maximum
corrosion was recorded for hot-rolled specimens in terms of both the corrosion current and
corrosion density. The minimum passive layer formation on the surface of Zn alloys was
associated with the decreased dissolution rate. Figure 6b illustrates the impedance for all
Zn alloys. The larger values of impedance indicate an improvement in corrosion resistance.
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Jin et al. [84] developed the different Zn–Mg alloy compositions including the Zn–0.08Mg,
Zn–0.005Mg, and 0.002Mg. The as-cast alloys were further extruded and drawn to improve
the microstructure. In vivo studies were performed using Sprague-Dawley rats. The
samples were placed within the arterial extracellular matrix for a period of 1.5, 3, 4.5, 6,
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and 11 months. The cross-sectional area reduction and penetration rate were measured to
access degradation behavior. The degradation behavior in terms of cross-sectional area
and penetration rate is shown in Figure 7. The degradation rate values evaluated from
the penetration rate were higher for all compositions but close to the benchmark value
(0.02 mm/y).

J. Funct. Biomater. 2023, 13, x FOR PEER REVIEW 9 of 22 
 

 

rats. The samples were placed within the arterial extracellular matrix for a period of 1.5, 

3, 4.5, 6, and 11 months. The cross-sectional area reduction and penetration rate were 

measured to access degradation behavior. The degradation behavior in terms of cross-

sectional area and penetration rate is shown in Figure 7. The degradation rate values eval-

uated from the penetration rate were higher for all compositions but close to the bench-

mark value (0.02 mm/y). 

 

Figure 7. Degradation behavior: (a) cross-sectional area reduction and (b) penetration rate. Re-

printed with modification and permission from [84]. 

Yang et al. [85] fabricated the twenty-four binary Zn alloy compositions of different 

eight elements such as Cu, Ca, Mn, Sr, Ag, Fe, Mg, and Li. The extrusion was performed 

for improving the Zn microstructure. First, the superior compositions of alloys were 

screened in mechanical and in vitro tests. Then, the selected samples were tested in vivo 

through application into the rat femur. Zn–Li and Zn–Mn alloys exhibited the highest 

ductility and tensile strength. Zn–Mn alloys exhibited improved corrosion properties as 

compared to other compositions. The growth of new tissues was noticed in cell viability 

tests. The results of the study are shown in Figure 8a. Yang et al. [85] also developed nine 

ternary Zn alloy compositions based on the optimized binary composition of Zn–Li. The 

different weight fractions of Mg and Mn were added to optimize the properties of the Zn–

Li binary alloy. The maximum enhancement in mechanical properties was achieved for 

two ternary alloy compositions including Zn–0.8Li-0.4Mg and Zn–0.8Li-0.8Mn. The me-

chanical properties of ternary Zn alloys are shown in Figure 8b. 

Figure 7. Degradation behavior: (a) cross-sectional area reduction and (b) penetration rate. Reprinted
with modification and permission from [84].

Yang et al. [85] fabricated the twenty-four binary Zn alloy compositions of different
eight elements such as Cu, Ca, Mn, Sr, Ag, Fe, Mg, and Li. The extrusion was performed for
improving the Zn microstructure. First, the superior compositions of alloys were screened
in mechanical and in vitro tests. Then, the selected samples were tested in vivo through
application into the rat femur. Zn–Li and Zn–Mn alloys exhibited the highest ductility and
tensile strength. Zn–Mn alloys exhibited improved corrosion properties as compared to
other compositions. The growth of new tissues was noticed in cell viability tests. The results
of the study are shown in Figure 8a. Yang et al. [85] also developed nine ternary Zn alloy
compositions based on the optimized binary composition of Zn–Li. The different weight
fractions of Mg and Mn were added to optimize the properties of the Zn–Li binary alloy.
The maximum enhancement in mechanical properties was achieved for two ternary alloy
compositions including Zn–0.8Li-0.4Mg and Zn–0.8Li-0.8Mn. The mechanical properties of
ternary Zn alloys are shown in Figure 8b.

