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Abstract: In the current study, prickly pear peel waste (PPPW) extract was used for the biosyn-
thesis of selenium nanoparticles through a green and eco-friendly method for the first time. The
biosynthesized SeNPs were characterized using UV-Vis, XRD, FTIR, TEM, SEM, EDX, and mapping.
Characterization results revealed that biosynthesized SeNPs were spherical, polydisperse, highly
crystalline, and had sizes in the range of 10–87.4 nm. Antibacterial, antifungal, and insecticidal
activities of biosynthesized SeNPs were evaluated. Results revealed that SeNPs exhibited promising
antibacterial against Gram negative (E. coli and P. aeruginosa) and Gram positive (B. subtilis and
S. aureus) bacteria where MICs were 125, 125, 62.5, and 15.62 µg/mL, respectively. Moreover, SeNPs
showed potential antifungal activity toward Candida albicans and Cryptococcus neoformans where MICs
were 3.9 and 7.81 µg/mL, respectively. Furthermore, tested crud extract and SeNPs severely induced
larvicidal activity for tested mosquitoes with LC50 and LC90 of 219.841, 950.087 mg/L and 75.411,
208.289 mg/L, respectively. The fecundity and hatchability of C. pipiens mosquito were significantly
decreased as applied concentrations increased either for the crude or the fabricated SeNPs extracts.
In conclusion, the biosynthesized SeNPs using prickly pear peel waste have antibacterial, antifungal,
and insecticidal activities, which can be used in biomedical and environmental applications.

Keywords: antibacterial activity; antifungal activity; insecticidal activity; selenium nanoparticles;
prickly pear peel

1. Introduction

Multi-drug resistant bacteria have emerged due to the overuse or misuse of antibiotics.
Additionally, the modern treatment of antibiotics in clinically prescribed dosages is not able
to manage these pathogens; therefore, preventive strategies are necessary [1]. Likewise,
fungi have become more resistant to common antifungal agents; thus, pathogenic fungi
invade more than 1.2 billion individuals throughout the world, with at least 1.7 million
deaths/year [2–4]. The mortality of fungal pathogens has become equal to drug-resistant
Mycobacterium tuberculosis, exceeding malaria [5]. The recent annual incidence of invasive
candidiasis was 750,000 cases, respectively [6].
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Furthermore, mosquitoes have caused many problems for humans; the most common
mosquito vector across tropical and subtropical regions is Culex sp. It is the main vector of
lymphatic filariasis, which has recently been reported to affect approximately 51 million
individuals globally [7]. Culex pipiens (L.) has worldwide distribution, resulting in many
pathogens [8,9]. Mosquito control is essential to prevent the spread of mosquito-borne
diseases and to improve the quality of breeding and public health. The basic strategy
for mosquito control involves using chemical insecticides, such as organophosphate and
organochlorine compounds. However, this has not been very successful due to ecological
and economic factors [10]. Recently, plant sources have become a promising alternative to
synthetic chemical agents for vector control [11].

Today’s antimicrobial materials utilized in clinical settings suffer from serious flaws,
such as poor antimicrobial activities, danger in microbial resistance, difficulties monitoring
and improving antibacterial functionalities, and trouble operating in a dynamic environ-
ment. Additionally, there is a significant chance that microbes will develop resistance to
traditional antibiotics. As a result, several antimicrobial protection strategies are needed.

Nanotechnology has the potential to revolutionize a wide array of applications in
the fields of catalysis, sensors, optoelectronics, drug delivery, antimicrobial agents, vec-
tor control, and parasitology [12–24]. Recent years have seen the rapid synthesis of
nanocrystals (Ag, Zn, Se, Au, and Cu) using biological (plants, fungi, algae, and bac-
teria) techniques [25–32]. These NPs are prepared in pure, non-toxic, and environmentally
friendly manners by utilizing high-energy renewable materials to support the safety and
reliability of the NP development processes [33–39]. Plant-fabricated NP development can
proceed more quickly since there is no need to maintain the exact conditions in media and
culture that are necessary for other biological entities [40–42]. In order to act as reductive
and stabilizing agents, co-factors, such as enzymes, terpenoids, flavonoids, and proteins
are included in plant extracts [43]. Green pathway NPs often have strong catalytic abilities
because of their high surface areas and capacities to boost reactivity by creating reactive-
oxygen species, which cause increased toxicity in bacteria cells and carcinomas. One of the
essential trace elements that mammals and higher animals need for appropriate cellular
function is selenium [44]. Due to its low toxicity and great stability, selenium Nano (SeNPs)
are now embraced by a large number of researchers and are suggested for use in a vari-
ety of scientific fields [45–47]. In a dose-dependent approach, SeNPs have demonstrated
antibacterial action against both conventional and antibiotic-resistant variants of Gram
negative and Gram positive bacteria [48]. Due to interactions between selenium nanoparti-
cles and various protein molecular structures, they have high adsorption and microbial
properties. Wadhwani et al. claimed that biologically-generated SeNPs are simpler, more
environmentally friendly, and economically feasible than alternative methods (chemically
and physically) [49]. Publications on biological methods used to generate SeNPs (using
plant cell parts, such dried leaves, seeds, and flowers) are available [48,50].

