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Abstract: Congenital disease, tumors, infections, and trauma are the main reasons for cranial bone
defects. Herein, poly (butylene succinate) (PB)/silicon nitride (Si3N4) nanocomposites (PSC) with
Si3N4 content of 15 w% (PSC15) and 30 w% (PSC30) were fabricated for cranial bone repair. Com-
pared with PB, the compressive strength, hydrophilicity, surface roughness, and protein absorption
of nanocomposites were increased with the increase in Si3N4 content (from 15 w% to 30 w%). Fur-
thermore, the cell adhesion, multiplication, and osteoblastic differentiation on PSC were significantly
enhanced with the Si3N4 content increasing in vitro. PSC30 exhibited optimized physicochemical
properties (compressive strength, surface roughness, hydrophilicity, and protein adsorption) and
cytocompatibility. The m-CT and histological results displayed that the new bone formation for
SPC30 obviously increased compared with PB, and PSC30 displayed proper degradability (75.3 w%
at 12 weeks) and was gradually replaced by new bone tissue in vivo. The addition of Si3N4 into PB
not only optimized the surface performances of PSC but also improved the degradability of PSC,
which led to the release of Si ions and a weak alkaline environment that significantly promoted
cell response and tissue regeneration. In short, the enhancements of cellular responses and bone
regeneration of PSC30 were attributed to the synergism of the optimized surface performances and
slow release of Si ion, and PSC30 were better than PB. Accordingly, PSC30, with good biocompatibility
and degradability, displayed a promising and huge potential for cranial bone construction.

Keywords: nanocomposite; Si3N4; cellular response; degradability; bone regeneration

1. Introduction

Cranial bone constructs the neurocranium of the skull that forms a cavity and pro-
vides mechanical support to protect the brain [1]. Patients with craniofacial bone defects
caused by different disorders (e.g., trauma, infection, tumor resection, and congenital
malformation) suffer from problems with chewing, speech, and aesthetics [2]. Large cranial
defects (e.g., critical-size defects) lead to a large area of the unprotected brain experiencing
remarkable cosmetic deformity [3]. Reconstruction of the cranial defect (Cranioplasty) is
commonly carried out to restore the appearance in neurosurgical surgeries, and successful
reconstruction of the cranial defect is an integral step to restoring craniofacial function
and improving the quality of life [4]. Cranioplasty cosmetically reshapes the cranial defect
and provides a physical barrier for the protection of the cerebral structure [4]. Moreover,
cranioplasty serves as a treatment measure to control the changes in the brain’s blood flow,
cerebrospinal fluid, and metabolic requirements [5]. In the development of cranioplasty,
some biomaterials (e.g., autograft, allograft, and synthetic biomaterial) have been applied
to repair cranial defects [6]. Although autografts are still the standard for bone defect treat-
ment, the high incidence of the donor sites mobility and the limited volume of autografts
restrict the large area improvement of bone repair surgery [7]. Accordingly, current bioma-
terial technology develops advanced functional materials to replace autografts to construct
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cranial defects. Synthetic materials (metal, ceramic/cement, polymer, and composite) are
used for cranial bone construction thanks to the reduced risks of resorption, infection, and
reoperation compared with autografts [8].

Degradable polymers are widely applied for bone regeneration owing to good biocom-
patibility, degradability, mechanical properties, processability, and so on [9]. Poly(butylene
succinate) (PB) is a synthetic degradable polymer that exhibits excellent biocompatibil-
ity, remarkable toughness, and non-toxicity of degradable products [10]. PB is a semi-
crystalline polymer that exhibits high fracture energy and a slow degradation rate [11].
These preferable performances of PB make it a promising candidate for bone regeneration
applications [10,11]. However, the major shortcoming of PB is the hydrophobic surface
property because of very low surface wettability that causes poor interaction with bio-
logical fluids, which inhibits cell response [12]. Accordingly, the intrinsic hydrophobic
nature and biological inertness of PB may restrict or delay cell adhesion, growth, and bone
regeneration [13]. The enhancement of biological properties (e.g., wettability, degradability)
of PB for regenerative medicine application is still in development.

Human bone is a natural nanocomposite consisting of organic components (e.g., col-
lagen) and nano-inorganic minerals (e.g., calcium phosphate) that possesses fascinating
properties [14]. Inspired by the structure and composition of bone tissue, the design of nano
inorganic fillers/polymer composite by integrating the advantages of both organic and
inorganic phases can result in the development of high-performance nanocomposites for
bone regeneration application [15]. Compared with conventional microparticles, nanoparti-
cles with a large surface area can result in a close combination with a polymer matrix at
the interface, offering enhanced mechanical performances while maintaining the favorable
biocompatibility and osteoconductivity of the bioactive fillers, thereby improving protein
adsorption, cells adhesion, multiplication, and osteoblastic differentiation for bone regener-
ation [16]. Nanocomposites of bioactive nanomaterials (e.g., bioglass, calcium phosphate,
and apatite) and degradable polymers have been increasingly researched and developed
for bone repair due to their superior biocompatibility, osteoconductivity, and degradabil-
ity [17]. The bioactive nanocomposite is a promising class of advanced biomaterial with
great potential for bone regeneration thanks to the mimic of the structure/composition and
mechanical performances of natural bone tissue [18].

