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Abstract: Recently, the modification of the initial structure of biopolymers, mainly chitosan, has
been gaining importance with a view to obtain functional forms with increased practicality and
specific properties enabling their use in tissue engineering. Therefore, in this article, the properties
(structural and biological) of thermosensitive hydrogels obtained from chitosan lactate/chloride
and two types of crosslinking agents (β-glycerol phosphate disodium salt pentahydrate and uridine
5′-monophosphate disodium salt) are discussed. The aim of the research is to identify changes in the
structure of the biomaterials during conditioning in water. Structural investigations were carried out
by FTIR spectroscopy. The crystallinity of gels was determined by X-ray diffraction analysis. The
biocompatibility (evaluation of cytotoxicity and genotoxicity) of chitosan hydrogels was investigated
by contact with human colon adenocarcinoma cell line for 48 h. The cytotoxicity was verified based on
the colorimetric resazurin assay, and the genotoxicity was checked by the comet assay (percentage of
DNA in the comet tail). The conducted research showed that the analyzed types of chitosan hydrogels
are non-cytotoxic and non-genotoxic materials. The good biocompatibility of chitosan hydrogels
surfaces makes them interesting scaffolds with clinical potential in tissue regeneration engineering.

Keywords: tissue engineering; natural polymer; chitosan; thermosensitive hydrogel; structural
properties; cytotoxicity; genotoxicity

1. Introduction

For several years, the research undertaken in the field of tissue engineering, which is
an innovative but intensively developing discipline of science based on the issues related to
the fields of materials science, biology, biotechnology, chemistry, and biochemistry, has been
gaining importance [1–3]. This is because the standard methods of treating damaged tissues,
such as pharmacotherapy and transplant techniques, are often of limited effectiveness.
Therefore, the solutions offered by tissue engineering constitute an alternative. They do
not require the use of materials with a low degree of biocompatibility and postpone the
need for arthroplasty, allowing the patient to return to full mobility and to their everyday
activities [4,5].

The essence of tissue engineering is to create biomaterials that can replace or regenerate
damaged tissue and restore its basic function. The regeneration process takes place in
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several stages. The first step is the biopsy of a piece of tissue that is processed to isolate
the necessary cells from the extracellular matrix. The next component of the process is
to multiply the cells (in vitro) and seed them on a scaffold, and then cultivate them in a
bioreactor under optimal environmental conditions, culture medium and growth factors.
The final step is the implementation (in vivo) of the obtained scaffold with multiplied cells
into the patient’s body. It is also important that the material for the scaffold is slowly
degraded and resorbed [6–9].

Currently, the manufacture of new materials for scaffolds is a trend in global scientific
research. Hydrogels, which are three-dimensional hydrophilic matrices made of crosslinked
homopolymers, copolymers or macromers, occupy a special position [10]. Given the nature
of crosslinks, there are physical and chemical hydrogels. The first type of gels is created
by various reversible links, for example van der Waals interactions, hydrogen bonds or
electrostatic interactions. These interactions can be induced and reversed depending on
the pH or the temperature making them especially useful in biomedicine. In turn, the
chemical systems are formed by irreversible covalent links and compared with physically
crosslinked gels are more stable under physiological conditions and have better mechanical
properties [11–13].

Due to the relatively high water content, softness and plasticity, hydrogels exhibit
similar physical properties to living tissues. These biomaterials, apart from being used in
tissue engineering, are an excellent material for obtaining immunoisolation barriers for
microencapsulation technology and dressings for the treatment of skin damage and burns.
Additionally, they are applied as smart carriers in controlled drug delivery systems. This
solution ensures a safe and effective therapy. Unlike conventional drug delivery systems in
which the substance is released immediately after entering the body, the drug takes effect
after a certain period and is dosed evenly. Moreover, hydrogels are used as gene carriers
and as integral components of microdevices such as biosensors [14–19].

An extremely interesting form of hydrogels are temperature-sensitive systems, which
can undergo a phase transition at the human body temperature. In general, they consist
of hydrophobic and hydrophilic components, and the thermal response is caused by the
equilibrium between the above parts of the polymer monomer [20].