The main goal of the current study was to quickly create SeNPs from prickly pear
peel waste (PPPW) extract and assess their potential for use in a variety of applications,
including (i) antibacterial activity, (ii) antifungal activity, (iii) toxicity bioassay against
C. pipiens mosquito larvae, and (iv) its impact on the mosquito’s fecundity and ability to
hatch eggs.

2. Materials and Methods
2.1. Materials

The waste of prickly pear peel was collected from a marketplaces in Giza, Egypt.
Na2SeO3, nutrient agar, Muller Hinton agar, and potato dextrose agar media were pur-
chased from Sigma Aldrich, Darmstadt, Germany.
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2.2. Methods
2.2.1. Preparation of Prickly Pear Peel Waste (PPPW) Extract

The waste of prickly pear peel was gathered from marketplaces in Giza, Egypt. The
obtained samples were brought to the lab; processing started right away. For PPPW, no
disease signs were chosen, and they underwent two rounds of distilled water washing. The
peel was then broken up into small pieces (about 1 cm), placed in a 2 L Erlenmeyer flask
with 1000 mL of sterile distilled water, and blended for 3 min at 1000 rpm in a mixing bowl
(mixer). After filtering via Whatman No. one filter paper, the mixture was collected in a
purified bottle and preserved at 4 ◦C until it was used.

2.2.2. Biosynthesis of SeNPs

The purified PPPW extract was used to generate SeNPs. In a clean Erlenmeyer
flask, 10 mL of PPPW extract and 90 mL of 2 mM Na2SeO3 solution were combined to
make the appropriate reaction mixture. On the other hand, as a control, the identical
experimental setup containing 10 mL PPPW extract with 90 mL of distilled water was used.
For three hours in the dark, both flasks were incubated in the orbital shaker to produce a
homogenous solution. Afterward, dist. water and centrifuge were used to separate and
purify the produced SeNPs. For further analysis and bioactivity evaluation, the dried
SeNPs were stored at room temperature.

2.2.3. Characterization of SeNPs

The SeNPs were characterized using a range of instrumental analysis tools. Visual
inspection of SeNP formation throughout the incubation period was conducted using
variations in the solution color.

UV–Vis Spectroscopy

The UV-visible spectroscopy (JENWAY-6305 Spector, JENWAY, Staffordshire, UK) was
used to examine the optical properties of the SeNPs between 200 and 800 nm.

Fourier-Transform Infrared (FT-IR) Spectroscopy

The FT-IR spectra of the prepared sample were measured on a Spectrum Two-IR
Spectrometer (PerkinElmer Inc., Shelton, DC, USA). The records were conducted in the
range of 400–4000 cm−1 with a resolution of 4 cm−1 and 32 scans.

X-ray Diffraction (XRD) Spectroscopy

The XRD patterns of the generated SeNPs were examined using a Diano-X-ray diffrac-
tometer (Philips) equipped with a Cu-K source of radiation (λ = 0.15418 nm) active at 45 kV,
a generator (PW, 1930), and a goniometer (PW, 1820).

Transmission and Scanning Electron Microscopy

The TEM technique was used to determine the generated SeNPs sizes and morphology.
A 200 kV voltage was used, using the ultra-high resolution TEM (JEOL-2010, Akishima,
Tokyo). To make TEM grids, a drop of the particle solution was applied to a copper
grid with carbon coating and allowed to dry while illuminated. Moreover, SEM analysis
(SEM, ZEISS, EVO-MA10, Jena, Germany) was used to elucidate the surface morphology,
boundary size, and the distribution of the synthesized SeNPs. To study the elemental
composition, purity, simplicity, and the distribution of element shape-prepared SeNPs, the
EDX, BRUKER, Nano GmbH, D-12489, 410-M, Berlin, Germany, was employed.