Silicon nitride (Si3N4) is a non-oxide ceramic and is regarded as a new biofunctional
material with high mechanical properties, good biocompatibility, and bioactivity, which
has been applied for bone repair for more than 10 years [19]. Si3N4 can be degradable in the
biological environment with the slow release of silicon (Si) ions, which boosts the osteoblast
response and bone regeneration [20]. In addition, the hydrophilic and negatively charged
surface of Si3N4 with the bioactive groups of hydroxyl (-OH) and amino (-NH2) can improve
the adsorption of proteins and further facilitate cell adhesion, thereby being applied as a
potential biomaterial for bone regeneration application [21]. Si3N4 remarkably boosted the
adhesion and multiplication of mesenchymal stem cells and improved alkaline phosphatase
activity, bone-related gene expression, and bone matrix protein formation [22]. Accordingly,
Si3N4 is a promising candidate for bone repair thanks to its favourable biocompatibility,
osteoconductivity, hydrophilicity, and other bio-properties.

Herein, PB/Si3N4 nanocomposites (PSC) with a Si3N4 content of 15 w% (PSC15) and
30 w% (PSC30) were fabricated through the solvent casting method, and porous PSC15 and
PSC30 were prepared by solvent casting/particle leaching method. The primary goal of
this paper was to produce a nanocomposite with good bioactivity and proper degradability
for skull defect repair. The effects of Si3N4 content on the compressive strength, surface
characteristics (e.g., topography, hydrophilicity, and protein adsorption), and degradability
of PSC were investigated. The in vitro cell response (e.g., attachment and osteoblastic
differentiation) to PSC was assessed, and the in vivo bone regeneration and degradability
potential of porous PSC were studied using the skull defect model of rabbits.
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2. Materials and Methods
2.1. Materials and Instruments

Poly (butylene succinate) and silicon nitride particles were separately purchased
from Anqing Hexing Chemical Co., Ltd., Anqing, Anhui Province, China and Shang-
hai Xiaohuang Nano Technology Co., Ltd., Shanghai, China. Bicinchoninic acid kit
(BCA), Bovine serum albumin (BSA), Fibronectin (Fn), Fluorescein isothiocyanate (FITC),
4,6-diamidino-2-phenylindole dihydrochloride (DAPI), and ALP staining kit (BCIP/NBT)
were purchased from Beyotime Biotech Co., Shanghai, China. Sodium dodecyl sulfate
(SDS), simulated body fluids (SBF, pH = 7.4), and glycine were purchased from Aladdin
Biochemical Technology Co., Ltd., Shanghai, China. α-MEM was purchased from Gibco,
Thermo Fisher Scientific, Waltham, MA, USA. Fetal bovine serum was purchased from
Hyclone, Australia. Penicillin/streptomycin (P/S), Glutaraldehyde, and Nonidet P-40
(NP-40) were purchased from Sigma, Life Technology, St. Louis, MO, USA. Cell Count-
ing Kit-8 (CCK-8) and p-nitrophenyl phosphate (pNPP) were separately purchased from
Sigma-Aldrich and Sangon, Shanghai, China. ARS solution and cetylpyridinium chloride
solution were purchased from Servicebio, Wuhan, Hubei Province, China. Trizol reagent
was purchased from Life Technologies, Burlington, MA, USA. The samples were charac-
terized with scanning electron microscopy (SEM) with energy dispersive spectrometry
(EDS) (S-4800, Hitachi, Tokyo, Japan), X-ray diffraction (XRD; D8, Bruker, Karlsruhe, Ger-
man), and a Fourier transform infrared spectrometer (FTIR; Nicolet is50, Thermo Fisher
Scientific, Waltham, MA, USA). Universal material machine (E44.304, MTS Co., Shenzhen,
Guangdong Province, China). Laser confocal 3D microscope (LCM; VK-X 110, Keyence Co.,
Osaka, Japan) and Contact angle measurement (CAM; JC2000D1, Shanghai Zhongchen
Digital Technique Apparatus Co., Shanghai, China).

2.2. Preparation and Characterization of Composites

The dense samples (PB, PSC15 and PSC30) were fabricated by solvent casting. In a
few words, PB particles (10 g) were dissolved in Chloroform (10 mL) under stirring to
prepare the PB solution. The Si3N4 powders with 0 w% (PB), 15 w% (PSC15), and 30 w%
(PSC30) in the composites were then added into PB solution with continuous stirring for
6 h at room temperature for uniform dispersion. The mixture was then cast into molds
(Φ6 × 6 mm for compressive strength testing and Φ12 × 2 mm for another testing) and
dried in a ventilation hood for 24 h to evaporate the solvent.

