
Citation: Hashem, A.H.; Saied, E.;

Amin, B.H.; Alotibi, F.O.; Al-Askar,

A.A.; Arishi, A.A.; Elkady, F.M.;

Elbahnasawy, M.A. Antifungal

Activity of Biosynthesized Silver

Nanoparticles (AgNPs) against

Aspergilli Causing Aspergillosis:

Ultrastructure Study. J. Funct.

Biomater. 2022, 13, 242. https://

doi.org/10.3390/jfb13040242

Academic Editors: John H.T. Luong

and Kai Yang

Received: 14 October 2022

Accepted: 11 November 2022

Published: 15 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of 

Functional

Biomaterials

Article

Antifungal Activity of Biosynthesized Silver Nanoparticles
(AgNPs) against Aspergilli Causing Aspergillosis:
Ultrastructure Study
Amr H. Hashem 1,* , Ebrahim Saied 1 , Basma H. Amin 2, Fatimah O. Alotibi 3, Abdulaziz A. Al-Askar 3,
Amr A. Arishi 4, Fathy M. Elkady 5 and Mostafa A. Elbahnasawy 1,*

1 Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
2 Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11884, Egypt
3 Department of Botany and Microbiology, Faculty of Science, King Saud University,

Riyadh 11451, Saudi Arabia
4 School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
5 Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University,

Cairo 11884, Egypt
* Correspondence: amr.hosny86@azhar.edu.eg (A.H.H.); mostafa.elbahnasawy@azhar.edu.eg (M.A.E.)

Abstract: Currently, nanoparticles and nanomaterials are widely used for biomedical applications. In
the present study, silver nanoparticles (AgNPs) were successfully biosynthesized using a cell-free
extract (CFE) of Bacillus thuringiensis MAE 6 through a green and ecofriendly method. The size of the
biosynthesized AgNPs was 32.7 nm, and their crystalline nature was confirmed by XRD, according to
characterization results. A surface plasmon resonance spectrum of AgNPs was obtained at 420 nm.
Nanoparticles were further characterized using DLS and FTIR analyses, which provided information
on their size, stability, and functional groups. AgNPs revealed less cytotoxicity against normal Vero
cell line [IC50 = 155 µg/mL]. Moreover, the biosynthesized AgNPs exhibited promising antifungal
activity against four most common Aspergillus, including Aspergillus niger, A. terreus, A. flavus, and
A. fumigatus at concentrations of 500 µg/mL where inhibition zones were 16, 20, 26, and 19 mm,
respectively. In addition, MICs of AgNPs against A. niger, A. terreus, A. flavus, and A. fumigatus were
125, 62.5, 15.62, and 62.5 µg/mL, respectively. Furthermore, the ultrastructural study confirmed
the antifungal effect of AgNPs, where the cell wall’s integrity and homogeneity were lost; the cell
membrane had separated from the cell wall and had intruded into the cytoplasm. In conclusion, the
biosynthesized AgNPs using a CFE of B. thuringiensis can be used as a promising antifungal agent
against Aspergillus species causing Aspergillosis.

Keywords: silver nanoparticles; cell-free extract; Bacillus thuringiensis; antifungal activity; Aspergillus;
ultrastructure study

1. Introduction

The most common spoilage fungi are Aspergillus sp., Fusarium sp., Penicillium sp., and
Candida sp.; they can produce mycotoxins, which are extremely harmful to both humans
and animals. Symptoms of spoilage fungi can also cause grain discoloration, chemical and
nutritional changes, and reduced germination [1,2]. Aspergillus species are widespread and
their spores contribute up to 22% of the air spore samples [3]. Although there are more
than 250 Aspergillus species, only a small number of them cause problems in humans [4].
Aspergillus infections mostly affect the respiratory system. Inhaled Aspergillus spores can
germinate in the presence of ideal lung conditions such as high humidity, oxygen, and
carbon dioxide [5–7].