2.2.4. Antimicrobial Activity

Antimicrobial activity of biosynthesized SeNPs was assessed using the agar well diffu-
sion technique against bacterial strains (Staphylococcus aureus ATCC 25923, Bacillus subtilis
ATCC605, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853), and unicellular
fungal strains (Candida albicans ATCC90028, Cryptococcus neoformans ATCC 14116). The bac-
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terial strains were cultured on nutrient broth media for 24 h at 37 ◦C. Bacterial suspensions
of 1.5 × 106 CFU/mL were separately prepared, seeded into Muller Hinton agar media, and
poured aseptically into sterilized petri plates. Moreover, 100 µL of SeNPs (2000 µg/mL),
PPPE, and standard antibiotic (Ampicillin/sulbactam) were added in agar well, and then
plates were put in the refrigerator for 2 h followed by incubation at 37 ◦C for 24 h. Fungal
strains were initially grown on PDA plates and incubated at 30 ◦C for 3–5 days. As well,
unicellular fungi suspensions were seeded separately; many wells (7 mm) were made,
and then 100 µL of SeNPs (2000 µg/mL), PPPE, and reference antifungal (amphotericin B)
were added. All PDA plates were incubated at 30 ◦C for 48 h and then the inhibition zone
diameter was measured. To determine the minimum inhibitory concentration, SeNPs were
prepared in different concentrations ranging from 2000 to 1.95 µg/mL, and then assessed
separately to detect MIC against selected bacterial and fungal strains [51,52].

2.2.5. Insecticidal Activity
Mosquito Colony

A mosquito colony of Culex pipiens was purchased from the Medical Entomology
Institute (Cairo, Egypt). Later, it was reared for many generations at the Insectary of
Medical Entomology, the Department of Zoology and Entomology, Faculty of Science,
Al-Azhar University, under optimum conditions

Larvicidal Activity

The larvicidal property of the PPPW extract and SeNPs was estimated against the C.
pipiens mosquito, according to WHO 2005. Around 25 larvae from the third instar of the
tested mosquito were picked up and placed in plastic cups (500 mL capacity) containing
250 mL tap water (249 mL of water and 1 mL of the tested concentration). The PPPW
extract was tested to compare results with others of nanoparticles with concentrations of
50, 100, 200, 400, and 800 mg/L. Synthesized SeNPs were added at serial concentrations of
25, 50, 100, 200, and 400 mg/L. Each concentration was tested in triplicates. The control
was tested alongside for both samples at the same conditions. Mortality percentages were
recorded 24 h post-test.

Fecundity and Hatchability

For each concentration, equal numbers of males and females succeeded to survive
and emerge from each treatment alongside the control were transferred to 30 × 30 × 30 cm
wooden cadges. Deposited eggs were collected from plastic cups three days post-feeding
daily. Fecundity was calculated by counting the total number of eggs laid divided by the
number of females that mated and survived until the end of the experiment.

The hatchability percentage was estimated according to the Hassan et al. [53] equation,

Hatchability% = A/B × 100

where A = Total No. of hatched eggs; B = Total No. of laid eggs.

2.2.6. Statistical Analysis

Descriptive statistics, including mean and standard error (SE), were calculated for each
treatment. The mean larval mortality data were subjected to probit analysis to calculate
the Chi-square value and LC50 and LC90 at 95% confidence limits. The one-way analysis
of variance, lower and upper confidence limits, and Chi-square values were conducted
using SPSS (ver. 25). The LSD post hoc test was used for pairwise comparisons. Na2SeO3
treatments revealed zero larval mortality. Data are presented as mean ± SE. The p value
was considered significant at <0.05.
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3. Results and Discussion
3.1. Biosynthesis and Characterization of SeNPs