The dense samples of (PB, PSC15, and PSC30) were characterized with SEM, EDS,
XRD, and FTIR. The compressive strength of specimens was performed with a universal
material machine. The surface roughness (Ra) and water contact angle of the samples were
characterized by LCM and CAM, respectively. For the protein adsorption, the samples were
placed into 24-well plates, and then the BSA (10 mg/mL) and Fn (25 µg/mL) solutions
were added to the plates, respectively. After incubating at 37 ◦C for 5 h, the samples were
extracted, and the non-absorbed proteins on the samples were removed by washing with
phosphate-buffered solution (PBS, TBD, China) twice. After that, the adsorbed proteins
were released by adding 1 mL SDS solution, and the protein contents were tested using the
BCA assay kit.

2.3. Si ion Release and pH Value Variation after Samples Soaked in SBF

The samples were immersed in simulated body fluids (SBF, pH = 7.4, Shanghai Yuanye
Biotechnology Co., Ltd., Shanghai, China). At 1 d, 3 d, 7 d, 14 d, 21 d, and 28 d, the
solution was collected, and the concentrations of Si ions in SBF were tested by Inductivity
Coupled Plasma (ICP-OES; Agilent IC, Santa Clara, CA, USA). The release of Si ions from
the specimens was also determined. Meanwhile, the pH variation of the solution during
the whole period was monitored using a pH meter.
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2.4. Morphology, Porosity, and Water Absorption and Degradation In Vitro

The porous samples of PB, PSC15, and PSC30 were fabricated with solvent cast-
ing/particulate leaching. After different amounts of Si3N4 were uniformly dispersed into
the PB solution, NaCl particles with sizes of approximately 300 µm were added into the
PB solution and stirred for 10 min. Subsequently, the PB solution with NaCl was cast
into the molds (Φ6 × 6 mm and Φ6 × 2 mm) and air-dried overnight. After evaporation,
the samples were immersed in water for 2 days to leach NaCl particles, and the water
was refreshed every 6 h. The samples were air-dried for 2 days to remove residual water.
The morphology of porous samples was observed by SEM. The porosity of samples was
determined with the ethanol substitution method according to the following formula:

Porosity = (V − Ve)/(V0) × 100%,

where V0 represents the total volume of samples, and Ve represents the volume of samples
immersed in ethanol.

The weight of samples immersed in water for 24 h (Mw) and the weight of dry samples
(Md) were measured. The water absorption was obtained according to the formula:

Water absorption = (Mw − Md)/Md × 100%.

To assess the in vitro degradability of the porous samples, the porous samples (size
of Φ12 × 2 mm) were weighed (Wd) and then immersed into PBS solution (at 37 ◦C and
pH 7.4) with a constant shaking speed of 60 rpm/min in an orbital shaker for various time.
The samples were taken out, rinsed with water, and dried at 37 ◦C. Finally, the samples
were weighed (Wt). The weight loss was obtained according to the formula:

Weight loss = (Wd − Wt)/(Wd) × 100%.

2.5. Cellular Response to Samples
2.5.1. Cell Culture

The rat bone marrow mesenchymal stem (RBMS) cells were separated from the femur
bone marrow of Sprague Dawley rats, the cells at passages 3–5 were cultured in α-MEM
supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin in a humidified
atmosphere of 5% CO2 at 37 ◦C, and the medium was replaced every 2 days.

2.5.2. Cell Morphology

The samples were sterilized with 75% ethanol and UV radiation and then placed in
24-well plates. The cells with a density of 5 × 104 cells/well were cultured on different
samples. After incubating for 1 d and 3 d, the medium was removed, and the samples
were washed with PBS (3 times) and fixed with glutaraldehyde solution (0.25%) for 2 h.
Then, the fixed cells were rinsed with PBS (3 times) and dehydrated by ethanol solution
with various concentrations of 10 v%, 30 v%, 50 v%, 70 v%, 85 v%, 90 v%, and 100 v%
for 15 min. The cell morphology was observed with SEM. Similarly, after fixation with
glutaraldehyde solution (0.25%) for 2 h, the samples were gently rinsed with PBS (3 times).
Subsequently, Fluorescein isothiocyanate (FITC, 400 µL) was added to stain the F-actin ring
of cells for 40 min under dark conditions and rinsed with PBS 3 times. Afterwards, the
nuclei of cells were stained with 4,6-diamidino-2-phenylindole dihydrochloride (DAPI,
400 µL) for 15 min and rinsed with PBS 3 times. In this way, the F-actin rings were stained
green, and the nuclei were stained blue. The cell morphology was observed with confocal
laser scanning microscopy (CLSM; Nikon A1R, Nikon Co., Tokyo, Japan).

2.5.3. Cell Attachment and Multiplication

The attachment and multiplication of RBMS cells on different samples were investi-
gated with a CCK-8 assay. After culturing for 6 h and 12 h, the specimens were transferred
into a 24-well plate. In total, 400 µL of cell medium containing CCK-8 solution (40 µL)
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were added and incubated for 6 h. Subsequently, the supernatant (100 µL) was transferred
into a 96-well plate, and the optical density (OD) value was measured at 450 nm with a
microplate reader (MR, 384 SpectraMax, Molecular Devices, Silicon Valley, CA, USA). The
OD value of the blank (without samples) was used as a control, and the cell adhesion rate
was calculated according to the formula:

Cell adhesion ratio = ODs/ODb × 100%,

where ODs and ODb represent the OD values of cells on the samples and blank, respectively.
Similarly, at 1 d, 3 d, and 7 d after culturing, the cell multiplication was determined by
measuring the OD value of cells on different samples at 450 nm with MR.