The tribological nature of Zn-based biomaterials is not much reported in the literature.
Currently, Lin et al. [58] performed tribological studies on a Zn–1Cu–0.1Ti alloy. The friction
and wear behavior of as-cast, hot-rolled, and cold-rolled Zn–1Cu–0.1Ti alloys showed that
the hot-rolled Zn–1Cu–0.1Ti alloy exhibited the best tribological performance. A few other
research groups also reported the results of tribological studies for Zn-based biomaterials,
but the studies of wear on Zn-based biomaterials are limited and there is a need to perform
the wear studies before the clinical trials. The biodegradation, mechanical, biocompatible,
and tribological results on Zn-based biomaterials are presented in Table 1. A broad range
of alloying elements, such as Mg, Mn, Fe, Ca, Cu, Li, Ag, Al, Ge, Sr, Zr, and Ti are used
for making Zn alloys. The results in Table 1 clearly show that pure Zn exhibits fewer
mechanical properties and does not meet the required design criteria. Zn–Mg alloys exhibit
good mechanical properties and meet the required design criteria for orthopedic implants.
Zn–Cu also exhibits good mechanical properties but the presence of Cu makes these alloys
unsuitable due to the impropriate biological properties of Cu. Among different alloying
elements, the addition of Li into pure Zn enhanced the mechanical properties of Zn-based
alloys. The results in Table 1 show that the ternary alloy systems such as Zn–xLi–yMn
(x, y = 0.1–0.8 wt.%) are the best candidates for next-generation orthopedic devices.
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Table 1. Biodegradation, mechanical, biocompatible, and tribological results of several studies on
Zn-based biomaterials.

Material Processing Method
(Grain Size)

Corrosion Test
Results

Mechanical Test
Results

Tribological
Results/Biocompatibility Ref.

Zn Hot Extrusion
(14)

Ecorr—−0.098 V
Icorr—8.9 µA/cm2

DR—0.133 mm/y
(14)

σTYS—55 MPa
σUTS—97 MPa

δ—7.7%
Nr [86]

Zn Hot Extrusion
(151 µm)

Ecorr—−0.98 V
Icorr—8.98 µA/cm2

DR—0.134 mm/y
(14)

σTYS—51 MPa
σUTS—111 MPa

δ—60%
H—34 HV

Nr [87]

Zn Hot rolling

Ecorr—−1.077 V
Icorr—20.9 µA/cm2

DR—0.306 mm/y
(14)

σTYS—35 MPa
σUTS—49 MPa

δ—6%
H—40 HV

Nr [88]

Zn Selective laser method
(104 µm)

Ecorr—−0.87 V
Icorr—9.24 µA/cm2

DR—0.18 mm/y
(28)

σTYS—43 MPa
σUTS—61 MPa

E—12 GPa
δ—1.7%

H—50 HV

Nr [89]

Zn-25Mg Powder Metallurgy

DR—0.374 mm/y
Ecorr—−1.323 V

Icorr—12.2 µA/cm2

(2)

E—86 GPa
δ—5.2%

σCYS—403 MPa
H—86 HV

Nr [74]
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Table 1. Cont.

Material Processing Method
(Grain Size)

Corrosion Test
Results

Mechanical Test
Results

Tribological
Results/Biocompatibility Ref.

Zn-1Mg Hot Extrusion
(4.4 µm)

Ecorr—−1.07 V
Icorr—11.8 µA/cm2

DR—0.177 mm/y
(14)

σTYS—180 MPa
σUTS—340 MPa

δ—6%
H—75 HV

Nr [87]

Zn-0.8Mg Hot Extrusion
(20 µm)

DR—0.071 mm/y
(1)

σTYS—203 MPa
σUTS—301 MPa

δ—13%
σCYS—186 GPa

H—83 HV

Nr [86]

Zn-0.5Mg Hydrostatic Extrusion Nr

σUTS—515 MPa
σTYS—375 MPa

δ—10.5%
H—107 HV

σUCS—473 MPa

Nr [80]

Zn-1.6Mg ECAP Icorr—6.91 µA/cm2

DR—9.31 mm/y
σUTS—474 MPa

δ—7% Nr [82]

Zn-3Mg Selective laser method DR—0.1 mm/y (28) σUTS—222 MPa
σTYS—152 MPa

Cytotoxic at 100%
concentration of extract [89]