The most prevalent aspergillosis-causing species is Aspergillus fumigatus, followed by
A. flavus and A. niger, while A. niger is among the most prevalent infections that cause my-
cosis in humans. These molds can induce systemic invasive infections and kill at least 50%

J. Funct. Biomater. 2022, 13, 242. https://doi.org/10.3390/jfb13040242 https://www.mdpi.com/journal/jfb

https://doi.org/10.3390/jfb13040242
https://doi.org/10.3390/jfb13040242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jfb
https://www.mdpi.com
https://orcid.org/0000-0002-0024-3606
https://orcid.org/0000-0002-5622-7912
https://doi.org/10.3390/jfb13040242
https://www.mdpi.com/journal/jfb
https://www.mdpi.com/article/10.3390/jfb13040242?type=check_update&version=1


J. Funct. Biomater. 2022, 13, 242 2 of 17

of infected people [8,9]. In addition to contaminating a variety of nuts, fruits, vegetables,
and grains, A. flavus also produces aflatoxins, which are mutagenic and carcinogenic [10].
Recently, the emergence of drug-resistant Aspergillus species isolates has been reported
as a result of prolonged exposure to antifungals [11]. To avoid the generation of more
drug-resistant Aspergillus sps., novel antifungal medications are urgently needed for the
treatment of aspergillosis. New antifungal agents can be created using nanotechnology to
reduce the effects of newly developed resistant fungi [12].

For successful control and treatment of fungal diseases, recent strategies including
the production of nanoparticle-based medicines have been addressed [13]. Nanoparticles,
such as silver nanoparticles (AgNPs), have been used for a long time as antimicrobial
agents and are highly effective against fungal pathogens [14–18]. AgNPs work through a
variety of mechanisms, including binding to phosphate groups in DNA [19] and plasma
membrane interactions that cause protons to diffuse and cause cell death [20]. They can
also interact with sulfhydryl groups in proteins and enzymes, interfere with the electron
transport chain, and disrupt membrane permeability to phosphate groups and protons [21].
The production of AgNPs, which makes up almost half of all manufactured nanomaterials
globally, is over 450 tons [22]. The commercialization of AgNPs occurs most frequently in
the fields of microelectronics, textiles, food and beverage packaging, and healthcare [23].
The traditional methods of chemical synthesis are expensive and result in environmentally
hazardous and poisonous chemicals. Therefore, scientists have investigated the ambient
biological processes that often take place in the natural systems. The study of natural
systems has led to the development of microbial and plant-extract-based methods that
have replaced nanosynthesis. Microorganisms have drawn a lot of interest in the green
production of nanomaterials [24–27]. The biological and physicochemical properties of
these nanoparticles are valuable in various applications in many fields, including biomed-
ical and agricultural production [13,28–32]. Several microorganisms, including different
bacterial species, have successfully been employed for the bio-fabrication of AgNPs [33].
Herein, this study aimed to biosynthesize AgNPs using bacteria and fully characterize
them using UV–vis, TEM, FTIR, XRD, and DLS, as well as to study the antifungal activity
of AgNPs against aspergilli causing aspergillosis. In addition, ultrastructure changes of
highly sensitive Aspergillus species were investigated.

2. Material and Methods
2.1. Isolation of Bacterial Isolates

Twenty bacterial isolates were isolated from different areas. All isolates were screened
and tested for the production of AgNPs. The bacterial isolate coded MAE 6 was the only
isolate that has a high-yielding capacity for AgNP biosynthesis, which was determined by
UV–Vis spectroscopy. This strain was isolated from a soil sample obtained from Egypt’s
eastern desert (N: 29◦58′49.06′′, E: 32◦7′3.39′′), in a sterilized 250 mL screw-capped bottle.
The bacterial strain was isolated using the serial dilution plate method on Luria–Bertani
(LB) agar plates. Briefly, 10 mL of sterile water and 1 g of soil sample were combined, well
mixed, and serially diluted. On the plates, streaks of the diluted samples were applied. The
plates were then incubated at 37 ◦C for 24 h. A single discrete colony was picked out and
re-cultured into fresh plates to check the purity [34].

2.2. Identification of Bacterial Strain
2.2.1. Morphological and Biochemical Identification

The isolated pure culture was identified by performing morphological and biochemical
tests such as Gram staining, motility, endospore staining, oxidase, catalase, indole, and
starch hydrolysis, and glucose fermentation tests [35].