Due to their unique uses in nanotechnology, materials obtained from plants are typ-
ically regarded as sustainable, environmentally friendly, and having economic worth.
The creation of nanoparticles has traditionally involved the use of chemical and physical
processes, but recently, biological processes have attracted a lot of attention [54]. The
interaction of the PPPW extract with selenite caused the solution to become reddish, in-
dicating the synthesis of SeNPs. This interaction demonstrated the ability of the PPPW
extract’s constituents to reduce the selenium ions and transform them into SeNPs. In order
to produce environmentally acceptable SeNPs, prickly pear peel extract was used as a
stabilizing and reductive agent. As indicated by a gradual change in the solution color
from pale-yellow to deep red, suggesting SeNPs biosynthesis, Na2SeO3 was bio-reduced to
SeNPs by employing PPPW (Figure 1). Citrus fruit extract was employed by Alvi et al. [55]
to create SeNPs. Comparable color changes from yellow to reddish served as evidence that
SeNPs had formed.
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3.1.1. UV–Vis Spectroscopy

The UV analysis of SeNPs produced by PPPW is shown in Figure 2A, and it exhibits
a prominent peak at 280 nm. Due to the SeNP formation surface plasmonic resonating
(SPR ) peak that may be shown as a broad emission spectrum in the range of wave-
length of 270–400 nm, the SeNP formation could be clearly validated using the UV–Vis
analysis [52,56,57]. In their UV–Vis spectra, SeNPs exhibit a noticeable peak at around
280 nm, which is attributed to spherical SeNPs [58,59]. The produced NPs are easy to make
and stable, and the green syntheses of SeNPs are simple and safe for the environment. Sele-
nium nanoparticles were synthesized by extracts of different plant parts [41,60]. The rarity
of using prickly pear peel extract in the preparation of SeNPs highlights the originality of
our study on SeNP biosynthesis from PPPW.

3.1.2. Fourier-Transform Infrared (FT-IR) Spectroscopy

Research using FT-IR spectroscopy was also conducted to confirm the potential role
of PPPW extract in SeNP production. FT-IR can identify the functional groups that are
present on the SeNPs surface by identifying the excitations of chemical bonds. Finding
conformational changes in the coordination identity of organic biomolecules on SeNPs sur-
faces is made easy by the chemical information obtained. Wave numbers at 3335.30 cm−1,
1593.55 cm−1, 1393.03 cm−1, 1040.94 cm−1, 615.40 cm−1, and 536.73 cm−1 represent the
capping agent from PPPW extract interacting with SeNPs (Figure 2B). The line in the
spectra at 3335.30 cm−1 corresponds to –O-H stretch vibrates, indicating that alcohol and
phenol groups are present in the PPPW extract [55]. The peak at 1593.55 cm−1, which
correlates with -N-C- and -C-C- stretching, indicates the presence of proteins. The -N-H
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stretch resonance seen in the am-ide bonds of the proteins was linked to the spectra at
1393.03 cm−1 in the spectrum. Proteins N-H and C-N (amines) have stretch vibrations that
were detected in their spectra at 1393.03 cm−1 and 1040.94 cm−1, respectively. Peaks at
615.40 cm−1 and 536.73 cm−1 in the FTIR portions of the SeNPs spectra were attributed
to the binding of SeNPs with PPPW extract-prepared biomaterials. According to FTIR
investigations, proteins and carbohydrates were shown to be the most prevalent substances
on the SeNPs surface. The differences in the peaks indicate that organic components in the
PPPW extract facilitated the synthesis of SeNPs during the reduction process effectively.
These components may also assist prevent SeNPs from aggregating and preserve their
long-term stability [13,55].
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3.1.3. X-ray Diffraction (XRD) Spectroscopy

Crystal structure and phase of the prepared SeNPs were analyzed using XRD analysis.
The XRD pattern of the synthesized SeNPs is presented in Figure 3. It is clearly shown in
the pattern that there are no characteristic peaks for the starting precursors. SeNPs XRD
diffraction peaks are shown in Figure 3, along with the diffraction characteristics regarding
2θ at 23.46◦, 30.08◦, 41.76◦, 53.12◦, and 64.76◦, which represent the Bragg’s reflections at
(100), (101), (111), (201), (210), respectively. The Joint Committee on Powder-Diffraction
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Standards (JCPDS) of SeNPs using a reference card-JCPDS no. 06-0362 showed that all of the
peaks were comparable [61]. According to our explanation of the findings, earlier research
showed that plant extract mediators may be used to successfully fabricate crystallite, cubic
phase form SeNPs at the same XRD diffraction planes [62,63]. The XRD results indicate
that the produced SeNPs were highly-crystalline for better application.
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3.1.4. Transmission and Scanning Electron Microscopy