Zn-1Mg Hydrostatic extrusion Nr σUTS—435 MPa
σTYS—335 MPa Nr [90]

Zn-0.008Mg Extrusion + Drawing Nr σUTS—339 MPa
σTYS—221 MPa Nr [84]

Zn-0.005Mg Indirect Extrusion DR—0.15 mm/y (14)
σUTS—225 MPa
σTYS—160 MPa

δ—26%

Cytotoxic at 100%
concentration of extract [91]

Zn-0.002Mg Extrusion + Drawing Nr σUTS—455 MPa
σTYS—388 MPa Nr [92]

Zn-0.05Mg Hot extrusion
(20 µm)

Ecorr—−0.938 V
Icorr—49.1 µA/cm2

DR—0.653 mm/y
(14)

σTYS—160 MPa
σUTS—225 MPa

δ—26%
Nr [91]

Zn-3Mg 2 Pass ECAP (1.8 µm)

Ecorr—−0.893 V
Icorr—3.2 µA/cm2

DR—0.28 mm/y
(14)

σTYS—205 MPa
σUTS—220 MPa

δ—6.3%
E—210 GPa
H—186 HV

Nr [93]

Zn-1.2Mg Hot Extrusion

Icorr—−1.18 V
Icorr—7.68 µA/cm2

DR—0.12 mm/y
(90)

σTYS—220 MPa
σUTS—363 MPa

δ—21%
H—96 HV

Nr [94]

Zn-0.5Mn Multi-pass drawing DR—0.5 mm/y σUTS—127.6 MPa
δ—245%

Good but decrease in
biocompatibility [76]

Zn-4Mn Nr Icorr—48 µA/cm2

DR—0.72 mm/y
σUTS—298 MPa

δ—14.9% Nr [72]

Zn-0.1Mn Extrusion
Change in

volume—95%
DR—0.014 mm/y

σUTS—175 MPa
σTYS—125 MPa

δ—40%
σUCS—390 MPa
σCYS—110 MPa

H—55 HV

Nr [85]
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Table 1. Cont.

Material Processing Method
(Grain Size)

Corrosion Test
Results

Mechanical Test
Results

Tribological
Results/Biocompatibility Ref.

Zn-0.8Mn Hot Extrusion

Ecorr—−0.976 V
Icorr—7.43 µA/cm2

DR—0.111 mm/y
(30)

σTYS—162 MPa
σUTS—215 MPa

δ—44%
σCYS—136 MPa

H—58 HV

Nr [95]

Zn-0.3Fe Casting
(7.5 µm)

Ecorr—−1.01 V
Icorr—7.31 µA/cm2

DR—0.111 mm/y

σTYS—70.5 MPa
σUTS—76.4 MPa

δ—1.18%
σCYS—117 MPa

Nr [96]

Zn-1.3Fe Casting

Ecorr—−1.02 V
Icorr—0.67 µA/cm2

DR—0.01 mm/y
(20)

σTYS—80 MPa
σUTS—134 MPa

δ—1.8%
H—56 HV

Nr [97]

Zn-4Cu Hot Extrusion
(2.3 µm) —-

σTYS—227 MPa
σUTS—271 MPa

δ—51%
Nr [98]

Zn-4Cu Hot Rolling
(40 µm)

DR—0.13 mm/y
(40)

σTYS—327 MPa
σUTS—393 MPa

δ—44.6%
σCYS—300 MPa

H—94 HV

Nr [99]

Zn-4Cu Extrusion DR—0.0255 mm/y
(14)

σUTS—270 MPa
σTYS—227 MPa

σUTS—50.6%
Nr [98]

Zn-0.1Li Extrusion + Drawing Nr σUTS—274 MPa
δ—17% Nr [100]

Zn-6Li Hot rolling Icorr—3.8 µA/cm2

DR—0.05 mm/y

σUTS—569 MPa
σTYS—478 MPa

δ—2.4%
Nr [101]

Zn-0.4Li Extrusion DR—0.002 mm/y

σUTS—520.36 MPa
σTYS—390 MPa

δ—6%
σUCS—795 MPa
σCYS—415 MPa

H—165 HV

Cell viability—120% (4) [85]

