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Abstract: Extrusion bioprinting is an emerging technology to apply biomaterials precisely with living
cells (referred to as bioink) layer by layer to create three-dimensional (3D) functional constructs for
tissue engineering. Printability and cell viability are two critical issues in the extrusion bioprinting
process; printability refers to the capacity to form and maintain reproducible 3D structure and cell
viability characterizes the amount or percentage of survival cells during printing. Research reveals
that both printability and cell viability can be affected by various parameters associated with the
construct design, bioinks, and bioprinting process. This paper briefly reviews the literature with
the aim to identify the affecting parameters and highlight the methods or strategies for rigorously
determining or optimizing them for improved printability and cell viability. This paper presents
the review and discussion mainly from experimental, computational, and machine learning (ML)
views, given their promising in this field. It is envisioned that ML will be a powerful tool to advance
bioprinting for tissue engineering.

Keywords: 3D bioprinting; extrusion; printability; cell viability; bioink; tissue engineering;
machine learning

1. Introduction

During the last decade, the demand for organ transplantation has increased all over
the world because of rising success in post-transplant results. Unfortunately, inadequate
organs for transplantation to meet existing demands have led to a huge organ shortage
crisis [1]. Tissue engineering, as a combination of biology, engineering, and material science,
is a promising field that can obviate this crisis by producing artificial tissue and organs [2].
Tissue engineering has advantages over other therapies (e.g., the use of drugs) because
of its ability to provide a lasting solution to the problem of organ failure [3]. A scaffold
is a porous construct used in tissue engineering to support cell growth and funcations.
Several fabrication techniques have been developed and used to fabricate scaffolds, and
in general, these techniques can be divided into conventional, electrospinning, and three-
dimensional (3D) printing. Further, 3D printing can be categorized into inkjet, laser-assisted,
and extrusion-based bioprinting [4]. Nowadays, extrusion-based bioprinter is one of the
most popular techniques in biomedical applications because of its ability to print cells, and
various biomaterials with a wide range of viscosity [4–13].

Biomaterials with living cells (or bioinks) or biomaterials without cells (inks) are
printed to form constructs or scaffolds. To this end, the biomaterials must have such char-
acteristics as (a) biocompatibility, (b) biomimicry, (c) mechanical integrity, (d) degradability,
and (e) printability [14]. With 3D printing, it is expected that the printed scaffolds can
mimic the structures, properties, and functions of particular organs for tissue engineering.
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Hence, the keys are the printing of scaffolds and their culture for maturation to functional
constructs. For the printing of scaffolds, the printability of the chosen biomaterials must
be considered before the printing process because of the differences seen between printed
scaffolds and the designed ones [15,16]. Although incorporating cells with biomaterial
is a promising advance in bioprinting, cells might be affected and even damaged during
the printing process. Cell viability is another vital issue needed to be considered. For this,
numerous studies have been conducted to fabricate biomimetic scaffolds with preserved
cell viability in the extrusion-based bioprinting process. As the evaluation and optimization
of printing parameters intended to achieve the improved printability and cell viability
through trial and error was expensive and time consuming, computational methods came
to play a role. Nowadays, with the advent of supercomputers, machine learning (ML)
has depicted a new view for many fields of science and engineering, including biofabri-
cation, with many promising results. It is envisioned that ML can accelerate bioprinting
development. This paper aims to review printability and cell viability from experimental,
computational, and machine learning perspective.

2. Experimental View
2.1. Printability

Generally, the printed construction may not be the same as the designed one. Some-
times, the printed structure collapses and cannot keep its stability. The printed biological
product must mimic the architecture and shape of an organ, so the printing needs to be
precise with high resolution and shape fidelity. The concept of printability refers to the
ability to form a 3D structure with acceptable fidelity and integrity. Printability demon-
strates its critical role when the tissue of an intricate organ such as the heart is required. In
addition to function, geometry is very important [16,17]. There are various definitions for
printability based on employed techniques for printing. Printability in the inkjet approach
is recognized as the ability to generate well-defined droplets in the air. In laser-based
printing, printability refers to the ability to produce a well-defined jet, form appropriate
droplets, and deposit them onto the receiving substrate. For extrusion bioprinting, print-
ability characterizes the capability to print continuous filaments with controllable diameter
and defined morphology to form desired 3D structure [4,7,14].

2.1.1. Evaluation of Printability

It is necessary to define indexes to characterize printed constructs in terms of printabil-
ity. It is noted that a bioink needs to have appropriate shear thinning behaviour with low
viscosity when being printed and recovered or high viscosity for stability after printing. To
evaluate the printability of bioink, Paxton et al. [18] suggested a two-step method. First, this
method focuses on screening ink formulation to assess filament formation and the ability to
form 3D structure, and the second step is the rheological evaluation of inks to assess yield
point, shear thinning, and recovery behaviour via shear stress ramp, shear viscosity, and
recovery test, respectively [14,18]. There are different definitions for printability indexes.
The most popular ones are reviewed as follows:

1. Extrudability: the minimum extrusion pressure required to print material at the
desired flow rate [19];

2. Strand printability: This factor is used to compare printed strands dimeters with
CAD-generated parameters strands. The expected strand diameter is [20,21]:

DS =

√
4Qt
πVn

(1)
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where DS, Vn, and Qt are strands diameter, needle speed, and volumetric flow rate,
respectively. So, needle speed affects the diameter of strands, and the below index is
defined to compare printed strands with calculated ones:

Strand printability =
Experimental strand diameter

DS
∗100 (2)

3. Integrity factor: this factor compares the thickness of printed scaffolds and designed ones

I =
Scaffold thickness
Control thickness

(3)

4. Irregularity: In fact, this index is developed index of integrity in 3 dimensions. It com-
pares the outer geometry of scaffolds with designed ones in X, Y, and Z directions [21]:

Irregularity =

∣∣∣Experimental lengthX,Y,Z

∣∣∣
Design lengthX,Y,Z

(4)

5. Pore printability: In addition to printability indexes such as irregularity and integrity
factors which are based on the outer geometry of scaffolds, the pore printability index
focuses on internal geometry. This index is utilized to determine how printed pores
matched the designed square ones in a scaffold [19,21]:

Pore printability =
(perimeter pore)2

16 ∗ area of pore
(5)

2.1.2. Effective Parameters on Printability

Various parameters play a key role in extrusion bioprintability that can be categorized
into three groups: bioink properties, printing parameters, and design construct.

Bioink Properties

Bioinks may contain hydrogels, decellularized matrix components, tissue spheroids,
cell pellets, or some advanced bioinks. The most popular class of biomaterials are hydrogels
because of their capacity to provide a viable environment for the adhesion, growth, and
proliferation of living cells. The main feature of hydrogels is their ability to absorb and
retain large quantities of water. Hydrogels are non-Newtonian fluids with shear thinning
and thixotropic behaviour, which are suited for the extrusion process. The shear thinning
enables the shear force to align the random polymer chains in a favourable direction and
makes them extrudable. Thixotropy, a time-dependent shear thinning behaviour, makes
the hydrogels exhibit low viscosity during printing and regain stability after extrusion [22].

Rheological property is a critical key to the printability of hydrogels, and viscoelasticity
is a conclusive factor in bioprinting. Printing low viscous materials leads to soft and
watery structures; however, printing high viscous materials is difficult to extrude [23,24].
Examining the relationship between shear stress and viscosity under embedded shear rate
provides applicable information for the printability of bioinks [25].

Differences between printing techniques have led to requiring different properties of
hydrogels. For example, extrusion-based and inkjet-based systems utilize nozzles to deposit
biomaterials. They require appropriate rheological properties, and the most important one
is viscosity [26]. In fact, extrusion-based bioprinting is a modification of inkjet printing that
can print uninterrupted strands instead of a single droplet. This printing technique can
print almost all types of hydrogels with varying viscosity depending on the dispensing
force system. Among extrusion approaches, a pneumatic system powered by pressurized
air can support a wider range of viscosity but has difficulty precisely controlling deposited
mass. Screw-based ones are cheaper but have problems with high viscous materials [2].
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The viscosity of the hydrogel is an effective parameter for printability [27]; however, it
cannot capture the complicated behaviour of bioink, and a high viscous hydrogel does not
guarantee precise printing. Dynamic modulus, including storage modulus (G′) and loss
modulus (G”), can describe the bioink behaviour better. The loss tangent (G”/G′) is another
parameter that makes the biomaterial behave more like a solid or a liquid. A small loss
tangent refers to a material with more solid behaviour, high stiffness, and good mechanical
properties which can maintain its designed shape and require larger extrusion pressure.
On the other hand, a large loss tangent represents highly fluid behaviour, easily extrudable
material without adequate mechanical strength to hold the structure [19].

In addition to the flow behaviour of the bioink, surface tension is another physical
property needed to be considered in extrusion bioprinting. At the liquid—air interface,
surface tension appears because of the attraction force between liquid molecules rather
than the attraction between liquid and air, thus affecting the profile or contour formed on
the surface [28]. Surface tension is usually studied in inkjet-based printing, and its effect on
printability is neglected in extrusion-based bioprinters.

Surface tension appears as a contact angle between two media and plays a key role
in the printed strands and printing resolution. If the substrate has higher surface energy
rather than the bioink surface tension, the ink will spread. In contrast, less substrate energy
results in a higher contact angle and less spread [21,29].

Bioprinting Parameters

An extrusion bioprinter commonly consists of three main units: a container
(e.g., syringe) containing biomaterials, a dispensing head that derives biomaterial out,
and a receiving stage where the bioink is collected [4,22]. The parameters that control those
three units and involve the printing process can affect accuracy and printing resolution
(resolution is the smallest achievable diameters of strands [30,31]). In this matter, many
investigations have reported that nozzle diameter, speed of the dispensing head, height of
the nozzle, and flow rate of extruded bioink can affect the width and height of the printed
strands [11,32–34]. The aforementioned variables must be balanced to achieve the desired
printed strands with a uniform diameter and high pattern fidelity.

Dispensing pressure is the most important parameter in extrusion-based systems.
Pressure should be large enough to overcome the ink surface tension for pushing the
ink out of the nozzle. Under low pressure, hydrogels may not be driven to flow, while
jetting would happen over high pressure. Obviously, there is a direct relationship between
dispensing pressure, flow rate, and strands diameter [25,32–34].