The main advantage of thermosensitive hydrogels is the possibility of their noninva-
sive introduction into the pathologically affected area by injection, which avoids first-pass
metabolism. In addition, these biomaterials can assume a shape that perfectly matches
the tissue damage. This removes the need for a surgical operation, reduces the adhesion
problems of cells and bioactive substances, and eliminates the difficulties associated with
their even dispersion in the structure. This is due to the possibility of introducing cells and
therapeutic agents into the solution before administration—in situ [20–22].

Hydrogels with thermosensitive properties are mainly obtained from poly (N-
isopropylacrylamide)-based (PNIPAAM) copolymers, poly (ethylene glycol)/biodegradable
polyester copolymers, chitosan and its derivatives [23,24].

Among the above polymers, chitosan (Figure 1), a polysaccharide resulting from the
alkaline deacetylation of chitin, is a particularly promising material for scaffolds. This
biopolymer exhibits many unique biological, physiological, and pharmacological proper-
ties: nontoxicity, biocompatibility with living tissues and biodegradability. The bioactivity
of chitosan is also noteworthy, including acceleration of the wound healing process, in-
creased immunity, hemostatic activity, induction of a biological response, bactericidal and
fungicidal activity [25–28].
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Figure 1. Structure of chitosan.

Chitosan is degraded in the human body by several physiological enzymes (lysozyme,
di-N-acetylchitobiase, N-acetyl-beta-d glucosaminidase and chitiotriosidase etc.), and the
process of its biodegradation causes release of nontoxic oligosaccharides [29–32].

However, it should be borne in mind that the biocompatibility of this material can
be influenced many factors, for example the degree of deacetylation, particle size, concen-
tration, or route of administration [33]. There are also studies pointing to the potential of
chitosan and its degradation products to activate human macrophages and lymphocyte
proliferation without symptoms of inflammation [32,34].

The current legislation states that each new material intended to be used in the
biomedical field must be subject to extensive research aimed at assessing its cytotoxicity
before referring it to clinical trials. In addition, each modification of a previously assessed
solution may affect its potential cytotoxic activity.

In this paper, hydrogels with thermosensitive properties are shown. These systems
were formed from chitosan lactate and chitosan chloride solutions with the use of β-glycerol
phosphate disodium salt pentahydrate (β-GP) (Figure 2) and uridine 5′-monophosphate
disodium salt (UMP) (Figure 3) as the crosslinking agents.
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Uridine 5′-monophosphate disodium salt is an organic chemical compound, a nu-
cleotide that is a major component of ribonucleic acid. This neuroactive molecule plays an
important function in the pyrimidine metabolism of the brain, furnishes nervous tissue
with the pyrimidine ring and takes part in the metabolic pathways. In addition, UMP acts
as a signaling molecule in the central nervous system and participates in the control of
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physiological and pathophysiological brain functions. This nucleotide can be used in the
treatment of neurodegenerative diseases and polyneuropathy and in the therapy of the
myelin sheath lesion [35,36].

The literature suggests that chitosan hydrogels formed at 37 ◦C are most obtained by
the addition of β-glycerol phosphate disodium salt pentahydrate [37–41].

However, there is no information on the preparation of the thermo-gelling systems
with the participation of uridine 5′-monophosphate disodium salt. Only the production
of biomaterials using derivatives of uridine (oUrd) and uridine monophosphate (oUMP)
in combination with glutaraldehyde (AG) has been discussed, but these systems did not
show phase transition under the influence of the temperature [42].

A review of the available publications presents that the hydrogels with thermosensitive
properties formed by the presence of uridine 5′-monophosphate disodium salt is only found
in our previous article [43]. The study was carried out to determine the structural properties
of pure hydrogels, prepared from chitosan lactate and chitosan chloride, based on FTIR
spectra analysis and morphology of these biomaterials evaluated by scanning electron
microscope (SEM). In addition, to assess the state of water in the structure of hydrogels,
thermal analysis was performed using a differential scanning calorimetry (DSC).

In turn, this publication is focused on the determination of changes in the structure
of the gels containing β-GP and UMP due to conditioning in water, which is particularly
important when considering the possibility of using hydrogels, for example as scaffolds in
tissue engineering or carriers for controlled drug release.

The obtained biomaterials were characterized by Fourier transform infrared spec-
troscopy (FTIR) and X-ray diffraction (XRD) studies.

In turn, the biological research included the evaluation of the cytotoxicity and geno-
toxicity of the developed chitosan hydrogels using human colon adenocarcinoma cell line
(HT-29 cell line).