Zn-0.4Li Hot Rolling
(10 µm)

Ecorr—−1.21 V
Icorr—3.80 µA/cm2

DR—0.05 mm/y
(14)

σTYS—425 MPa
σUTS—440 MPa

δ—14%
H—137 HV

Nr [101]

Zn-0.4Li Hot Extrusion

Ecorr—−1.03 V
Icorr—11.26 µA/cm2

DR—0.019 mm/y
(30)

σTYS—387 MPa
σUTS—520 MPa

δ—5%
σCYS—434 MPa

H—164 HV

Nr [85]

Zn-6Ag Selective laser method
(25 µm)

Ecorr—−0.94 V
Icorr—9.56 µA/cm2

DR—0.15 mm/y
(21)

σCYS—267 MPa
H—78 HV Nr [73]
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Table 1. Cont.

Material Processing Method
(Grain Size)

Corrosion Test
Results

Mechanical Test
Results

Tribological
Results/Biocompatibility Ref.

Zn-2Ag Hot extrusion

Ecorr—−1.06 V
Icorr—17.27 µA/cm2

DR—0.018 mm/y
(30)

σTYS—186 MPa
σUTS—231 MPa

δ—36.7%
σCYS—145 MPa

H—55 HV

Nr [85]

Zn-1Al Hot Extrusion
(14.4 µm)

Ecorr—−0.98 V
Icorr—9.70 µA/cm2

DR —0.145 mm/y
(14)

σTYS—113 MPa
σUTS—223 MPa

δ—24%
H—73 HV

Nr [87]

Zn-2Al
Laser powder bed

fusion
(5.53 µm)

Ecorr—−1.059 V
Icorr—8.04 µA/cm2

DR—0.142 mm/y
(14)

σTYS—142 MPa
σUTS—192 MPa

E—65 GPa
δ—12%

Nr [102]

Zn-5Al Hot rolling σUTS—308 MPa
δ—16% Nr [103]

Zn-5Ge Hot Extrusion

Ecorr—−0.1063 V
Icorr—10.7 µA/cm2

DR—0.157 mm/y
(14)

σTYS—175 MPa
σUTS—237 MPa

δ—22%
H—60 HV

[104]

Zn-3Cu-1Mg Extrusion Icorr—12.4 µA/cm2

DR—0.18 mm/y

σUTS—441 MPa
σTYS—427 MPa

δ—0.9%
Nr [105]

Zn-0.5Al-
0.5Mg Nr

Ecorr—−1.018 V
Icorr—9.5 µA/cm2

DR—0.12 mm/y
(30)

σUTS—102 MPa
δ—2.1%

H—94 HV
Nr [70]

Zn-3Cu-1Fe Extrusion Icorr—8.8 µA/cm2

DR —0.13 mm/y

σUTS—272 MPa
σTYS—221 MPa

δ—19.6%
Nr [106]

Zn-0.8Li-
0.8Mg Hot Extrusion Nr

σTYS—438 MPa
σUTS—646 MPa

δ—3.68%
Nr [85]

Zn-0.8Li-
0.8Mn Hot Extrusion Nr

σTYS—357 MPa
σUTS—513 MPa

δ—103.5%
Nr [85]

Zn-1.5Mg-
0.5Ca

Hot Extrusion
(10–20 µm)

Ecorr—−1.18 V
Icorr—2.08 µA/cm2

DR—0.024 mm/y

σTYS—160 MPa
σUTS—442 MPa

δ—4.9%
H—111 HV

Nr [107]

Zn-0.02Mg-
0.02Cu

Hot Extrusion
(13 µm)

DR—0.079 mm/y
(15)

σTYS—216 MPa
σUTS—262 MPa

δ—28%
H—74 HV

Nr [108]

Zn-1Mg-
0.1Sr Hot Rolling

Ecorr—−1.19 V
Icorr—10.2 µA/cm2

DR—0.15 mm/y

σTYS—197 MPa
σUTS—300 MPa

δ—23%
H—104 HV

Nr [109]

Zn-1Mg-
0.1Mn Hot Rolling

Ecorr—−1.21 V
Icorr—16.7 µA/cm2

DR—0.25 mm/y

σTYS—195 MPa
σUTS—299 MPa

δ—26.1%
H—108 HV

Nr [110]
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Table 1. Cont.