2.2.2. Molecular Identification

The isolated strain was categorized at the species level by 16S rRNA gene sequencing.
PCR was employed to amplify the 16S rRNA after the bacterial DNA was separated. This
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was performed using the 27F and 1492R primers (5′-AGAGTTTGATCCTGGCTCAG-3′ and
5′ GGTTACCTTGTTACGACTT-3′, respectively). A PCR purification kit was used to purify
the PCR results, and an ABI 3730xl DNA sequencer (GATC Biotech, Germany) was used to
sequence them. In order to compare the amplified product sequences, the BLAST (NCBI)
search similarity analysis was used. The strain phylogenetic region was verified by creating
a phylogenetic tree using the Neighbor-joining approach using MEGA 7.0 software and
1000 bootstrap repetitions.

2.3. Biosynthesis of AgNPs

AgNPs were generated according to a previous protocol [34] by inoculating 200 mL
of nutrient broth with the B. thuringiensis MAE 6 culture, followed by 24 h of shaking
incubation. After incubation, the culture was centrifuged for 20 min at 3075 g to separate
the pellet and supernatant. In a clean 250 mL conical flask, supernatant (100 mL) was
added, and 1 mL of silver nitrate solution (1 mM) was added. The second reaction served
as a control test without AgNO3. The mixture was then incubated in a shaking incubator at
200 rpm, 37 ◦C for 24 h in the dark to prevent oxidation of AgNO3. Visual confirmation
of AgNP synthesis was investigated by changing the yellow color of the cell-free extract
to a brownish color when the precursor was added to it. To create a fine AgNP powder,
the supernatant was dried at 60 ◦C followed by crushing. To completely remove any
contaminants from the control flask, AgNPs were thoroughly washed with distilled water
and stored for characterization.

2.4. AgNP Characterization

AgNPs were characterized according to methods used by Saied et al. [34]. A reaction
mix ranging from light yellow to brownish was formed after 24 h. The formation of AgNPs
was thought to be indicated by this color change, in which the color shift of control was
not seen as compared to the sample. The results were confirmed using conventional
characterization methods, such as a UV–visible spectrophotometer (scanning spectra 109

range from 300 to 700 nm, Shimadzu UV-1700, Kyoto, Japan). The morphology of AgNPs
was examined using transmission electron microscopy (JEOL 1010 TEM, Japan). The
functional groups involved in reducing, capping, and stabilization of AgNPs were studied
using Fourier transform infrared spectroscopy (FTIR) (Perkin-Elmer FTIR-1600, USA) by
following the standard operating protocol, and the spectral bands of prepared (crystallized
form) AgNPs were determined with 400–4000 cm−1. X-ray diffraction (XRD) (Shimadzu
LabX XRD-6000) with a Cu-Kα X-ray source (λ = 1.5418 Å) analysis was used to evaluate
the crystallite nature of AgNPs. The average particle size and size distribution of AgNPs in
colloidal solutions were determined by dynamic light scattering (DLS) (The Nicomp ZLS Z
3000, USA).

2.5. In Vitro Cytotoxicity of AgNPs against Normal Cell Line

The cytotoxicity of AgNPs and was determined using the MTT protocol [36] with
minor modification. An American-type culture collection provided the typical Vero cell
line (ATCC). Using the following formula, the total number of cells and the percentage of
viable cells were calculated:

Viability % =
Test OD

Control OD
× 100

2.6. In Vitro Antifungal Activity of AgNPs

The antifungal activity of AgNPs was evaluated using agar well diffusion against As-
pergillus niger RCMB 02724, A. terreus RCMB 02574, A. flavus RCMB 02782, and A. fumigatus
RCMB 02568. All tested fungal strains were grown on PDA plates and incubated for
3–5 days at 30 ◦C [37,38]. The fungal suspension was prepared in sterilized phosphate
buffer solution (PBS) pH 7.0, and then the inoculum was adjusted to 107 spores/mL after
counting in a cell counter chamber. One milliliter was uniformly distributed on agar MEA
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plates. Using a sterile cork-borer, wells (8 mm) were cut; 100 µL of AgNPs and AgNO3 were
transferred to each well individually and left for 2 h at 4 ◦C. Nystatin was used as a stan-
dard antifungal, and then the plates were incubated for 3 days at 30 ◦C. After incubation,
the inhibition zones were determined and recorded. Moreover, different concentrations
of AgNPs were evaluated as antifungal to detect the minimum inhibitory concentration
(MIC).