2.5.4. ALP/ARS Staining and Quantitative Analysis

The samples were immersed in α-MEM in a humidified atmosphere (at 37 ◦C) of 5 %
CO2 for 24 h to obtain the extract. ALP/ARS staining was applied to evaluate the effects of
the extract on the osteogenic differentiation of the cells. The ALP activity was evaluated by
ALP staining and quantification of ALP. At 7 d and 14 d after culturing, the cells were lysed
with NP-40 (1%) for 1 h and incubated with pNPP containing MgCl2·6H2O (1 mmol/L) and
glycine (0.1 g/mL) for 2 h. Subsequently, the reaction was terminated by the addition of
NaOH solution (0.2 mol/L). The OD value was measured at 405 nm with MR, and the total
protein quantity was tested with the BCA kit. The ALP activity was calculated by dividing
the measured absorbance by the total protein amount. After being cultured for 14 days, the
cells were fixed with 0.25% glutaraldehyde solution for 20 min and stained with BCIP/NBT
kit in the dark for 2 h. The reaction was terminated by H2O, and the stained samples
were observed with optical microscopy. The mineralization of the extracellular matrix of
cells was evaluated by ARS staining and quantification of calcium nodules. After being
cultured for 14 d and 21 d, the cells were immersed in a cetylpyridinium chloride solution
for 1 h to extract calcium. Subsequently, the quantitative results of calcium content were
obtained by measuring the OD values for different samples at 620 nm with MR. At 21 d
after culturing, the cells were fixed with 0.25% glutaraldehyde solution for 20 min and
subsequently stained with ARS solution (2%) for 1 h. Then, the stained cells were washed
with PBS and observed by optical microscope.

2.5.5. Osteogenic-Related Gene Expressions

After the cells were cultured for 4 d, 7 d, and 14 d, the osteogenic gene expression
was tested with RT-PCR. Trizol reagent was applied to extract the total RNA of the cells,
and the complementary DNA (cNDA) was obtained by reversely transcribing RNA. Using
the cDNA as a template, the expression of osteogenic genes (osteocalcin: OCN, alka-
line phosphatase: ALP, Osteopontin: OPN, and runt-associated transcription factor 2:
Runx2) was measured with the SYBR® Premix Ex TaqTM system (Takara, Kyoto, Japan).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a housekeeping gene
for normalization. Table 1 lists the forward and reverse primers.

Table 1. Primer sequences.

Gene Primers Sequence (F Was Forward, R Was Reverse)

GAPDH F: CCTGCACCACCAACTGCTTA
R: GGCCATCCACAGTCTTCTGAG

ALP F: GGATCAAAGCAGCATCTTACCAG
R: GCTTTCCCATCTTCCGACACT

OPN F: GTCCCTTGCCCTGACTACTCT
R: GACATCTTTTGCAAACCGTGT

OCN F: CAGACAAGTCCCACACAGCA
R: CCAGCAGAGTGAGCAGAGAG

Runx2 F: ATCCAGCCACCTTCACTTACACC
R: GGGACCATTGGGAACTGATAGG
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2.6. Implantation of Samples In Vivo
2.6.1. Animal Surgical Procedures

The effects of porous composites on new bone formation in vivo were determined
using the rabbit skull defect model. The surgical procedures were permitted by the Animal
Experiment Ethics Committee (the project identification code: TJAB03222301) of Shanghai
East Hospital, School of Medicine, Tongji University. The 12 New Zealand white rabbits
(around 3 kg, 8 months old) were randomly divided into 2 groups (4 w and 12 w). Pen-
tobarbital sodium solution (3%) was used to anesthetize the rabbits by ear vein injection.
The skin was sterilized with alcohol, and the cranial bone was exposed by separating
the skin and cranial periosteum. Two bone defects (6 mm in diameter) were made on
the bilateral sides of the rabbit skull, and PB and PSC30 were implanted into the left and
right bone defects, respectively. At 4 w and 12 w after surgery, the rabbits were sacrificed
with pentobarbital sodium solution (overdose) and the defective bone of the skulls was
harvested and then fixed in phosphate-buffered formalin (10%).

2.6.2. M-CT Images Analysis

The new bone formation for specimens was observed and imaged with microcom-
puted tomography (m-CT, SkyScan 1272, Bruker, Madison, WI, USA) under 80 KV with
a resolution of 5 µm, and the 3D images were reconstructed. Moreover, the bone re-
generation:bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), trabecular
number (Tb.N), and bone mineral density (BMD) were quantified by CT Analyzer (SkyScan
software, CTVOX 2.1.0, Bruker, Madison, WI, USA).