2. Materials and Methods
2.1. Materials of Hydrogels

Chitosan (CH) product no. 50494-100GF, lactic acid (LA) product no. L6661-100ML,
hydrochloric acid (HCL) product no. H1758-100ML, the crosslinking agents: β-glycerol
phosphate disodium salt pentahydrate (β-GP) product no. 50020-100G and uridine 5′-
monophosphate disodium salt (UMP) product no. U6375-10G were purchased from Sigma-
Aldrich (Poznan, Poland). Deionized water treated by a water purification system (Elga
Purelab, High Wycombe, UK) was used in the preparation of chitosan hydrogels and
their conditioning. All chemical reagents were of analytical grade and were used without
further purification.

2.2. Preparation of Solutions and Hydrogels Manufacture

Thermosensitive chitosan hydrogels were prepared by physical blending. Firstly, CH
(0.4 g) was dissolved in 16 mL LA or HCL (0.1 mol/L). The solutions were stirred (at slow
rotations) until complete dissolution and left at room temperature for 24 h. Then, solutions
of the crosslinking agents (2 g β-GP was dissolved in 2 mL deionized water at 4 ◦C, while
2 g UMP was dissolved in 2.5 mL deionized water at 4 ◦C) were added drop by drop into
the chitosan salts solutions. Each sample was mixed for 20 min and stored at 4 ◦C for about
1 h. The prepared formulations were homogeneous solutions, which were subsequently
incubated at 37 ◦C to complete their gelation. Due to the fact that the obtained hydrogels
looked the same, only a photograph of the CH/LA/UMP system is shown in Figure 4.
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2.3. In Vitro Conditioning

The prepared thermosensitive chitosan hydrogels were subjected to the in vitro release
process carried out under static conditions without mixing. The release process of β-GP
and UMP was studied in 100 mL deionized water, maintaining a constant at 37 ◦C.

2.4. Physico-Chemical Studies

The structural properties of chitosan gels before and after conditioning in water for
1, 2, 4, 6, 8, 24, 48 and 72 h were analyzed. Each of the samples for analysis were frozen
at −20 ◦C and then lyophilized under the pressure of 0.63 mbar and the temperature of
−25 ◦C for about 48 h using the Martin Christ Freeze Dryer ALPHA 2-4.

2.4.1. Fourier Transform Infrared Spectroscopy

Fourier transform infrared (FTIR) spectra of the lyophilized chitosan hydrogels were
characterized using a Nicolet™ iS50 FT-IR apparatus equipped with a monolithic diamond
ATR crystal (Thermo Fisher Scientific Inc., Madison, WI, USA). All spectra were recorded
with 100 scans at a 4.0 cm−1 resolution in the range of wavenumbers 4000–500 cm−1.

2.4.2. X-ray Diffraction

The crystalline structure of obtained hydrogels was accessed by the room temperature
powder X-ray diffraction technique. The study was performed in the PANanalytical
X’Pert Pro MPD diffractometer in the Bragg–Brentano reflection geometry with (CuKα)
radiation from a sealed tube (Malvern Panalytical Ltd., Royston, UK). The Cu radiation
was generated at 30 mA and 40 kV. The apparatus operated in the range of 2θ = 3–40◦, with
a step size of 0.0167◦, and the measuring time was 20 s/step.

2.5. Biological Studies
2.5.1. Cell Culture

The analysis of biological properties of the chitosan biomaterials was carried out
on the commercially available human colon adenocarcinoma cell line (HT-29 cell line)
purchased from the American Type Culture Collection (ATCC; Manassas, VA, USA). The
cells were cultured in McCoy’s 5A medium (Sigma-Aldrich Corp., St. Louis, MO, USA)
supplemented with 10% (v/v) fetal bovine serum (FBS; Sigma-Aldrich Corp., St. Louis,
MO, USA), 100 units/mL penicillin and 100 µg/mL streptomycin (both from GIBCO-BRL,
Life Technologies Ltd., Paisley, Scotland). After exposure to accutase solution, the cells
were passaged at 85–95% confluency.