According to the TEM image, the SeNPs were spherical and ranged in size from
10–87.4 nm (Figure 4A). Additionally, TEM micrographs showed that the SeNPs were
dispersed uniformly. The morphologies of the surface and particle sizes of SeNPs were
assessed using the SEM, as seen in Figure 4B. SeNPs had almost spherical shapes. The
size of the Se-Nano produced from extract of the plant in a colloidal at room temperature
ranges from 50 to 150 nm [64]. Shakibaie et al. also generated spherical SeNPs with the
highest frequencies of 120–140 nm inside the range of 80–220 nm [65]. The SeNP size
that was produced in this study is preferred above the SeNP sizes that were shown in
the prior results, which ranged from 100 to 500 nm [66], The SeNP powder’s elemental
composition was ascertained via the EDX analysis [67]. The EDX spectra of the SeNPs
showed the presence of multiple distinct elements linked to the selenium, oxygen, and
carbon components (Figure 4C). Carbon and oxygen may be coated on the SeNPs [60]. In
the mapping, the “carbon” and “oxygen” relate to the PPPW extract, while the “selenium”
refer to the synthesis of SeNPs (Figure 4D–F). These outcomes are consistent with previous
studies [68,69].
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include depolarization, disturbances of biological membrane, interruption of intracellu-
lar adenosine triphosphate (ATP) levels, and the reactive oxygen effect.  

Figure 4. (A)TEM image, (B) SEM image, (C) elemental analysis, and (D–F) SEM/EDX mapping of
SeNPs prepared by PPPW extract.
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3.2. Antimicrobial Activity

Antimicrobial activity of biosynthesized SeNPs was evaluated against Gram negative,
Gram positive bacteria, and unicellular fungi, as shown in Figure 5 and Table 1. Results
revealed that the biosynthesized SeNPs showed antibacterial activity as well as antifungal
activity against the tested bacterial and fungal strains. Moreover, biosynthesized SeNPs
showed antibacterial activity against Gram positive bacteria higher than Gram negative
bacteria, where inhibition zones of SeNPs (2000 µg/mL) against B. subtilis and S. aureus
were 30.7 ± 0.53 and 48.7 ± 1.06 mm, respectively, while 26.5 ± 070 and 24.4 ± 0.85 mm
toward E. coli and P. aeruginosa respectively. Furthermore, different concentrations of SeNPs
were evaluated for antibacterial activity against all tested bacterial strains. The obtained
result revealed that concentrations 125–2000 µg/mL exhibited antibacterial activity against
E. coli and P. aeruginosa, this indicates MIC was 125 µg/mL. In the case of B. subtilis and
S. aureus, MIC was 62.5 and 15.62 µg/mL respectively.
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Likewise, biosynthesized SeNPs exhibited promising antifungal activity against unicel-
lular fungi (C. albicans and C. neoformans) as shown in Table 1 and Figure 5. Results showed
that inhibition zones of SeNPs (2000 µg/mL) against C. albicans and C. neoformans were
59.5 ± 0.70 and 50. 2 ± 1.13 mm respectively. Moreover, MICs of SeNPs toward C. albicans
and C. neoformans were 3.9 and 7.81 µg/mL, respectively. From these data, the biosynthe-
sized SeNPs from PPPW have antifungal activity at very low concentrations. Previous
studies confirmed that SeNPs synthesized by plant extracts have antibacterial and antifun-
gal activities [70,71]. Hashem and Salem [70] reported that the biosynthesized SeNPs from
Urtica dioica (stinging nettle) leaf extract have antibacterial and antifungal activities against
human pathogenic bacterial and tested bacterial strains, where MICs against bacterial
strains were in the range of 31.25–500 µg/mL, while MICs toward fungal strains were in
the range of 7.81–31.25 µg/mL. Moreover, Lashin et al. [71] confirmed SeNPs that biosyn-
thesized from Ziziphus spina-christi exhibited antimicrobial activity against Gram negative
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bacteria, Gram positive bacteria, and unicellular and multicellular fungi. Alvi et al. [55]
prepared SeNPs from Citrus limon (lemons) and Citrus paradise (grapefruits) extracts and
found it had antibacterial activity against E. coli, Micrococcus luteus, B. subtilis, and Klebsiella
pneumonia. Salem et al. [72] reported that the biosynthesized SeNPs from pomegranate peel
extract have promising antifungal activity. Huang et al. [73] suggested four mechanisms
for SeNP-mediated antimicrobial properties, which include depolarization, disturbances
of biological membrane, interruption of intracellular adenosine triphosphate (ATP) levels,
and the reactive oxygen effect.