2.6.3. Histological Images Analysis

After decalcifying with 10% EDTA solution for 8 w, the samples were embedded in
paraffin, and histological sections with a thickness of 5 µm were obtained. Subsequently,
the histological sections of H&E staining were prepared according to the standard protocol.
Three microscope images were obtained with microscopy from three random areas for the
sample and then evaluated with an Image-Pro Plus. The percentage of the newly formed bone
area was determined by testing the number of pixels labeled through histological images.
Quantitative analysis of the ratios of new bone and residual material was performed using
histological images through Image-Pro Plus, Media Cybernetics, Inc., Rockville, MD, USA.

2.7. Statistical Analysis

Three specimens were utilized in all experiments, and the data were presented as
mean ± standard deviation. Statistical significance was performed by applying one-way
analysis of variance with Tukey’s Post Hoc test; p < 0.05 was regarded as statistically
significant. The notation “*” denotes p < 0.05.

3. Results
3.1. Characterization of Samples

The SEM photos of dense samples are revealed in Figure 1. Under low magnification,
PB showed a flat surface, while PSC15 and PSC30 exhibited rough surfaces. Under high
magnification, PB also showed a flat surface, while Si3N4 particles were observed on the
surface of PSC15 and PSC30. The Si3N4 particles (size of about 100 nm) were randomly
distributed on PSC15 and PSC30, and the Si3N4 particles on PSC30 were more abundant
than on PSC15.
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Figure 1. SEM photos of PB (a–c), PSC15 (d–f), and PSC30 (g–i) under various magnifications.

Figure 2a displays the XRD of samples. The diffraction peaks at 19.8◦, 23.1◦, and 29◦

were the peaks of PB, which were observed on both PSC15 and PSC30 [23]. No obvious
peaks were observed in Si3N4, PSC15, and PSC30, indicating that Si3N4 exhibited an
amorphous phase without crystalline peaks. Figure 2b illustrates the FTIR of the samples.
For PB, the peak at 2980 cm−1 was the stretching vibration of methylene (-CH2-). The
peak at 1718–1731 cm−1 was the carbonyl (-C=O), and the peak at 1363–1386 cm−1 was the
aliphatic group (-C-O-) [24]. For Si3N4, the peaks at 3432 cm−1 and 1079 cm−1 were the
amide bond (-N-H), and the peak at 973 cm−1 was the stretching vibration of the silicon
nitrogen bond (Si-N) [25]. The peaks of PB and Si3N4 could be found in PSC15 and PSC30.
Figure 2c–e revealed the EDS spectra of the samples. The C and O elements were found in
PB, PSC15, and PSC30, while the Si element was seen in both PSC15 and PSC30.
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3.2. Physical and Chemical Properties of Samples

Figure 3a–c reveal the specimens’ compressive strength, surface roughness, and water
contact angle. The compressive strength (Figure 3a) of PB, PSC15, and PSC30 was 31 ± 2.0,
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43 ± 2.5, and 52 ± 3.0 MPa. The surface roughness (Figure 3b) of PB, PSC15, and PSC30
was 1.27 ± 0.10, 2.51 ± 0.10, and 3.07 ± 0.15 µm. The water contact angle (Figure 3c) of
PB, PSC15, and PSC30 was 84.5 ± 5◦, 72.60 ± 5◦, and 59.61 ± 4◦. Figure 3d reveals the
protein adsorption on specimens. The BSA adsorption amount for PB, PSC15, and PSC30
was 7.63 ± 1.5%, 19.38 ± 2.0%, and 34.19 ± 2.5%. The Fn adsorption amount for PB, PSC15,
and PSC30 was 5.71 ± 1.5%, 17.64 ± 2.0%, and 27.08 ± 2.5%.
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Figure 3. Compressive strength (a), surface roughness (b), water contact angle (c), and protein
adsorption (d) of specimens, and release of Si ion (e) and pH change (f) after the samples immersed
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Figure 3e shows the release of Si ions from PSC15 and PSC30 into SBF after immersion
for various times. The Si ions exhibited a rapid release at the early stage of immersion
(within 5 d) while a slow release at the middle and late stages of immersion (from 6 d to
14 d). At 14 days, the Si ion concentrations for PSC15 and PSC30 were 0.863 mg/L and
1.572 mg/L. Figure 3f shows the pH changes after the specimens were immersed in SBF
for various times. The pH values for PSC15 and PSC30 slowly increased with time. At
14 d after soaking, the pH values for PSC15 and PSC30 were 7.78 and 7.95, respectively.
However, the pH values for SBF slightly decreased with time. At 14 d after, the pH value
for PB was 7.13.