2.7. Ultrastructure Study

An ultrastructure study was carried out on highly AgNPs-sensitive Aspergillus sp. to
AgNPs. Therefore, this study was performed on A. terreus and A. flavus. TEM samples
were prepared as follows: fungal specimens (nearly 1 mm3 each) were removed from agar
colonies. The samples were fixed in phosphate buffer, washed in 3% glutaraldehyde, and
then post-fixed for five minutes at room temperature in potassium permanganate solution.
The samples were dehydrated for 30 min in absolute ethanol after 15 min in each ethanol
dilution, which ranged from 10% to 90%. They were subsequently submerged in pure resin
after being subjected to a graded series of injections of epoxy resin and acetone. Very thin
fragments were collected on copper grids. Sections were then stained three times with
uranyl acetate and lead citrate. A JEOL-JEM 1010 transmission electron microscope was
employed by the Regional Center for Mycology and Biotechnology (RCMB), Al- Azhar
University, to examine stained slices at a voltage of 70 kV [39–41].

2.8. Statistical Analysis

As all experiments were carried out in triplicate, and the means and standard errors
were calculated using SPSS v18 by t-test. The significance levels were set at p < 0.05.

3. Results and Discussion
3.1. Isolation and Identification of the Bacterial Isolate Bacillus sp. MAE 6

Studying of morphological and biochemical characteristics was carried out to identify
the bacterial isolate, and molecular identification (16S rDNA) was performed to confirm
the morphological identification. The bacterial isolate MAE 6 was morphologically charac-
terized as Gram-positive endospore formers, and showed negative results for β-xylosidase,
d-mannitol, d-mannose, β-glucosidase, and methyl-d-xyloside but positive results for
d-glucose, d-trehalose, esculin hydrolysis, phenylalanine arylamidase, and tyrosine ary-
lamidase. The biochemical assays of MAE 6 were carried out by the bioMérieux VITAK2
system and exhibited the identical characteristics of B. thuringiensis as described in Bergey’s
Manual of Systematic Bacteriology. Supplementary Table S1 displays all of these data. The
16S rDNA fragment of MAE 6 was sequenced for further confirmation of the molecular
identity. As illustrated in Figure 1, the MAE 6 phylogenetic tree that was constructed
revealed a clustering link between MAE 6 and the B. thuringiensis strains. As a result, the
bacterial isolate MAE 6 was identified to be B. thuringiensis MAE 6, and the sequencing
was added to the Gene Bank with the accession number MW547437. The 16S rDNA gene
contains highly variable sequences that are a powerful tool in species identification [42].
This technique was used by [42], and they identified bacterial strain KFU36 as Bacillus sp.
with an identity of 99%. Similarly, Wilson et al. [43] employed the 16S rDNA technique to
identify the bacterial isolate (P3) as B. subtilis with a similarity of 100%. Moreover, the 16S
rDNA shows that the maximum sequence identity (99.48%) of strain AW1-2 was reached
with B. cereus strain CMS7 (Z2) (KX3443935), B. anthracis strain WFS6 (KU977477), and B.
thuringiensis WG1 (KU977479) [44]. This method was successfully used by Saied et al. [45]
to identify HIS7 as a Lysinibacillus cresolivuorans strain.
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Figure 1. Neighbor-joining phylogenetic tree for B. thuringiensis MAE 6 using distance matrix analysis
of 16S rRNA gene sequences.

3.2. Biosynthesis of AgNPs Using CFE of B. thuringiensis

The reaction of silver nitrate with the culture supernatant of B. thuringiensis MAE 6 and
the gradual color change to brown were visually detected after 24 h of incubation, as shown
in Figure 2. As a result, the OH groups of the bioactive metabolites in the cell-free extract
(CFE) were electrostatically attracted to the positive-charged Ag ions, which reduced to Ag0

and eventually led to the creation of AgNPs. The control color did not alter. This result was
consistent with those reported for a number of Bacillus species, including B. subtilis [46],
B. licheniformis [47], B. cereus [48], and B. thuringiensis [49]. Liu et al. [50] showed that
they synthesized AgNPs by using Lysinibacillus sphaericus after 24 h. On the other hand,
Nallal et al. [51] succeeded in the biosynthesis of AgNPs by using 1 mM of silver nitrate
mixed with an A. ampeloprasum bulb extract within 20 min. Additionally, after 24 h of
incubation, the green production of AgNPs utilizing A. sydowii was accomplished [52].