Table 1. Antimicrobial activity of SeNPs at different concentrations.

Test Material E. coli P. aeruginosa B. subtilis S. aureus C. albicans C. neoformans

SeNPs
(µg/mL)

2000 26.5 ± 0.70 a 24.4 ± 0.85 a 30.7 ± 0.53 a 48.7 ± 1.06 a 59.5 ± 0.70 a 50.2 ± 1.13 a

1000 21.7 ± 1.06 b 21.6 ± 0.56 b 27.5 ± 0.35 b 41.5 ± 0.70 b 54.7 ± 0.99 b 46.4 ± 0.84 b

500 15.4 ± 0.56 c 17.6 ± 0.85 c 23.6 ± 0.46 c 34.8 ± 1.20 c 51.0 ± 1.34 c 40.85 ± 1.20 c

250 11.7 ± 0.35 d 11.3 ± 0.49 d 19.2 ± 0.17 d 29.6 ± 0.56 d 45 ± 1.41 d 36.8 ± 1.13 d

125 8.2 ± 0.35 e 8.7 ± 0.42 e 13.5 ± 0.32 e 24.6 ± 0.84 e 37.3 ± 0.91 e 30.4 ± 0.64 e

62.5 0 ± 00 f 0 ± 00 f 8.7 ± 0.21 f 20.7 ± 0.84 f 34.25 ± 0.35 f 26.4 ± 0.84 f

31.25 0 ± 00 f 0 ± 00 f 0 ± 00 g 16.5 ± 0.70 g 27.5 ± 0.70 g 20.1 ± 1.20 g

15.62 0 ± 00 f 0 ± 00 f 0 ± 00 g 10.6 ± 0.92 h 24 ± 1.41 h 14 ± 1.41 h

7.81 0 ± 00 f 0 ± 00 f 0 ± 00 g 0 ± 00 i 16.5 ± 0.70 i 10.7 ± 0.35 i

3.9 0 ± 00 f 0 ± 00 f 0 ± 00 g 0 ± 00 i 12.3 ± 0.91 j 0 ± 00 j

1.95 0 ± 00 f 0 ± 00 f 0 ± 00 g 0 ± 00 i 0 ± 00 k 0 ± 00 j

PPPW * 0±00 0 ± 00 0 ± 00 0 ± 00 0 ± 00 0 ± 00

SAM/AMB ** 0±00 14.5 ± 0.5 15.6 ± 0.4 10.1 ± 0.9 0 ± 00 0 ± 00

* PPPE means prickly pear peel and ** SAM/AMB means (Ampicillin/sulbactam)/Amphotericin B. Superscript
letters from a to k revealed the power of significance.

3.3. Insecticidal Activity

Mosquito-borne diseases are one of the main public health issues in developing
countries. Usage of synthetic insecticides as mosquitocidals has become complicated due
to mosquito resistance, toxicity to humans, and non-targeted organisms, all of this has
stimulated interest in searching for novel control methods [74]. Plant extracts have been
regarded as alternative agent insecticides [75].

Increasing evidence suggests that green-fabricated mosquitocidal nanoparticles may
be more effective than the plant extracts tested alone [59,76]. There are few studies on
nanoparticle toxicity concerning filariasis vector C. pipiens [77]. Concerning the mech-
anism of action, we hypothesized that the toxicity of green-fabricated nanoparticles on
mosquitoes could be owing to the nanoparticles’ small sizes, which allow them to penetrate
cuticle insects.