3.3. Characterization of Porous Specimens

Figure 4a–c reveal the SEM photos of the porous specimens. The macropores of all
samples showed irregular morphology with pore sizes of approximately 300 µm. The
porosity (Figure 4d) of PB, PSC15, and PSC30 was 63.2%, 65.9%, and 68%. Figure 4e
displays the water absorption of the samples after they were immersed in water for 6 h.
The water absorption for PB, PSC15, and PSC30 was 234.8%, 348.3%, and 379.3%. Figure 4f
shows the weight loss of PB, PSC15, and PSC30 after being immersed in PBS for various
times. At each time point, the weight loss for PSC30 was higher than PSC15, and PSC15
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was higher than PB. At 84 d, the weight loss for PB, PSC15, and PSC30 was 20.58 w%,
47.63 w%, and 67.56 w%.
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3.4. Cell Adhesion, Multiplication, and Morphology

Figure 5 demonstrates the CLSM images of the cells on the specimens at different
culturing times. The amounts of cells on PSC15 and PSC30 increased with the culturing
time, while there was no obvious increase for PB. Further, the number of cells on PSC30
was higher than PSC15, and PSC15 was higher than PB.
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Figure 5. CLSM photos of RBMS cells cultured on PB (a,d), PSC15 (b,e), and PSC30 (c,f) for 1 d
(a–c) and 3 d (d–f).

Figure 6a–f show the SEM photos of cells on the specimens after culturing for various
times. On days 1 and 3, only a few cells were observed on PB, while some cells with
filopodia spread on the surface of PSC15 and PSC30. More cells with pseudopodia spread
better on PSC30 than on PSC15. The number of cells on PSC15 and PSC30 increased with
time but there was only a slight increase for PB. Figure 6g reveals the cell adhesion ratio
for specimens at various times. At 6 and 12 h, the cell adhesion for PSC15 and PSC30
remarkably increased with time, but there was only a slight increase for PB. Cell adhesion
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for PSC30 was higher than PSC15, and PSC15 was higher than PB. Figure 6h displays the
optical density (OD) value (cell multiplication) of cells on specimens at 1 d, 3 d, and 7 d.
The OD values for PB showed a little increase, while the OD values for PSC30 and PSC15
remarkably increased with time, indicating good cytocompatibility. At 3 and 7 days, the
OD values for PSC30 were higher than PSC15, and PSC15 were higher than PB.
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Figure 6. SEM photos of RBMS cells (red areas) cultured on PB (a,d), PSC15 (b,e), and PSC30 (c,f) for
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various times (n = 3, * represents p < 0.05, compared with PB).

3.5. Osteoblastic Differentiation
3.5.1. ALP Activity and Calcium Nodules

Figure 7a–c display the photos of the ALP staining 14 days after the cells were cultured
on the samples. The intensity of ALP staining was the strongest for PSC30, followed by
PSC15, and the weakest for PB. Figure 7d–f display the photos of ARS staining at 21 d after
culturing. The intensity of ARS staining was the strongest for PSC30, followed by PSC15,
and the weakest for PB. Figure 7g displays the quantitative results of the ALP activity of
cells after culturing for various times. At 7 d and 14 d, the ALP activity for PSC30 was
higher than PSC15 and PB and the lowest for PB. Figure 7 h displays the quantitative
results of the calcium content of cells after culturing for various times. At 14 d and 21 d,
the calcium content for PSC30 was higher than PSC15 and PB and the lowest for PB.

3.5.2. Expression of Osteoblastic Genes

Figure 8 reveals the expression of osteoblastic differentiation genes (Runx2, ALP, OCN,
and OPN) of cells at various times after culturing. The osteoblastic differentiation gene
expressions for PSC15 and PSC30 increased with the cultured time but showed a slight
change for PB. At 7 d and 14 d, the gene expressions were the highest for PSC30, followed
by PSC15, and the lowest for PB.
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3.6. Bone Regeneration and Material Degradation In Vivo
3.6.1. M-CT Valuation

Figure 9a,b shows the macroscopic observation of the samples after being implanted
into femur defects of rabbits for 4 w and 12 w. Figure 9c,d displays the m-CT reconstructed
images of the samples. At 4 w after surgery, only a small amount of new bone tissue formed
along the edge of PB, while some new bone tissues formed for PSC30. At 12 w after surgery,
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some bone tissues were seen to grow into porous PB while many new bone tissues grew
into porous PSC30 and completely repaired the bone defects.
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Figure 9. Macroscopic observation ((a,b), scale = 10 mm) and m-CT images (c,d) of PB and PSC30
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Figure 9e–h shows the quantitative results of new bone formation (BV/TV, BMD,
Tb.Th, and Tb.N) for the samples at various times. The new bone formation for both PB
and PSC30 increased with time, and that for PSC30 was remarkably higher than PB at both
4 w and 12 w.

3.6.2. Histological Evaluation

Figure 10a–f reveal the H&E staining images of new bone formation for the various
samples at 4 w and 12 w after surgery. At 4 w, only a small amount of new bone tissues
was seen in the bone defects for PB, while obvious new bone tissues were found for
PSC30. At 12 w, the new bone tissues for PB slightly increased compared with 4 w, and the
materials in the bone defects slightly reduced accordingly over time. Nevertheless, many
new bone tissues were seen for PSC30, and the materials were reduced. Figure 10i,j shows
the quantitative results of the new bone area and residual materials at 4 w and 12 w after
surgery. The new bone area for PSC30 remarkably increased with time while the residual
materials reduced accordingly. In addition, the new bone area for PB slowly increased with
time, and the residual materials slowly reduced accordingly. The new bone area for PSC30
was remarkably higher than PB, and the residual materials for PSC30 were remarkably
lower than PB.
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Figure 10. Histological images for PB (a–d) and PSC30 (e–h) after surgery for 4 w (a,b,e,f) and 12 w
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p < 0.05, compared with PB).