2.5.2. Preparation of CH Solutions for Cytotoxicity and Genotoxicity Studies

Sterile CH formulations for the biological studies were prepared under aseptic condi-
tions in a vertical laminar airflow cabinet equipped with UV sterilization and HEPA filters
(PCR Workstation by Labcaire Systems Ltd., Clevedon, UK).
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2.5.3. Cytotoxicity Analysis

To evaluate the cytotoxic effect of the hydrogels on the studied cell line, the colorimetric
resazurin assay, In Vitro Toxicology Assay Kit, Resazurin based (Sigma-Aldrich Corp.,
St. Louis, MO, USA) was performed. All analyses were carried out in triplicate with similar
results. HT-29 cells were seeded in 12-well plates (2 × 105 cells/well) and cultured in
1 mL of complete McCoy’s 5A medium for 24 h. The cells suspended in 1 mL of complete
culture medium were used as a negative control, whereas cells treated with 100% DMSO
(Sigma-Aldrich Corp., St. Louis, MO, USA) as a positive control. After cells’ adhesion, the
cells were incubated with small pieces of hydrogels (diameter: 5 mm) for 48 h. Following
incubation, the well contents were removed, and the cells were rinsed twice with 1 X DPBS.
Subsequently, 100 µL of the resazurin solution was added to each well, and the cells were
incubated for 2 h. Absorbance was measured at a wavelength of 600 nm and a reference
wavelength of 690 nm using Synergy HT (BioTek) spectrophotometer.

2.5.4. Genotoxicity Assessment

The genotoxicity of the analyzed hydrogels was estimated using the alkaline version
of the comet assay. HT-29 cells were seeded in 12-well plates (2 × 105 cells/well) and
cultured in 1 mL of complete McCoy’s 5A medium for 24 h. The cells suspended in 1 mL
of complete culture medium were used as a negative control, whereas cells treated with
10% DMSO as a positive control. After cells’ adhesion, the cells were incubated with small
pieces of hydrogels (diameter: 5 mm) for 48 h. Following incubation, the well contents were
removed, and 0.2 mL of accutase/well was added to harvest the cells. The harvested cells
were centrifuged. Cell suspension in 0.37% LMP agarose (Sigma-Aldrich Corp., St. Louis,
MO, USA) was placed on microscope slides, which were previously coated with NMP
agarose (Sigma-Aldrich Corp., St. Louis, MO, USA). Subsequently, the preparations were
incubated in lysis buffer (2.5-M NaCl, 10-mM Tris, 100-mM EDTA, pH 10) with the addition
of 1% TritonX-100 (Sigma-Aldrich Corp., St. Louis, MO, USA) at 4 ◦C for 1 h. Following
the lysis, the preparations were incubated in development buffer (300 mM NaOH, 1 mM
EDTA) at 4 ◦C for 20 min, followed by electrophoresis (17 V, 32 mA, 20 min) at 4 ◦C in
an electrophoretic buffer (30 mM NaOH, 1 mM EDTA). Then, the slides were rinsed with
distilled water and left to dry completely. The obtained preparations were stained with a
DAPI fluorescent dye and examined under a fluorescent microscope to assess the level of
DNA damage.

2.5.5. Statistical Analysis

Statistical analysis was carried out using a nonparametric technique: the Mann–
Whitney test in statistical program Sigma Plot (Systat Software, Inc.). Each of the analyses
in individual experiments were based on the results of three independent tests. Significant
statistical differences were presented as follows: * p < 0.05, ** p < 0.01, *** p < 0.001 versus
the negative control.

3. Results and Discussion
3.1. Fourier Transform Infrared (FTIR) Spectra

To identify individual functional groups, FTIR spectra of chitosan hydrogels were
made. The structure of the biomaterials formed with the use of β-glycerol phosphate
disodium salt pentahydrate and uridine 5′-monophosphate disodium salt was compared.

The results in Figures 5 and 6 show the spectra of chitosan lactate hydrogels (the
CH/LA/β-GP system) and chitosan chloride (the CH/HCL/β-GP system) with β-glycerol
phosphate disodium salt pentahydrate after different times of conditioning in water and,
for comparison, the spectra of the gels before conditioning (0 min) and the spectrum of
chitosan (CH) powder.
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In the spectra of chitosan hydrogels with β-glycerol phosphate disodium salt pen-
tahydrate (the CH/LA/β-GP and the CH/HCL/β-GP systems), the broad, asymmetric
spectrum in the range of wavenumbers 3600–3100 cm−1 is assigned in all cases before
and after conditioning in water. This band corresponds to the O–H stretching, indicating
intermolecular hydrogen bonding which overlaps the asymmetric stretching vibrations of
NH2 groups and the N–H stretching vibrations between molecules N–H . . . O=C in the
same region. For hydrogels before conditioning (0 min), the band is shifted towards lower
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wavenumbers compared to the spectrum of CH, and after conditioning this band moves to
higher frequencies and becomes more symmetric.