3.3. Characterization of Biosynthesized AgNPs

A UV–Vis spectrophotometer was used to characterize the prepared biosynthesized
AgNPs in the preliminary stage, and it produced an absorbance peak at 420 nm (Figure 3).
A powerful localized SPR characteristic was the cause of the NP stimulation. According
to the previous explanation, the shape and size of AgNPs are often related to the specific
SPR state [53]. Here, AgNPs produced by B. thuringiensis MAE 6 had an SPR absorption
band at 420 nm. This was accomplished by the free electrons in the AgNPs mutually
vibrating with the light wave. SPR values below or higher than 400 nm indicate smaller
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or bigger nanoparticles, respectively [54]. Similarly, Dawoud et al. [55] reported that the
biosynthesis of AgNPs by Nigrospora oryzae occurred at an absorbance peak of 420 nm.
Additionally, UV–Vis examination of the produced AgNPs revealed a plasmonic peak at
420 nm [56]. Our results on color change and UV–Vis spectral range resembled the findings
of Ahmed et al. [57], who reported the color shift of the reaction mixture from yellow to
dense brown and the UV–Vis absorption climax of 418.99 nm in the case of AgNPs produced
by using the B. cereus strain. On the other hand, Nallal et al. [51] proposed the effective
and quick synthesis of AgNPs by sunlight using an extract of A. ampeloprasum, in which
AgNP production was verified by an absorption peak in the UV–Vis spectrum at 446 nm.
Using a natural Bacillus sp. strain AW1-2, the absorption peak of UV–Vis spectroscopy was
detected at 447 nm for the biogenesis of AgNPs [44]. Moreover, Liu et al. [50] reported that
the UV−Vis spectra of the biosynthesized AgNPs by using Lysinibacillus sphaericus showed
a prominent absorbance peak at 413 nm.
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3.3.1. XRD Analysis

The pure polycrystalline Ag metal was discovered through XRD investigation. AgNPs
have been reported to possess a face-centered cubic structure with a comparable crystalline
and metallic nature [22,46]. XRD pattern showed the typical Bragg reflections at 2θ = 31.5◦,
45.2◦, 56.3◦, and 75.0◦, which match the XRD pattern of the indices (111), (200), (220),
and (311), as shown in Figure 4. According to the Debye–Scherrer equation, which =
0.9λ/β.cos θ, where 0.1541 nm, the full width at half maximum (FWHM) is the Bragg’s
angle in degrees, and D is the average particle size, the average particle size of biogenic
AgNPs was determined to be 27.31 nm. The effective production of nanosized particles
was proven by the sharp diffraction peak at the lattice plane (111). The XRD measurements
obtained agreed with Joint Committee on Powder Diffraction Standards (JCPDS) standard
No. 04-0783, confirming that the biosynthesized AgNPs had face-centered cubic (FCC)
structures [58,59]. El-Naggar et al. [60] reported the successful fabrication of crystalline
AgNPs due to the reduction of Ag ions by phycocyanin, and characterized by face-centered
cubic structures. Taran et al. [61] showed that intense peaks corresponding to (111), (200),
(220), and (311), which exhibit the formation of AgNPs synthesized by Bacillus sp. HAI4,
were crystal and face-centered cubic structure in nature. Furthermore, the capping agents
may have stabilized NPs, as seen by the strong diffraction peaks seen in the XRD spectra [62].
Unassigned diffraction peaks in the XRD spectra could be caused by biomolecules covering
the surface of the crystallizing NPs [63].
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3.3.2. FTIR Analysis