High flow rate, low needle linear speed, and high distance between the needle tip
and the collector can result in thicker strands and a material bugle at the front edge of the
needle (Figure 1b). In contrast, a low flow rate and a very slow needle movement cause a
gap between the needle tip and stage (Figure 1c) [35].
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Figure 1. Images of printed hydrogels through (a) 20 ga, (b)25 ga, and (c) 30 ga needle (Effect of nozzle
diameter and dispensing speed on strands diameter), Reprinted with permission form Ref. [35], 2011,
John Wiley and Sons.

The diameter of the needle is another important factor. Obviously, a lower diameter-
needle can print a construction with high resolution (Figure 1), but clogging of the needle
and high dispensing pressure are two limitations that should be considered. By increasing
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the concentration of the bioink, a needle with a higher diameter is preferred; however,
needle temperature can improve the viscosity when high concentration bioinks are printed,
especially for thermal-sensitive biomaterials [36].

During and after printing, to achieve the desired mechanical integrity and shape,
the bioink must be solidified and cross-linked. Both materials and cross-linking agents
should be prepared to reach appropriate viscosity, yield stress, and mechanical integrity for
fast shear recovery [37–40]. Among cross-linking methods, adjusting the temperature of
thermosensitive hydrogels [41] (e.g., gelatin), using cross-linking agents [42], and ultraviolet
light [43] can be mentioned.

There are some other key parameters such as distance between nozzle and substrate,
substrate temperature and the angle of printing on the corners. As can be seen in Figure 2,
the overlap problem in sharp angle during printing is a common issue that must be
avoided. Printing resolution became worse in acute angles rather than obtuse ones at the
same printing parameters, and it might cause nonuniform layer height in the 3D structures.
There are two ways to avoid nonuniform extrusion. The first is to avoid the sharp angles
in the printing, although sometimes sharp angles due to the complexity of the structure
are inevitable. The second method is reducing the flow rate of bioink in this area to half or
doubling the dispensing speed [44].
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Construct Design

Filament spacing and filament orientation are two critical parameters in the matter
of construct design that influence printability. Filament spacing affects pore sizes and the
subsequent integrity and fidelity of the construct. A small filament spacing can lead to
the fusion of adjacent filaments if the bioink has low viscosity and a small contact angle
(Figure 3a). On the other hand, large spacing may result in a large over-hanger deflection
(Figure 3b) [29].
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The orientation of strands makes the configuration and inner pattern of the scaffolds
and, subsequently, the porosity. The orientation of strands near the edge of the scaffold
affects the amount of bioink deposited. To illustrate, an orientation of 45◦ requires less
amount of bioink than 90◦ [21]

2.1.3. Printability Improvement

The formulation of the ink with suitable rheological, biological, and mechanical prop-
erties are crucial aspects of the bioprinting process. The strategies for printability enhance-
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ment are related to the mentioned effective parameters (i.e., bioink properties, printing
process, design). Table 1 lists the biomaterials commonly used in extrusion bioprinting
owing to their appropriate rheological, mechanical, and biological properties. From these
biomaterials, researchers have further synthesized composite biomaterials for their property
synergy and improved printability [4].

Table 1. Common biomaterials used in extrusion bioprinting.

Biomaterials Advantages Limits Target
Tissue/Application Ref.

Alginate

• Water-soluble
• High water-absorbing
• Highly biocompatible
• Rapid cross-linking

• Low viscosity
• Lack of molecules
adhesion

• Liver
• Nerve
• cartilage

[4,37,45–48]

Agarose

• Water-soluble
• Responsive to
temperature
• Rapid gelation

• Poor cell attachment • Cartilage [46,49–54]

Gelatin

• Highly bioactive
• Highly biocompatible
• Responsive to
temperature

• Poor mechanical
properties

• Ovary
• Nerve [4,45,55–57]

Chitosan • Antibacterial • Slow gelation
• Poor water solubility

• Bone
• Cartilage
• Drug delivery
• Wound dressing

[58–61]

Collagen
• High cell attachment
• Responsive to PH and
temperature

• Slow gelation
• Poor mechanical
properties

• Skin
• Nerve
• Cartilage

[49,62–64]

Fibrin • High cell adhesion
• Highly bioactive

• Rapid degradation
• Poor mechanical
stability

• Nerve [65,66]

Polycaprolactone (PCL)

• Low cost
• Biodegradable
polyester
• Excellent rheological
and viscoelastic properties
upon heating

• Just for hard tissue
• Extended degradation

• Bone
• Drug delivery [67,68]

Hyaluronic acid (HA)

• Water-soluble
• Highly biocompatible
• Good shear thinning
properties

• Rapid degradation rate
• Poor mechanical
properties
• Required modification
for stable cross-linking

• Wound healing
• Bone
• Cartilage
• Hearth
• Nerve

[49,69–72]

Polyethylene glycol (PEG)
• Water-soluble
High capacity for chemical
modification

• Poor biodegradability
• Poor cell attachment

• Would dressing
• Bone [73–75]

Polyurethane
• Highly biocompatible
• Tunable dol–gel
transition temperature

• Slow biodegradability
• Poor cell attachment

• Cartilage
• Drug delivery [76–79]

There is a huge number of studies that evaluate various types of bioinks—a mixture
of cells and biomaterials—to improve printability. As a good example, twelve types of
hydrogels, including collagen, chitosan, fibrin, alginate, etc., were studied. Hydrogels
were oriented over a 1 cm2 target printing area, and printing accuracy was calculated.
MC-HA, chitosan, and chitosan–collagen gels were the most accurately printed ones be-
cause the relatively high viscosity of the solutions inhibited them from spreading out on
the surface [80].