4. Discussion

Interest in the application of nanocomposites with regenerative potential to repair
damaged bone tissue has increased because nanocomposites containing degradable poly-
mers and nano bioactive fillers are regarded as a mimic strategy for bone regeneration [26].
Herein, a bioactive nanocomposite was prepared for the construction of cranial bone defects
by incorporating Si3N4 nanoparticles into the PB matrix. Because the Si3N4 nanoparticles
reinforced PB, the compressive strength of PB, PSC15, and PSC30 gradually increased,
demonstrating that Si3N4 content played a critical role in enhancing mechanical properties.
Surface character is considered one of the important factors regulating cell behaviors, which
exhibits significant effects on the bone–tissue response [27]. Compared to PB with flat
surfaces, both PSC15 and PSC30 displayed rough surfaces thanks to the Si3N4 nanoparticles
exposed on the surface. The surface roughness of PB, PSC15, and PSC30 gradually in-
creased, demonstrating that the Si3N4 content played a critical role in the increase in surface
roughness. Hydrophilicity is one of the important surface characteristics that affect cellular
behaviors. However, the hydrophilic surface tends to improve cell adhesion and spreading
on biomaterials compared to a hydrophobic surface [28]. Here, the hydrophilicity of PB,
PSC15, and PSC30 gradually increased, revealing that the Si3N4 content played a critical
role in improving hydrophilicity. Accordingly, compared with PB, the surface properties
(hydrophilicity and roughness) of PSC increased, and PSC30 exhibited optimization thanks
to the high content of Si3N4.

The initial biological response to the biomaterial is protein absorption, which has been
demonstrated to be a regulator between the biomaterials and cells [29]. Protein adsorption
is generally affected by surface performances, especially the hydrophilicity and topography
of biomaterials. Herein, compared with PB, the adsorption of proteins for PSC15 and PSC30
was remarkably enhanced thanks to the presence of Si3N4 nanoparticles. The improvement
of protein adsorption for PSC15 and PSC30 was ascribed to the hydrophilicity/surface
energy and topography/roughness because the hydrophilic groups (-OH, -NH2) of Si3N4
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and rough surface of PSC with the high surface area could provide more sites for protein
binding, leading to an increase in protein adsorption. Apart from the surface properties,
the release of Si ions was key to stimulating cell multiplication and osteoblastic differen-
tiation [30]; herein, the gradual release of Si ions from both PSC15 and PSC30 into PBS
was ascribed to the degradation of Si3N4. The pH value for PB slightly reduced with time
due to the production of acid produced by the degradation of PB, while the pH values for
PSC15 and PSC30 slowly increased, causing a weak alkaline environment thanks to the pro-
duction of an alkaline product by degradation of Si3N4. A weak alkaline (e.g., pH 7.4~8.0)
micro-environment was demonstrated to be useful for osteoblastic differentiation and bone
regeneration [31].

Cellular adhesion is the first response in the interaction between cells and biomaterials,
which affects subsequent cell multiplication, and further affects osteoblastic differentiation
and bone regeneration [32]. Herein, cell adhesion, spreading, and multiplication on PB,
PSC15, and PSC30 gradually increased, indicating that the content of Si3N4 in the compos-
ites played a key role in enhancing cell adhesion and multiplication. The ALP/ARS staining
and ALP activity/calcium (nodule) content of the cells cultured on the samples can be used
to assess osteogenic differentiation [33]. The staining intensity of ALP/ARS for PB, PSC15,
and PSC30 gradually became strong. Moreover, the ALP activity/calcium content for PB,
PSC15, and PSC30 gradually increased, indicating that osteogenic differentiation improved
with the increase in Si3N4 content. Further, the expression of osteogenic-associated genes of
cells on the samples could be applied to evaluate osteogenic differentiation [34]. The gene
expression of PB, PSC15, and PSC30 gradually increased, indicating that the osteogenic
differentiation increased with the increase in the Si3N4 content. Accordingly, the content of
Si3N4 in the composites played a key role in enhancing osteogenic differentiation.