Material Processing Method
(Grain Size)

Corrosion Test
Results

Mechanical Test
Results

Tribological
Results/Biocompatibility Ref.

Zn-1Mg-0.1
Zr Hot Extrusion

Ecorr—−1.23 V
Icorr—5.44 µA/cm2

DR—0.23 mm/y
(90)

σTYS—248 MPa
σUTS—314 MPa

δ—2.5%
σCYS—300 MPa

H—94 HV

Nr [111]

Zn-2Cu-0.1Ti Casting

Ecorr—−1.164 V
Icorr—2.56 µA/cm2

DR—0.022 mm/y
(30)

σTYS—132 MPa
σUTS—177 MPa

δ—2.5%
Nr [112]

Zn-1Cu-0.1Ti Hot rolling + Cold
rolling

DR—0.991 mm/y
Ecorr—−1.100 V

Icorr—67.7 µA/cm2

σTYS—204.2 MPa
σUTS—249.9 MPa

δ—75.2%

Friction coefficient—0.731
Wear loss—20.2 mg

Surface roughness—0.94
µm

[58]

Zn-0.8Mn-
0.4Ag

Hot Extrusion
(2 µm)

Ecorr—−1.19 V
Icorr—11.2 µA/cm2

DR—0.160 mm/y

σTYS—156 MPa
σUTS—251 MPa

δ—63%
Nr [113]

Zn-0.8Mn-
0.4Cu

Hot Extrusion
(1.1 µm)

Ecorr—−1.18 V
Icorr—8.91 µA/cm2

DR—0.133 mm/y

σTYS—191 MPa
σUTS—308 MPa

δ—39%
Nr [113]

Zn-0.8Mn-
0.4Ca

Hot Extrusion
(2.6 µm)

Ecorr—−1.16 V
Icorr—10.7 µA/cm2

DR—0.160 mm/y

σTYS—253 MPa
σUTS—343 MPa

δ—8%
Nr [113]

Zn-0.8Li-
0.2Ag

Hot Rolling
(2.3 µm)

Ecorr—−1.21 V
Icorr —7.67 µA/cm2

DR—0.11 mm/y

σTYS—196 MPa
σUTS—255 MPa

δ—98%
Nr [114]

Zn-0.8Li-
0.2Mg Hot Rolling

Ecorr—−1.32 V
Icorr—11.3 µA/cm2

DR—0.17 mm/y

σTYS—254 MPa
σUTS—341 MPa

δ—31%
Nr [114]

Zn-0.35Mn-
0.41Cu

Hot rolling
(1.1 µm)

Ecorr—−1.046 V
Icorr—4.1 µA/cm2
DR—0.062 mm/y

(14)

σTYS—198 MPa
σUTS—292 MPa

δ—30%
Nr [115]

Zn-4.3Al-
3.2Cu-

0.06Mg
Extrusion

Icorr—7.2 µA/cm2

Corrosion
rate—0.374 mm/y

σUTS—201 MPa
σTYS—110 MPa

δ—126%
Nr [116]

Zn-1HA Spark plasma sintering Icorr—21 µA/cm2

DR—0.327 mm/y

σUTS—158 MPa
σTYS—68 MPa

δ—90%
Nr [117]

Zn-2Fe-6 v.%
WC Hot rolling DR—0.020 mm/y

Icorr—5.19 µA/cm2

σUTS—155.8 MPa
δ—15.3%

H—59.3 HV
Nr [81]

Zn-0.5Al-
0.5Mg-0.3Bi

Extrusion
(30 µm)

Ecorr—−1.084 V
Icorr—16.45 µA/cm2

DR—0.203 mm/y
(30)

σUTS—108 MPa
δ—2.7%

H—109 HV
Nr [118]

Zn-8HA Extrusion DR—0.40 mm/y
(14)

σCYS—113 MPa
σUCS—169 MPa

H—44.7 HV
Nr [119]
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Table 1. Cont.

Material Processing Method
(Grain Size)

Corrosion Test
Results

Mechanical Test
Results

Tribological
Results/Biocompatibility Ref.