Alginate obtained from seaweed and algae forms a promising hydrogel for tissue
engineering applications because of its inherent nature. Regardless of appropriate com-
patibility, the main disadvantage of alginate is the formation of unstable gels at lower
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concentrations because of low viscosity [47,81,82]. Although by varying the concentration
and molecular weight of alginate, the viscosity could be increased, to overcome this prob-
lem and extrude filaments with well-defined morphology, gelatin can be added into the
bioink [83]. Combining alginate with high molecular weight molecules like nanofibrillated
cellulose also enhances the resolution of printed filaments [48]. Mouser et al. [84] added
gellan into gelatin gum methacrylate (GelMA) to increase the viscosity and gelation speed
of the hydrogel because printing GelMA on its own requires high concentration and precise
control of the ink, nozzle, and receiving platform’s temperature.

To improve the printability of alginate, pre-cross-linked alginate with CaCl2 and a
mixture of alginate and gelatin were printed and compared. The pre-cross-linked alginate
was printed and formed a liquid-like scaffold with inconsistent pore diameters. In contrast,
adding gelatin enhanced the printability of the ink significantly [42,83].

Adding additive biomaterials can change the rheology properties of hydrogels; for
example, adding nanofibrillated cellulose (NFC) to alginate makes the bioink shear thinning
with high fidelity [48]. GelMA-based bioink is another common biomaterial used for
extrusion bioprinting because of its photo-cross-linking ability [85,86].

Using a supportive scaffold is a strategy to enhance shape fidelity. To illustrate,
a printed PCL scaffold is used as a support for alginate scaffolds in the bioprinting of
alginate [87–89]. These kinds of support can be sacrificial, especially for printing complex
geometry [90]. Lee et al. [91], during printing poly-caprolactone (PCL) and cell-laden
hydrogel, printed poly-ethylene-glycol (PEG) as a sacrificial layer to support the main
structure. After finishing the process, PEG can be removed easily in an aqueous solution.

Among traditional implementation of printing techniques in an air medium, emerging
technology is printing in a liquid bath or a hydrogel support bath medium. Printing in a
support bath medium enables low viscous hydrogels to generate complex 3D structures.
The limitations of printing in air, including clogging, gravity-induced structural collapse
with weak interfacial strength, and the absence of a support structure, can be relieved
using this approach. Specifically, low viscous materials minimize the occlusion of extrusion
nozzles during printing within a support bath. The relationship between the diameter
of strands and nozzle speed is similar to printing in the air. Increasing the flow rate by
considering the constant filament’s diameter leads to higher nozzle speed and, subsequently,
a less viscous environment for a shear thinning bath with large surface tension. This
approach reduces irregularity and exhibits a smooth surface for the filaments [92,93].

To print a complex construct with different materials for each part, utilizing a multi-
head bioprinter might be applicable. The calibration of the different heads plays a critical
role during multihead bioprinting. For example, Sodupe-Ortega et al. suggested two mod-
els for calibration of a four-head printer depending on its application. In the first model,
adjusting the printhead’s xy position with respect to each other, they printed straight
lines, half with one printhead and half with the other. In the second model for optimizing
dispensing pressure and speed, a continuous zigzag pattern was printed with an increasing
distance between all lines (Figure 4) [94].
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2.2. Cell Viability

The majority of the above studies were focused on the influence of various parameters
on the printability of bioink; however, to achieve a successful 3D printing process, assessing
different parameters’ effects on printability and cell viability at the same time is vital. The
main advantage of extrusion bioprinting is the ability to incorporate cells with biomaterials,
but it should be noted that cells are sensitive to environmental change. During the printing
process, cells and biomaterials are extruded through a needle by force. Printing force can
produce shear and extensional stresses. If these stresses exceed a certain threshold, they
can breach cells membranes and damage them.

Shear stress has a critical influence on cell biology; to illustrate, shear stress enhances
the maturation of some cells and increases stem cell differentiation [95,96]. In contrast,
shear stress as a factor that damages cells is inevitable in any dispensing process and
should be considered in printing progress [4]. Shear stress is the mechanical force that
causes the shearing deformation of materials and cells along the plane parallel to the stress
direction. Depending on cells’ sensitivity and the amount of shear stress experienced by
cells, the cell damage can change up to almost 100% at high shear stress [97]. The shear
stress is directly influenced by dispensing pressure, nozzle diameter, and viscosity of the
bioink, especially when the needle diameter is reduced with the aim of promoting printing
resolution [66,98–103].

Viscosity is a measurement of resistance to flow; highly viscous solutions can increase
shear stress during extrusion and lead to the rupture of the cell membrane [104]. Printing
high viscous bioinks requires high pressure, thus negatively affecting cell viability [97]. It
was reported that dispensing pressure more significantly affects cell damage compared
with nozzle diameter [105].