Porous composites for bone regeneration should have the following characteristics:
porous structures to promote cell–biomaterial interaction, cell adhesion, and growth; inter-
connective porous structures to boost transport of nutrients, and mass and regulated factors
to allow cell multiplication, survival, and osteoblastic differentiation; pore size is essential
for bone regeneration because bone growth requires an optimized pore size of approxi-
mately 300 µm [35]. Accordingly, the strategy of a combination of degradable polymer and
bioactive material to create porous composites with appropriate porosity is a promising
method for bone construction [35]. In this study, porous composites were prepared, and
PSC30 exhibited a porous structure with a porosity of approximately 70%. Accordingly,
PSC30 was used to construct cranial bone defects in rabbits. A porous composite acts as a
temporary template for cell adhesion, multiplication, ensuing osteoblastic differentiation,
and eventually resulting in bone regeneration [36]. Consequently, appropriate degradabil-
ity of the biomaterial is an important factor that affects bone regeneration, and a degradable
biomaterial can gradually disappear with time in vivo, thereby producing space for bone
tissue ingrowth simultaneously [37]. Herein, the weight loss of PB, PSC15, and PSC30
in PBS increased with soaking time, indicating appropriate degradability. Moreover, the
weight loss of PB, PSC15, and PSC30 increased with increasing Si3N4 content, indicating
that the Si3N4 content had obvious effects on degradability. The degradation of Si3N4
particles on the macroporous walls created more micropores, which assisted the diffusion
of the medium into the porous composites. This diffusion further facilitated the hydrolytic
degradation of PB and the dissolution of Si3N4. Accordingly, the incorporation of Si3N4
particles into the composites increased the degradation rate of the porous composites. The
goal of a degradable biomaterial is to boost tissue regeneration at the bone defect and
gradually degrade in situ, eventually replacing new bone tissue [38]. The in vivo bone
regenerative capability was investigated by implanting the porous composites into rabbit
skull defects. The m-CT and histological results displayed that PSC30 gradually degraded
and was replaced by newly formed bone tissue, while PB showed slow degradation and
thus limited bone regeneration. Compared with PB, PSC30 induced rapid degradation
and bone formation. Further, as shown in the histological photos, the porous composite
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in vivo did not lead to any adverse reactions, indicating good long-term biocompatibility.
Collectively, the porous composites exhibited promising bone formation potential.

Cell behaviors and bone tissue regeneration are closely correlative to the surface
properties of biomaterials, and the capability to regulate surface characteristics (e.g., compo-
sition, topography, roughness, and hydrophilicity) can offer positive effects on responses of
cells/tissues [39]. Herein, the surface properties (roughness, hydrophilicity, surface energy,
and protein adsorption) of PB, PSC15, and PSC30 gradually increased with the increasing
Si3N4 content, indicating that the Si3N4 content played a pivotal role in the enhancement of
surface performances. Moreover, cell adhesion, multiplication, osteoblastic differentiation,
and new bone formation for PB and PSC30 remarkably increased. Consequently, the signif-
icant improvement of cell response and bone regeneration for PSC30 was ascribed to the
enhanced surface performance. Previous studies show that Si ions exhibit significant effects
on boosting the multiplication and differentiation of osteoblasts [40]. Moreover, Si ions
effectively enhance the gene expression related to the synthesis of the bone matrix, which
is essential for bone tissue regeneration [41]. Accordingly, the strong osteogenic outcome
induced by PSC30 was attributed to the high content of Si3N4, whose chemical composition
offered the dissolution products of Si ions for bone regeneration in vivo [42]. Given the
special function of Si ions, the degradation of PSC30 led to Si ion release, which resulted in
the local pH in a physiological range for cell multiplication, and bone regeneration [43].
Consequently, incorporating Si3N4 into PB improved the surface properties of PSC, which
remarkably stimulated the cellular responses in vitro and promoted new bone regeneration
in vivo. Further, the degradability of PSC30 caused a slow release of Si ions into the local
microenvironment that remarkably stimulated the responses of osteoblasts/bone tissues.
The incorporation of bioactive nanoparticles into the degradable polymer created a bioac-
tive nanocomposite that has the ability to boost cell attachment, multiplication, and new
bone growth along with proper degradability. In conclusion, PSC30 with high content of
Si3N4 exhibited good biocompatibility and stimulated the responses of cells/bone tissues,
which were attributed to the synergism of both optimized surface properties and slow
release of Si ions. PSC30 would be a promising candidate and have great potential for
constructing cranial bone defects.

5. Conclusions

A bioactive nanocomposite of PSC was created by the addition of Si3N4 nanoparticles
into PB. In comparison with PB, the incorporation of Si3N4 significantly enhanced the
compressive strength, surface hydrophilicity, roughness, and protein adsorption of PSC.
Furthermore, the addition of Si3N4 accelerated the degradation of PSC, which led to the
slow release of Si ions. Further, the cell response (adhesion, multiplication, and osteoblastic
differentiation) to PSC was remarkably enhanced with the increase in Si3N4 content, and
PSC30 displayed the highest cell response. Further, PSC30 significantly promoted bone
regeneration and gradually degraded in vivo. The high content of Si3N4 in PSC led to more
positive effects on in vitro cellular response and in vivo bone regeneration. Accordingly,
the incorporation of Si3N4 into PB created a bioactive nanocomposite that has the ability to
boost cell attachment, multiplication, and new bone growth along with proper degradability.
The enhancements of cell response/bone regeneration were ascribed to the synergism of
the enhanced surface performances and release of Si ions. Subsequently, PSC30 might be a
promising candidate and have great potential for the construction of cranial bone defects.
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