Different biomolecules essential for capping and stabilizing reduced AgNPs as well
as reducing silver (Ag+) ions were identified through the use of FTIR analysis. Data
represented in (Figure 5) revealed intense absorption peaks at 3430, 2961, 1640, 1405,
1050, 710, 605, and 529 cm−1. OH and the OH stretching group of phenols and alcohol
or NH stretching of aliphatic primary amines might be responsible for the large peak
shown at 3430 cm−1 [64]. The peak at 2961 cm–1 signified C-H vibrational stretching of
aliphatic methyl (CH3). The peak at 1640 cm−1 was associated with I and II amide peptide
linkage [65,66]. This amide I band suggests that proteins that may exist in the B. thuringiensis
MAE 6 cell-free biomass filtrate have the ability to bind to Ag+ ions through carboxylate ions
or free amine groups to assist in the production of AgNPs during a reduction process. The
shifting peak at a wavenumber of the peak at 1405 cm–1 can be appointed to C–N stretching
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vibrations of aliphatic and aromatic amines [67]. The absorption of C-O-C or C-O may be
responsible for the peak at 1050 cm−1 that was detected [68]. The stretching peaks which
appeared at 710 and 605 cm−1 indicated the amide IV (OCN) stretch bending for protein and
alkene (=C-H bending), respectively. In accordance with other evidence, proteins may serve
as capping and/or stability agents during the biosynthesis of AgNPs [69,70]. Elbahnasawy
et al. [71] discovered that FTIR spectrum analysis suggested that the cell-free extract of
Rothia endophytica MAE 11 may function as a reducing and stabilizing agent during the
production of AgNPs. Liu et al. [50] showed that FTIR spectra of Lysinibacillus sphaericus
mediated the synthesis of AgNPs to identify biomolecules involved in the reduction of Ag+

ions and capping of biosynthesized AgNPs. Almalki and a Khalifa [42] employed FTIR
spectra to identify biomolecules found in the CFE of Bacillus sp KFU36, which were used as
reducing agents for AgNP synthesis.
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3.3.3. DLS and TEM Analyses

Factors that influence the biotechnological and biological activities of NPs include
their size, shape, and distribution [72]. The activity and biocompatibilities of NPs increased
as their sizes decreased [63]. Therefore, it is important to examine the NPs’ morphological
characteristics. TEM was employed to achieve this objective. Monodispersed spheres were
the image of the form of NPs. The size distribution histogram revealed that the average
size of the nanoparticles, which ranged in size from 30 to 47 nm, was 32.7 nm (Figure 6A),
which was smaller than that formed with B. thuringiensis (43.52–142.97 nm) [73]. The results
are consistent with other studies that have been published and show that silver oxide
nanoparticles produced using B. linens varied in size from 25 to 70 nm [74]. Additionally,
the size of spherical AgNPs synthesized by Bacillus sp KFU36 was extended between 5
and 15 nm [42]. Chi et al. [75] showed that the synthesized BT-AgNPs size ranged from
20.15 to 22.21 nm. Moreover, the AgNPs synthesized by walnut fruit (Juglans regia) extract
had an average size of 31.4 nm [76]. The TEM image demonstrates that the metabolites
in the culture extract are effective in reducing and capping monodispersed spherical
AgNPs without aggregation (Figure 6A). Using the DLS method, AgNP size and particle
distribution were assessed. The average particle diameter for AgNPs synthesized by
B. thuringiensis MAE 6 was 37.9 nm for a volume, as illustrated in Figure 6B. The electrical
double layer that developed on charged AgNPs and/or coating metabolites on the surface
of the nanoparticles utilized for capping and stabilizing AgNPs might be responsible for
the DLS’s average size being greater than that generated by TEM [77]. AgNPs synthesized
by B. subtilis (P3) had an average particle size of 805 nm [43], and this significant disparity
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could be related to sample variability and synthesis method. A DLS study of silver oxide
(Ag2O) nanoparticles produced by B. paramycoides revealed that the majority of the particles
are between 50 and 150 nm in size [74]. According to Saied et al. [34], the average diameter
of the AgNPs generated by Bacillus sp. was determined to be 55.8 nm for a volume.
According to Pavan et al. [78], the DLS examination of the produced AgNPs revealed that
the average particle size was 100 nm, and the polydispersity index was 0.224. The average
diameter of total particles and stability of green synthesized AgNPs by S. pachycarpa extract
were reported as 107–150 nm [79]. Nanoparticles with biomolecules attached to their
surfaces offer steric stability and stop the particles from aggregation. The osmotic repulsive
force improves when the concentration of adsorbed biomolecules increases, because this
enhances the stability of nanostructured particles [80,81].
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3.4. Effect of the AgNPs on the Vero Cells’ Viability Using MTT Assay