The nozzle diameter and type have direct effects on cell viability. Smaller nozzle
diameter leads to a higher velocity gradient as well as higher shear stress and, consequently,
higher cell damage [101]. Two types of needles, cylindrical and tapered, are commonly
used in extrusion bioprinting. Because of their geometries, they have different effects; a
tapered needle provides a higher flow rate than a cylindrical one under the same printing
pressure. Indeed, for the same flow rate, lower printing pressure is required for tapered
needles, thus preserving higher cell viability [106,107].

Nozzle and chamber temperatures are other effective factors in cell viability. By
controlling the nozzle and chamber temperature, cell viability could be increased from
55.52% to 90% [108]. In addition to thermal damage, the time period or the duration of
printing must be considered during bioprinting. Long bioprinting time can reduce cell
viability after extrusion [109]. For improvement, hybrid polymer constructs made from
mixing high and low melting temperatures were reported to recuse cell damage associated
with temperature and bioprinting time [110]. The concentration of the bioink can also
influence cell viability. It was reported that concentrated polymers have adverse effects
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on cell culture. For instance, there were more dead cells for a higher concentration of
alginate [111].

Mathematical modelling is a tool to represent the bioprinting process as well as the
influence of related parameters. In this regard, cell viability laws have been developed to
depict the relationship between shear stress and cell viability. If shear stress is considered
one of the main causes of cell damage, the following power–law function is used to describe
the cell damage percentage [97]:

I(%) = Cτb (6)

where I is the percentage of cell damage, τ is the shear stress, and C and b are constants for
given cells. This equation is developed further by considering the exposure time of cells to
shear force [112]:

I(%) = Ctaτb (7)

where I is the percentage of cell damage, τ is the shear stress, t is exposure time, C, a, and
b are constants for given cells. This model has two drawbacks: First, this equation does
not provide information about the probability distribution of cell damage with stress and
exposure time and their correlation. Secondly, this equation is not applicable for a large
range of stress or exposure time because, in this situation, the left side of the equation will
be 100% [113]. Li et al. [112] improved this cell damage law by using a bivariate normal
distribution function, and Nair et al. [105] also defined a law to predict damaged cells and
dead ones separately.

3. Computational View

Three-dimensional printing potentially can revolutionize biofabrication engineering.
The printability of the ink must be evaluated to achieve desired printed construct. Exper-
imental evaluation of the ink printability is time-consuming and costly, especially when
bioink with expensive and sensitive cells is printed [114]. In this endeavour, computational
methods as powerful tools provide information to bridge gaps between knowledge when
clinical testing is difficult, expensive, time-consuming, or even impossible [115].

3.1. Printability

Most of the printability simulations are in the field of inkjet bioprinting and droplet
shapes. A study has been conducted to consider the influence of rheological properties
of bioink on jetting behaviour during printing by an inkjet 3D printer. Computational
fluid dynamic (CFD) has been employed through Flow 3D software to simulate rheological
properties and droplet formation [116].

An investigation using the Continuum Surface Force (CSF) method for modelling
surface tension and employing CFD-ACE+ commercial software investigated the effects
of printing parameters on length tail, breaking time, and volume droplet [117]. Another
study demonstrated the feasibility of using CFD to predict dependencies between printing
parameters such as printer nozzle geometry, operation pressure, and printing speed in
the extrusion-based bioprinting process. The rheological properties of the hydrogels were
determined through different experimental methods and compared with data predicted by
the computational model. The hydrogel viscosity was not predicted reliably because shear
rates occurring within the printing tip were higher than the viscosity measured by the
rheometer. CFD also was used to predict the relationship between resolution and printing
speed. The predicted strand width depends on the contact angle between substrate and
hydrogels [118].

The CFD via “OpenFOAM” software was employed to investigate the dependence be-
tween hydrogel mass flux, different needles geometry, and operating pressure. Power–law
model was used for modelling Non-Newtonian hydrogels, and the VOF method tracked
the interface between ink and air [118]. “IPS IBOFlow” commercial software also simulated
printed strands. IBOFlow is an incompressible finite volume-based fluid flow solver based
on Immersed Boundary Method. The rheology of the bioink was modelled by a linear PTT
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model, and the continuum surface force method [119] modelled the surface tension. The
simulation had an appropriate agreement with experimental results (Figure 5) [114].
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In the literature, because of the complexity of the simulation of printed strands, most
studies have used commercial software and rarely discussed simulation methods. In this
matter, a brief discussion about different methods to model multiphase fluid is found in
the next part.

3.1.1. Implementation

To evaluate the printability of the bioinks through computational methods, under-
standing the printed strands’ shape, in other words, the location of the interface between
bioink and the air, is crucial. In fact, this simulation is a free surface fluid simulation. The
term free surface is technically used to describe an interface between a liquid and a second
medium that does not apply pressure gradient or shear stress. Free surface falls within the
category of a multiphase flow problem. Some of the more popular techniques to track the
interface are as follows [120]:

Surface Marker Techniques

This approach tracks the interface explicitly on a fixed mesh, marking the interface
by connecting a set of massless particles. These markers are moved by the local advection
velocity field, so their position (xn, yn, zn) can be obtained by integration from the initial
position at time = 0:

xn= x0 +

t∫
0

u dt, yn= y0 +

t∫
0

v dt, zn= z0 +

t∫
0

w dt (8)

where u, v, and w are the fluid velocity in the Eulerian mesh at the time-dependent location
of each marker [121].