The third instar larvae of tested C. pipiens mosquito was treated with five concentrations
of both the crude PPPW extract of Opuntia ficus-indica (50, 100, 200, 400, and 800 mg/L)
and synthesized SeNPs (25, 50, 100, 200, and 400 ppm). Based on the obtained results in
(Table 2), the recorded LC50 and LC90 values for the crude PPPW extract were (219.841 mg/L)
and (950.087 mg/L) while SeNPs were (75.411 mg/L) and (208.289 mg/L), respectively.
The highest larvicidal activity percentage (100) was achieved when synthesized SeNPs
were 400 mg/L compared with the control group, with no larval mortality recorded in the
group treated with SeNPs alone (without plant extract). Our results revealed that larvicidal
effects of both Opuntia ficus-indica and green-synthesized SeNPs conducted on C. pipiens
mosquitoes had toxicity with LC50 and LC90 values (219.841, 950.087 mg/L) and (75.411,
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208.289 mg/L), respectively. The highest larvicidal activity percentage (100) was achieved
when synthesized SeNPs at concentrations of 400 mg/L compared with the control group.

Table 2. Larvicidal activity of the PPPW crude and synthesized Opuntia ficus-indica Selenium
nanoparticles (SeNPs) extracts for the mosquito vector, C. pipiens.

Treatments Concentrations
(mg/L) n

Larval
Mortality
% ± SD

LC50
(LCL–UCL)

(mg/L)

LC90
(LCL–UCL)

(mg/L)

Statistic
Summary

Crude extract
of PPPW

Control 75 0.0 ± 0.0 a

219.841
(186.330–260.524)

950.087
(715.547–1407.422)

d. f. = 5,
F = 800.96,
p < 0.001,
χ2 = 2.396

50 75 10.67 ± 1.33 b

100 75 26.67 ± 1.33 c

200 75 41.33 ± 1.33 d

400 75 69.33 ± 1.33 e

800 75 89.33 ±1.33 f

SeNPs

Control 75 0.0 ± 0.0 a

75.411
(66.163–85.797)

208.289
(173.006–265.562)

d. f. = 5,
F = 254.757,

p < 0.001,
χ2 = 13.331

25 75 13.3 ± 1.33 b

50 75 28.0 ± 4.0 c

100 75 52.0 ± 4.61d

200 75 93.3 ± 2.58 e

400 75 100.0 ± 0.0 e

Se ions Nil Nil Nil Nil Nil Nil

Larval mortalities are presented as Mean ± SE of three replicates. Means with different letters are significantly
different at (p < 0.05). (LC50) concentration that kills 50% of population, (LC90) concentration that kills 90% of
population, (LCL) lower confidence limit, (UCL) upper confidence limit, (d. f.) degree of freedom, (χ2) Chi-square,
n = sample size.

Selenium-nanoparticle synthesized utilization plant extracts have great biological
activity and adsorption capacity due to the overlap between selenium at the nano-scale
and the NH, C=O, COO, and C-N functional protein groups [78]. A recent study proved
that the SeNPs synthesized employ Penicillium corylophilum—a good agent in mosquitos
controlling, cell lines, and Gram positive and Gram negative bacteria [79]. A new study
reported that selenium nanoparticles synthesized from Clausena dentate were a good agent
against different mosquito species with different concentrations [80], Whereas, in Krishnan
et al.’s [81] study, SeNPs synthesized from D. indica were more effective by controlling
early instar larvae of C. quinquefasciatus and A. aegypti at different concentrations. The
toxicity of biosynthesized selenium nanoparticles proved to be just as good as that of
gold and silver nanoparticles [82] in controlling both C. quinquefasciatus and A. aegypti.
The toxicity of selenium nanoparticles manufactured using the leaf extract of D. indica to
the larvae and pupae of both types of mosquitoes may be due to the intracellular toxic
effects of intradermal nanoparticles and other peripheral cells. Furthermore, the toxicity
of SeNPs may be due to denaturation of organelles and enzymes that reduce membrane
permeability, further affecting ATP synthesis and ultimately inhibiting cellular function,
leading to death [83]. However, many other relevant reports of natural extracts, such
as plant nano-products as insecticides, have been reported. Lagenaria siceraria and ZnO-
NPs mediated enhanced larvicide activity of Anopheles stephensi with an LC50 score of
56.46 ppm [84]. Hasaballah et al. [85] reported that So-ZnO-NPs had the larvicidal activity
against the tested mosquitoes, this is attributed to the small sizes of the manufactured
nanoparticles that allow easy penetration into insect skin and cells where it interferes with
molting and other physiological processes [86]. Vinotha et al. [87] reported that cardamom-
coated ZnO-NPs was a high potential agent against Culex tritaeniorhynchus with an LC50 of
about 15.09 µg/mL.
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Fecundity and hatchability of C. pipiens mosquito were significantly decreased as
applied concentrations increased either for the crude or the fabricated SeNP extracts. The
minimum recorded fecundity and hatchability were achieved with the concentration of
400 mg/L of SeNP extracts, where both decreased to more than 90% from those of the
control group (Table 3). The effects were much more pronounced in the SeNP extract than
in the crude extract. The current results also revealed that fecundity and hatchability of
the C. pipiens mosquito significantly decreased as applied concentrations increased either
for the crude or the fabricated SeNPs extracts. The minimum recorded fecundity and
hatchability were achieved at 400 mg/L of SeNP extract where both decreased to more
than 90% from those of the control group; the effects were much more pronounced in the
SeNP extract than the crude extract. Fecundity was inversely proportional to the applied
concentrations of the crude extract of S. officinalis and So-ZnO-NPs [84].