The in vitro cytotoxic effects of biosynthesized AgNPs were evaluated against a Vero
normal cell line and the percentage of cell inhibition was confirmed by MTT assay. The MTT
in Vero cells treated with AgNPs at different concentrations (15.62–1000 µg/mL) for 24 h is
illustrated in Figure 7. The viability of Vero cells decreased when the AgNPs’ concentration
increased. The cell viability was recorded as 99.3% at 15.62 µg/mL of AgNPs. However,
cell viability was substantially decreased to 10% at 1000 µg/mL of AgNPs, with a toxicity
percent of 0.7% and 90% at 15.62 and 1000 µg/mL, respectively, for Vero cells. A substantial
inhibition of Vero cell viability by the AgNPs was detected with an IC50 of 155 µg/mL
concentrations, indicating cytotoxic effects of these nanoparticles. Similar results agree
with data reported by Mohamed et al. [82], who recorded that the normal Vero cell showed
100% viability at 15.62 µg/mL and viability decreased by increasing AgNPs’ concentration:
IC50 was recorded at 280 µg/mL. Generally, if the IC50 is ≥ 90 µg/mL, the material is
classified as non-cytotoxic [83]. Therefore, the biosynthesized AgNPs in this study are safe
for use.
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3.5. Antifungal Activity

In this study, the antifungal activity of AgNPs toward Aspergillus species was evaluated
using the agar well diffusion method (Figure 8). Results illustrated that biosynthesized
AgNPs exhibited promising antifungal activity against all tested fungal strains. AgNPs had
the ability to inhibit fungal growth of A. niger, A. terreus, A. flavus, and A. fumigatus
at concentrations of 500 µg/mL where inhibition zones were 16, 20, 26, and 19 mm,
respectively. Moreover, MICs of AgNPs against A. niger, A. terreus, A. flavus, and A.
fumigatus were determined as illustrated in Table 1 MIC results showed that A. flavus
was the most sensitive fungus to AgNPs, which inhibited growth at concentrations of
15.6 µg/mL, while for the other fungal species, inhibition of growth was observed at
125 µg/ mL for A. niger and 62.5 µg/mL for A. terreus and A. fumigatus. AgNPs in solution
at higher concentrations may be able to adhere to and saturate fungus hyphae, destroying
the fungus cells. Such an inhibitory effect can be attributed to Ag+ that primarily affects the
function of membrane-associated enzymes such as those found in the respiratory chain. Ag+

may also affect the expression of some microbial proteins and enzymes. Disruption of DNA
replication has also been documented. AgNPs can also interact with substrates through
a process known as competitive inhibition, inactivating the enzymes and preventing the
production of products required for cell activity. At 50 µg/mL nanoparticle concentrations,
the production of AgNPs by Bacillus MB353 also exhibited excellent antifungal efficacy
against Aspergillus niger, A. fumigatus, and F. soleni [84]. Elbahnasawy et al. [71] reported that
the biosynthesized AgNPs using endophytic Rothia endophytica have anticandidal activity
against C. albicans, where the MIC and MBC were 62.5 and 125 µg/mL. The antifungal
effectiveness against a well-known phytopathogen Colletotrichum falcatum was evaluated
by Ajaz et al. [44], where, at a concentration of 20 µg/mL, the ZV-AgNPs greatly inhibited
the fungal mycelia in vitro as compared to the untreated control. Particularly, AgNPs
prepared by a Penicillium chrysogenum and F. chlamydosporum cell-free culture filtrates
showed significant antifungal efficacy against the mycotoxigenic fungus A. flavus and A.
ochraceus at a concentration of 47–51 µg/mL [85]. Biogenic AgNPs from the extract of
Syzygium cumini leaves at 100 µg/mL show antifungal activity in both strains A. flavus
and A. parasiticus [86]. At quantities of 50–200 µg/mL, AgNPs produced by Penicillium
verrucosum inhibited the radial growth of F. chlamydosporum and A. flavus, reported by [56].
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Wang et al. [52] observed AgNPs produced by A. Sydowii that exhibited antifungal activity
against A. fumigatus, A. flavus, and A. terreus. Dashora et al. [87] observed significant
antifungal activity against A. alternate at 500 µg/mL of PL-AgNPs mediated by Polyalthia
longifolia leaf extract.
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Figure 8. Antifungal activity of AgNPs, AgNO3, and Nystatin (NS) at concentration 500 µg/mL
against A. niger, A. terreus, A. flavus, and A. fumigatus using agar well diffusion method.