Surface-Fitted Method

In this method, instead of markers, a mesh surface is attached to the interface, and the
position and curvature of the interface are calculated. The main advantages of this approach
are (a) a reduction in computer storage occupied by the interface markers, (b) ensuring a
sharp interface, and (c) avoidance of partially filled cells (every cell is occupied by a fluid).
Since the mesh and the interface are moving together, the mesh automatically tracks the
interface, and the mesh system conforms to the shape and structure of the interface. The
weakness of this method is sensitivity to the mesh [121,122].

The Volume of Fluid (VOF)

The volume of fluid is the most well-known method used to simulate multiphase flow.
In this approach, the volume of fluid function, or colour function C, is used that represents
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the phase fraction. The volume fluid function where a cell is completely occupied by one
phase (bioink/air) is unity and by another phase (air/bioink) is zero (Figure 6). According
to this definition, the interface location is where the value of the colour function of the
cells is between zero and unity. The main advantage of this approach is the accuracy in
solving the interface equation without compromising the mass balance, and its weakness
is difficulty with sharp interface and curvature. In addition, the implementation of this
method in 3D cases is complicated.
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As an example of showing how the colour function works in this method, density and
viscosity can be calculated by the following relations:

ρ(x, t) = ρ1+(ρ 2−ρ1)C
µ(x, t) = µ1+(µ 2−µ1)C

(9)

where subscripts 1 and 2 are related to phases one and two, respectively [123].
Obviously, by decreasing the interface thickness, the solution will be more accurate.

At first, the initially prescribed topology of the interface is used to calculate the volume
function of each cell. For this task, the location of volumes truncated by the interface for
each cell is required. After providing velocity field by solvers through solving Navier–
Stokes, the interface is reconstructed from the local volume fraction.

∂C
∂t

+ ui
∂C
∂xi

= 0 (10)

There are different methods to calculate volume fractions based on the topology of the
interface [124]. The first method was Simple Line Interface Calculation (SLIC), presented by
Noh [125], which represents the interface by a horizontal and vertical rectangle. Piecewise
Linear Interface Calculation (PLIC) is another method that approximates the interface in
each cell by an inclined line [126].

Level Set Method

The level set method is very close to VOF with a difference in representing the interface
function. This class of interface captures the works based on the definition of a continuous
level set function. Its magnitude is calculated through the distance between each cell and
the interface. The sign of the function can be positive or negative based on the cell being
in phase 1 or 2 (bioink and air) and zero value for the cells on the interface. The main
advantages of this method compared with other techniques include the ability to predict
sharp interface and attractive simplicity of mathematical formulation. Mass loss due to
numerical errors can be noted as a disadvantage [127,128].

Surface tension is the dominant physical property that demonstrates the behaviour of
the bioink after printing and must be known. Free surface molecules have higher energy
than those in bulk. For a droplet of a liquid on a surface without external forces, the shape
with the lowest surface energy and subsequently the lowest surface energy is a sphere [129].
When the surface of the separation is curved, the pressure near the surface is different in
the two media. Surface pressure is proportional to the curvature k of the interface and the
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surface tension force directed toward the center of the curvature (higher pressure medium
to lower pressure one) [119,129,130]. There are two ways to implement surface tension.
One approach is applying surface tension as a boundary condition along the free surface.
For a staggered mesh, interpolation is needed to ensure that the pressures at the free surface
and center of cells are in correct relation. This technique is not appropriate because the cost
of iterations at each time step is high, considering the time-step restriction due to stability
issues. Another issue is the need for the exact location of the free surface for the next
time step. However, some techniques such as VOF and level set can predict the interface
location at the current time; this value is not known for the next time step [131]. To address
the mentioned obstacle, Brackbill [119] has suggested a method called continuum surface
force (CSF). In this method, instead of determining the exact location of the interface,
surface tension is added to the Navier–Stokes Equations as a body force. By considering
the interface between two inviscid fluids, the surface tension force can be written as below,
where k (curvature) is taken as positive if the center of curvature is in the air.

FSA(x s) = σk(x s)n̂(x s) (11)

where σ is the surface tension coefficient of the bioink, k is the local curvature, R−1
1 + R−1

2
with R1 and R2 being the principal radii of the surface curvature, and n̂ is the unit normal.

Finally, the surface tension force is calculated:

FSV= σkδsn = σkn

∣∣∣∇C̃
∣∣∣

[C]
, δs =

∣∣∣∇C̃
∣∣∣

[C]
, κ =−∇.n̂ (12)

where the tilde and bracket denote smoothed value and the difference between the maxi-
mum and minimum value, respectively.