Table 3. Fecundity and egg-hatchability of the mosquito, C. pipiens treated with different concentra-
tions of the PPPW crude extract, and SeNPs of Opuntia ficus-indica.

Treatment Concentration
(mg/L)

Fecundity
Mean ± SE

Hatchability
Mean ± SE

Hatchability
(%)

Crude extract
of PPPW

Control 142.0 ± 6.11 a 138.3 ± 5.24 a 97.46

50 133.3 ± 4.41 a 124.0 ± 4.16 b 93.02

100 110.0 ± 1.54 b 93.3 ± 2.40 c 84.9

200 93.3 ± 1.67 c 76.0 ± 1.0 d 81.52

400 59.3 ± 2.96 d 44.67 ± 2.60 e 75.23

800 48.3 ± 1.67 e 29.3 ± 2.40 f 60.74

Statistic Summary p < 0.001, d. f. = 5 p < 0.001, d. f. = 5
F = 172.918

SeNPs

Control 143.67 ± 1.85 a 131.67 ± 6.01 a 91.577

25 126.67 ± 1.67 b 106.67 ± 1.67 b 84.205

50 98.0 ± 2.0 c 72.33 ± 1.45 c 73.929

100 63.3 ± 1.67 d 26.67 ± 1.76 d 42.137

200 30.67 ± 2.96 e 10.0 ± 0.58 e 32.893

400 13.67 ± 1.85 f 2.67 ± 0.88 f 18.472

Statistic summary p < 0.001, d. f. =5 p < 0.001, d. f. =5
F = 380.721

Larval mortalities are presented as Mean ± SE of three replicates. Means with different letters are significantly
different at (p < 0.05). (LC50) concentration that kills 50% of population, (LC90) concentration that kills 90% of
population, (LCL) lower confidence limit, (UCL) upper confidence limit, (d. f.) degree of freedom, (χ2) Chi-square,
n = sample size.

Hasaballah et al. [11] revealed that So-ZnO-NPs at a concentration of 80 ppm exhib-
ited decreasing fertility of C. pipiens females by more than 50%, and this effect was more
pronounced in An. pharoensis females at concentrations greater than 40 ppm compared to
the untreated group. In the same vein, Roni et al. [88] showed that concentrations rang-
ing from 100 to 500 ppm of Hypnea musciformis-synthesized AgNP severely reduced
the fecundity of the Ae. Aegypti female. Furthermore, Madhiyazhagan et al. [89] found
that S. Muticum-synthesized AgNP decreased the oviposition rates to more than 70% in
C. quinquefasciatus, Ae. Aegypti, and An. Stephensi when treated with a concentration of 10 ppm.
In the same context, egg hatchability of A. aegypti, A. stephensi, and C. quinquefasciatus was
reduced by 100% after treatment with 30 ppm of AgNP, while control eggs showed 100%
hatchability [89].
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4. Conclusions

In this study, SeNPs were biosynthesized from PPPW extract for the first time through
a green and ecofriendly method. The biosynthesized SeNPs were characterized using
various modern techniques. Characterization results revealed that SeNPs were highly crys-
talline, and spherical in shape. Moreover, the biosynthesized SeNPs exhibited promising
antibacterial and antifungal activity against Gram negative and Gram positive bacteria
and unicellular fungi, which cause many problems to humans. Furthermore, SeNPs had
larvicidal activity as well as decreased the fecundity and hatchability of the C. pipiens
mosquito. Therefore, the biosynthesized SeNPs in this study can be used in medical and
environmental applications where they have antimicrobial as well as insecticidal activities.
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