Table 1. Inhibition zones and MICs of AgNPs against A. niger, A. terreus, A. flavus, and A. fumigatus.

AgNPs AgNO3 NS

A. niger IZ/mm 16 ND ** ND
MIC * 125 ND ND

A. terreus
IZ/mm 20 ND ND

MIC 62.5 ND ND

A. flavus IZ/mm 26 ND ND
MIC 15.62 ND ND

A. fumigatus IZ/mm 19 ND ND
MIC 62.5 ND ND

* MIC by µg/mL ** ND means no activity detected.

3.6. Ultrastructure Studies by TEM

Ultrathin sections of untreated (control) A. terrus (Figure 9A) and A. flavus (Figure 9C)
cells showed normal mycelia with a consistent layout and homogeneous cytoplasm; the
cell wall (CW) of the untreated hypha was fully integrated and undamaged. The cell
membrane (CM) was entirely connected to the cell wall and was smooth and wrinkle-free.
The cytoplasm was dense and uniform, and the intercellular septum (S) was healthy and
unbroken, with normal nucleus (N), nucleolus (Nu), and mitochondria (M) identified.
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Figure 9B,D show the influence of AgNPs on the cell structure of A. terrus and A. flavus,
respectively. To some extent, the cell wall’s integrity and homogeneity were lost; the cell
membrane had separated from the cell wall and had intruded into the cytoplasm. Other
modifications included a cytoplasm density decrease and vacuolization (V).
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Figure 9. TEM micrographs of A. terreus (control (A) and treated (B)) and A. flavus (control (C) and
treated (D)). CW, CM, N, and V mean cell wall, cell membrane, nucleus, and vacuole, respectively.
Scale bar = 500 nm.

Hyphal filaments in normal samples of A. terrus have a classical tubular structure
where various organelles, including cell wall and cell membrane, appear as well-established
and thick structures. In the treated group, using nanoparticles leads to shrinkage in
structure, affecting various organelles and causing enlargement of the volume of vacuoles,
which agreed with Al-Otibi et al. [88] who studied ultrastructure alteration in Bipolaris sp.
upon treatment with AgNPs. Furthermore, photomicrographs of ultrastructure sections of
the A. flavus normal group revealed the regular cellular organelles including nuclei, cell
wall, and cell membrane, while using AgNPs led to decreased cell size and deformation
of various organelles. This is in the same line as [89], who reported the beneficial effect of
colloidal AgNPs on pathogenic A. flavus. Our results on ultrastructure studies resembled
the findings of previous work [90], which imaged the damage to the integrity of the cell
wall and cytoplasmic membrane of Candida albicans through SEM and TEM studies.
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4. Conclusions

Green chemistry has been the subject of growing interest due to its being environmen-
tally safe, inexpensive, biocompatible, and that it avoids producing toxic byproducts. In
the current study, AgNPs were successfully biosynthesized using the CFE of B. thuringiensis
MAE 6. According to FTIR analyses, the generated AgNPs are capped and stabilized
with various functional groups. The biosynthesized AgNPs showed low cytotoxic activity
against Vero normal cell line, with an IC50 of 155 µg/mL. Moreover, AgNPs exhibited
superior performance in antifungal activities against four types of Aspergillus species caus-
ing Aspergillosis. Furthermore, an ultrastructure study confirmed the antifungal effect
of AgNPs, where the cell wall’s integrity and homogeneity were lost; the cell membrane
had separated from the cell wall and had intruded into the cytoplasm. Therefore, the
biosynthesized AgNPs using a CFE of B. thuringiensis can be used as a promising antifungal
agent against Aspergillus species.
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