Zn-3HA Powder Metallurgy
Ecorr —−1.070 V

Icorr—5.16 µA/cm2

DR—0.084 mm/y
σCYS—110 MPa Nr [120]

Zn-16HA Spark plasma sintering CR—1.5 mm/y
(14)

σCYS—46 MPa
σUCS—65 MPa

H—24 HV
Nr [121]

Zn-5Mg Spark plasma sintering

Ecorr—−1.312 V
Icorr—0.43 µA/cm2

DR—0.203 mm/y
(50)

σCYS—183 MPa
H—80.8 HV Nr [122]

Zn-5Mg Powder Metallurgy
Ecorr—−1.42 V

DR—0.0016 mm/y
(14)

σTYS—148 MPa
σUTS—183 MPa

δ—16%
σCYS—256 MPa
σUCS—209 MPa

Nr [123]

Zn-1Mg-
1TCP Extrusion DR—0.046 mm/y

(14)

σTYS—294 MPa
σUTS—330 MPa

δ—11.7%
Nr [124]

Zn-1Mg-
1βTCP Extrusion

Ecorr—−1.225 V
Icorr—48.9 µA/cm2

DR—0.732 mm/y
(30)

σTYS—251 MPa
σUTS—331 MPa

δ—11.7%
Nr [125]

Nr: Not reported.

6. Conclusions

There is an increasing demand for innovative clinical orthopedic implants for aging-
related bone diseases. Zn-based materials can meet the required design criteria by adding
the alloying elements and refining the microstructure by applying post-processing defor-
mation methods. Zn-based biodegradable materials may be important orthopedic implants
to treat challenging bone diseases, attributed to their desired mechanical and degradation
properties. This review summarizes the biological function of Zn, the design criteria for
orthopedic implant materials, and the performance of Zn-based biodegradable alloys. The
following points were concluded:

• Zn exists in bones and muscles in the human body and performs a significant role in
bone metabolism and the growth of an organism. Zn-based biodegradable materials
can enhance osteoblast differentiation by promoting bone marrow genes.

• To meet the design criteria of a biodegradable device, mechanical properties such as
ultimate tensile strength (σUTS) > 300 MPa, tensile yield strength (σTYS ) > 230 MPa,
and elongation (δ) > 15–18% are required, and the elastic modulus (E) should be
similar to bone (10–20 GPa). The service time of a device must be equal to 1–2 years for
performing the particular function until the full absorption of the device. In vitro cor-
rosion test degradation/penetration rate should be (DR) < 0.5 mm/year and hydrogen
evolution should be less than 10 µL/cm2-day.

• Using in vitro corrosion, Zn-based biodegradable materials show medium degrada-
tion rates and are oxidized into hydroxides and oxides without releasing excessive
hydrogen gas.

• Zn-based alloys are multiphase systems, and their mechanical and degradation prop-
erties are strongly dependent on the grain sizes and the distribution of the secondary
phase in the alloy matrix. Refined microstructures and uniform distribution of the
second phase throughout the alloy composition are expected to result in improved
properties of biodegradable Zn alloys.
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• Many post-processing methods have been used to improve the microstructure of
Zn-based biodegradable materials. Among these, hot extrusion, hot rolling, and ECAP
are the most effective to improve the microstructure and reducing the grain size. The
grain refinement achieved in post-processing techniques improves their corrosion
resistance and mechanical properties.

• Zn–Mg alloys exhibit good mechanical properties and meet the required design cri-
teria for orthopedic implants. The addition of Li into pure Zn enhances the mechan-
ical properties of Zn-based alloys. The ternary alloy systems such as Zn–xLi–yMn
(x, y = 0.1–0.8 wt.%) are the best candidates for next-generation orthopedic devices.

• There is a need to test the most suitable Zn-based biodegradable materials in all aspects
before the clinical trial. The biocompatibility studies in vivo and tribological studies
are limited to Zn-based biodegradable materials.

• Many suitable combinations of Zn-based biodegradable materials are listed based on
the results of previous studies. Still, these materials are not used in orthopedics. There
is a need to study the factors which make their use limited.
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