The continuum surface stress method (CSS) [132] is another method that, instead of
computing the curvature of the interface and adding a force to the momentum equation,
introduced surface tension as a correction to the momentum stress tensor. This approach is
completely independent of the topology of the interface, and the main advantage of that
is its ability to perform 3D simulations and looks promising for simulation of complex
dynamics. The capillary pressure tensor T is defined:

T = −σ(I− n⊗ n)δs (13)

where I is the unit tensor and ⊗ is the tensor product operator

σkδsn = −∇.T (14)

FSV = −∇.T =

[
σ|∇C|I−∇C⊗∇C

|∇C|

]
(15)

3.2. Cell Viability

Experimental evidence shows the effects of nozzle geometry and bioink properties on
cell viability; computational studies are helpful to gain more insight into this evidence [133].
Researchers defined a model based on the deformation and elongation of the cell membrane.
The model connected (1) cell survival as a function of cell membrane elongation, (2) mem-
brane elongation and cell droplet size, and (3) the substrate properties. The cell membrane
may increase up to five percent approximately without cell death, and larger elongation
can lead to rupture of the membrane [134]. A finite element simulation by COMSOL 4.0a
software compared conical and cylindrical needle shapes on cell viability. The power–law
equation was used to model non-Newtonian flow behaviour. The simulation showed that
the highest shear stress was obtained for conical-shaped needles, but the cells withstand
the stress just at a short region near the outlet of the needle. In cylindrical needles, a lower
peak of shear stress occurs but in the long path of the needle (Figure 7) [36].
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A sudden change in the geometry of the flow causes a significant change in linear
velocity, and s, extensional flow occurs. Some studies employing CFD and using Fluent
commercial software demonstrated that cells undergo dramatic stretching and deformation
in the extensional flow, leading to cell damage [135,136]. Aguado et al. [137] showed that by
reducing the diameter from 3.17 mm to 0.185 with the extensional flow, the cell is deformed.
The cell viability from 89.1% (just linear shear occurs) decreased to 58.7% (extensional and
linear shear flows occur); therefore, the main parameter that damages cells is extensional
shear stress [113,137].

Romo et al. [138] employed CFD and OpenFoam software to simulate a series of
experimental studies reported on the cell viability in a range of printing parameters such
as pressure, nozzle shape (conical and cylindrical) and size, and material properties, to
calculate maximum shear and optimize needle geometry. They found that the radius of the
needle at the middle and outlet of conical needles play a key role in optimizing cell viability.

4. Machine Learning View

Machine learning is a promising technology that can optimize systems by using
smarter and more effective use of materials, products, and services. Machine learning
is a subset of artificial intelligence (AI) focusing on designing systems. This designing
process works on learning and predictions based on previous experiences. In contrast to
computer programing that relies on expert codes, machine learning techniques are trained
to transform inputs to output via statistical relationships [139]. Humans are usually able to
find a relationship between output (Y) and a set of input (X). When the input variables and
outputs range from X0 to Xn and Y0 to Yn, humans will be overwhelmed by the complexity.
Computer algorithms can guess and approximate functions among them, and that is the
task of ML models.

The most common machine learning methods include supervised, unsupervised,
reinforcement learning, and deep learning. In supervised ML, more inputs and outputs
are available, and the approximate function will be found. In an unsupervised model, the
output is not given, and the algorithm must find its own outputs as a pattern, a cluster, or a
relationship in the data (X0, X1, . . . Xn). Reinforced ML is another approach similar to the
supervised one in which the inputs and output are given, and the algorithm must find the
function between X and Y but through a dynamic interaction with another algorithm named
environment. The environment rewards or punishes the main algorithm for making that
more accurate. Deep learning is another method that employs a collection of algorithms
with multiple hidden layers applied to a new dataset instead of dynamically adjusting the
agent’s actions from the feedback. (Figure 8) [140].
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Although machine learning has been used for improving 3D printing (additive manu-
facturing) in various ways, such as process optimization, manufacturing defect detection,
and accuracy analysis, it has not been employed as much as it should in 3D bioprinting.
Undoubtedly, it significantly affects the future development of this field [139,141].

4.1. Printability

Biofabrication works in the field of automated generation of functional biological
products. Most of the techniques used in biofabrication were developed when additive
manufacturing developed. Recently, ML was added to this field to cover key aspects im-
pacting the biofabrication process efficiency directly. It would be valuable during material
preparation, model designing, process optimization and monitoring. Developed algorithms
can assist designers in choosing ideal printing orientation and material preparation, reduce
design time, and consequently improve printability [142].

Raberu et al. [143] used machine learning as a novel method to evaluate printability
quantitatively and optimize printing parameters. Ink concentration, temperature, driving
pressure, needle speed, and platform temperature were considered as inputs (Figure 9).
Printability was evaluated by printing scores based on two fundamental criteria: printing
filament morphology during the extrusion process and pore architecture on later stacking
(Figure 10).
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Recognizing anomalies accurately in layer-by-layer bioprinted configurations is an-
other potential task of ML in medical projects. A camera mounted at the side of the
printhead captured images of each layer as raw data for the machine learning tool. Three
major anomalies, including discontinuity (broken raster), irregularity (improper line width),
and nonuniformity (unsmooth surface), were recognized in the first layer of printed struc-
tures. Machine learning could properly recognize the anomalies and optimize printing
parameters based on them [144].