In the range of 2950–2850 cm−1, the spectrum of CH has an asymmetric band at
2874 cm−1, which consists of two overlapping bands representing the –CH2 and –CH3
aliphatic groups, characteristic of the pyranose ring of CH. The spectra of both types
of hydrogels (0 min) are split into two distinct bands at 2938 and 2870 cm−1. In the
case of biomaterials conditioned in water, this band is observed at 2872 cm−1 and has a
minor shoulder.

Analyzing the frequency range of 1680–1500 cm−1, it is possible to observe charac-
teristic peaks of CH, corresponding to the C=O bond in amide group (amide I vibration)
and the amide II band coming from NH2, which indicate that this polymer is a partially
deacetylated product of chitin. The spectra of the CH/LA/β-GP system (0 min) and
hydrogels after conditioning in water for less than 8 h show one distinct band of 1600 cm−1

with a minor shoulder. Biomaterials conditioned in water for above 8 h have two bands at
1656 and 1582 cm−1. On the other hand, in the case of the CH/HCL/β-GP systems (before
and after conditioning in water), no significant changes are observed.

In the range of wavenumbers 1500–1200 cm−1, the spectrum of CH has four peaks
associated with oscillations characteristic of the O–H and C–H bending of CH2 groups and
representing the C–O stretching of the primary alcoholic group –CH2–OH (1420, 1375, 1315
and 1260 cm−1). For all the CH/LA/β-GP system variants (before and after conditioning in
water), bands are observed at 1420, 1315 and 1260 cm−1, as in the case of CH. Additionally,
a peak appears at 1455 cm−1, and the band at 1375 cm−1 is shifted to 1380 cm−1. In turn,
the spectra of the CH/HCL/β-GP systems (0 min and conditioned in water for less than
4 h) present three peaks at 1455, 1380 and 1260 cm−1. For biomaterials conditioned in
water for 4 and more hours, there is an additional band at 1315 cm−1, as in the case of CH.
For hydrogels conditioned for 6 to less than 72 h, the spectrum shows five peaks at 1455,
1420, 1380, 1315 and 1260 cm−1. After conditioning for 72 h, only bands typical of the CH
molecule are observed.

The spectrum of CH in the range of 1200–800 cm−1 shows bands at 1151, 1060, 1020,
988 and 891 cm−1, characteristic of saccharide structure (oxygen bridge bond (C–O–C) and
CH3COH groups). Before conditioning in water, the CH/LA/β-GP system does not have
the bands typical for a CH molecule. However, two new bands, at 1050 and 950 cm−1

with a minor shoulder at 980 cm−1, connected with the presence of β-glycerol phosphate
disodium salt pentahydrate appear in this region. The band at 1050 cm−1 indicates the
aliphatic P–O–C stretching, the band at 980 cm−1 is characteristic of the –PO4

2– group,
whereas the band at 950 cm−1 may indicate the presence of the –HPO4

– group. In the
case of the CH/HCL/β-GP system (0 min), a band at 1050 cm−1 with a small arm for
the wavenumber 1100 cm−1 and a peak at 950 cm−1 is observed. The spectra for the
CH/LA/β-GP systems conditioned in water for more than 24 h have peaks typical of CH
(1148, 1031 and 894 cm−1). For the CH/HCL/β-GP systems conditioned for longer than
24 h, there are four bands at 1062, 1031, 966 and 898 cm−1. The bands resulting from the
presence of phosphorus in the hydrogels structure disappear.

The spectrum of CH in the range of 800–500 cm−1 has one band at 664 cm−1, which
relates to the vibrations of the O=C–N group. For both types of hydrogels, before con-
ditioning in water, there are bands at 750, 650 and 523 cm−1. The band at 750 cm−1

is characteristic of β-GP (the aliphatic P–O–C stretching). In this frequency range, no
significant changes are observed for all samples conditioned in water.