Shi et al. [145,146] employed a multiobjective optimization method and artificial
neural network with computational fluid dynamics to simulate droplet formation and flow
behaviour in drop-on-demand printing. Printing Silicone elastomer via freeform reversible
embedding (FRE) is challenging due to depositing a Newtonian ink within a Bingham
plastic support. To achieve this goal, hierarchical machine learning (HML) was employed,
and the results showed that it is an effective tool to optimize printability factors [147]. Conev
et al. [148] used an ML-based framework, printing conditions and printing parameters to
predict the quality of print as “low quality” or “high quality”. Two methods were applied:
a direct classification-based approach was used to train a classifier to distinguish between
low and high printing quality, and a regression model was employed to approximate the
values of a printing quality metric.

Another research utilized machine learning to predict the printability of various
mixtures of collagen and fibrin. The rheological properties of inks were measured by a
rheometer. Shape fidelity of inks was observed after printing and the data used by machine
learning algorithms. As a result of machine learning analysis, the printable ink should
have a high G’ for high fidelity and low τy for extrusion. A relationship was obtained to
predict printable ink with high G’ and low τy. The Schematic of the process can be seen in
Figure 11 [149].
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4.2. Cell Viability

Despite the extensive experimental work carried out in extrusion-based bioprinting,
a comprehensive view of individual and combined effective parameters on cell viability
is not straightforward to achieve because of the various parameters. Different models of
extrusion process have evolved from analytical models based on simplifying assumptions
to using CFD to simulate complex flow behaviour and nozzles shape. Computational
methods were used to optimize process parameters. Increasing computational power and
rapid development of various algorithms are making data analysis techniques, such as
machine learning, appropriate to address optimization challenges [138].

In the matter of employing ML to predict cell viability, little research has been reported.
Reina-Romo et al. [138] developed an in silico framework to assess the effect of nozzle
geometry, printing pressure, and material properties on the maximum shear stress as some
of the main causes of cell mortality. They used CFD via OpenFoam software to simulate
various shapes of nozzle and extrusion conditions; then, the Gaussian process was utilized
to analyze the data and identify parameters affected by shear stress and related cell viability.
Unlike ANOVA, the Gaussian process not only estimates the importance of individual
parameters but also the influence of parameters on the outcome of a model is predicted.

Lack of data is the main challenge of the machine learning process, so available
databases in the literature can be used as raw data for this kind of research. To illustrate, a
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dataset of 617 instances corresponding to a cell viability value and a dataset of 339 instances
regarding a filament diameter in extrusion-based bioprinting systems were collected from
the literature and used to train algorithms (ML). Regression-based and classification-based
ML models were employed to predict cell viability and filament diameter for printing
cell-laden alginate and gelatin bioinks. The results indicated that the classification-based
ML can predict cell viability with an accuracy of 70%. More data gathering with a focus on
the printing parameters can strengthen the database to provide higher accuracy [150].

Various kinds of algorithms can be used in ML. A streolithography-based bioprinting
study used ML to develop a predictive cell viability model by considering four critical
parameters, including UV intensity, UV exposure time, gelatin methacrylate concentration,
and layer thickness. Four algorithms including neural networks [151] (an algorithm in-
spired by neurons in the biological brain), K-nearest neighbours [152] (a nonlinear algorithm
working by averaging the output of k neighbours), ridge regression [153] (a continuous
shrinkage algorithm that improves accuracy by adding a penalized term), and random
forest [154] (a tree-based algorithm that builds a forest of uncorrelated regression trees)
were combined to achieve an accurate model [155].

5. Conclusions and Future Work

Extrusion bioprinting has been widely employed to create cell-incorporated constructs
for tissue engineering, and to this end, printability and cell viability are two critical issues
that need to be addressed. The difference between printed constructs and designed ones
represents a big challenge, limiting the progress to mimic native tissue organs for tissue
engineering. Our review illustrated that varying characterizations of printability were
presented in the literature and that many parameters that can affect the printability of
constructs mainly include those related to bioink properties, printing process parameters,
and construct design. The main advantage of extrusion bioprinting compared with other
technologies rests in its ability to incorporate cells into the biomaterials for printing con-
structs, while the process-induced forces can cause damage to the incorporated cells (or
cell viability)—another unneglectable issue in bioprinting. Extensional stress and shear
stress are two major process-induced forces responsible for cell damage. Some parameters,
such as needle type and size, bioink concentration, and dispensing pressure, play key
roles in causing cell damage. With many promising investigations on printability and
cell viability, this field is still in its early stage and rigorously determining the effective
parameters remains challenging for future development. Determination or optimization
process based on trial and error is expensive, difficult, time-consuming, and sometimes
impossible; therefore, computational methods demonstrate themselves as powerful tools.
To optimize the bioprinting process, many parameters are involved in an interdependent
manner. Nowadays, machine learning, as a newfound technology, represents a new horizon
in the field of 3D bioprinting. The combination of ML and bioprinting can accelerate the
development of bioprinting and thus tissue engineering. Currently, the main challenge to
moving forward with ML in bioprinting is the limited available data. As such, we urge that
it is time to establish a worldwide data-sharing network in the field of bioprinting. Also, we
note that because of different settings in terms of brands of bioprinters and software around
the world, sharing data represents many issues to be addressed and that standardized data
of each printer by using similar open-source software for all printers could be promising. It
is envisioned that ML, though relatively new in the field of bioprinting, will revolutionize
bioprinting and thus tissue engineering in the future.
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