Interpretation of the FTIR spectra was based on previous studies [44–49].
The spectra of hydrogels with UMP vary with time, as do the spectra of systems

with β-GP. Changes, in the broad band range 3600–3000 cm−1 and for the peak around
2850 cm−1 but primarily in the region of 1750–600 cm−1 are observed.

After conditioning in water, the band in the range of wavenumbers 3600–3000 cm−1

moves toward higher frequencies. In the spectrum of CH, two maxima (3360 and 3295 cm−1)
can be observed; in both types of hydrogels, the O–H and N–H bands overlap.
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Moreover, spectra obtained for both variants of biomaterials conditioned in water
show the band at 2874 cm−1, which is typical of the CH molecule (–CH2 and –CH3
aliphatic groups).

Analyzing the frequency range of 1750–600 cm−1, major changes are observed, which is
related to the presence of uridine 5′-monophosphate disodium salt in the hydrogels structure.

Before conditioning in water, in the FTIR spectra of the CH/LA/UMP and the
CH/HCL/UMP systems, characteristic peaks are detected at wavenumbers: around
1690 cm−1 (C(2)=O stretching mode), near 1475 cm−1 (in plane deformation mode of
N(3) –H), 1437 cm−1 (deformation mode of O–H [ribose]), 1390 cm−1 (deformation mode
of O–H [ribose] and in plane deformation mode of N(3) –H), around 1250 cm−1 (ring
stretching mode of [N(1) –C(2) –N(3)] and C–H bending mode in uracil), 1050 cm−1 (C–C
stretching mode in ribose, C–O stretching mode in ribose, N(1) –C(1′) stretching mode),
970 cm−1 (symmetrical stretching mode of PO3

2–), 900 cm−1 (C–C stretching mode in
ribose), 800 cm−1 (P–O stretching mode, C–C stretching mode in ribose and C–H rocking
mode in uracil), 750 cm−1 (C–H rocking mode in uracil and C=O rocking mode) and
625 cm−1 (C–C–O bending mode in ribose and C=O bending mode).

After conditioning in water, for both types of hydrogels, the band at 1690 cm−1

becomes sharper at first, but from 8 h of conditioning it is less intense and moves towards
lower frequencies. After a sufficiently long time (72 h), it appears at a wavenumber similar
to that in the CH spectrum. Additionally, a peak appears at 1586 cm−1 for both systems
after 72 h. On the other hand, the band at 1475 cm−1 is present but with a little more
intensity. After conditioning in water, the next two peaks at 1437 and 1390 cm−1 move
towards lower wavenumbers and appear at 1420 and 1375 cm−1, respectively, as for the
CH molecule. In the case of the band around 1250 cm−1, intensity decreases for both types
of biomaterials conditioned for longer than 8 h.

In the range of wavenumbers 1200–800 cm−1, in the spectrum of the CH/LA/UMP
system from 8 h of conditioning, and the CH/HCL/UMP system from 24 h, bands appear
at 1151 and 1020 cm−1; they are characteristic of the saccharide structure. The peaks at the
frequencies of 1050 and 970 cm−1, along with the extension of the conditioning time, are
less intense for both systems and shift towards higher wavelengths: 1060 and 988 cm−1,
respectively, as in the spectrum of pure chitosan. Moreover, in the spectra of both types of
hydrogels conditioned in water, the band at 900 cm−1 does not have significant changes.

In turn, the bands at 800 and 750 cm−1 are clearly visible up to a defined time (24 h)
and then they disappear leaving trace amounts. The peak at 625 cm−1, in the spectra of the
CH/LA/UMP and the CH/HCL/UMP systems, moves towards a higher wavenumber
(664 cm−1).

Interpretation of the FTIR spectra was based on previous studies [50–52].

3.2. Crystallinity—XRD Diffractograms

The structural changes of the hydrogels were defined based on powder X-ray diffrac-
tion analysis (XRD).

The diffraction patterns of the CH/LA/β-GP and the CH/HCL/β-GP systems after
conditioning in water are shown in Figures 9 and 10.

In turn, Figures 11 and 12 present the diffraction patterns of chitosan lactate hydro-
gels (the CH/LA/UMP system) and chitosan chloride (the CH/HCL/UMP system) with
uridine 5′-monophosphate disodium salt.
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The XRD pattern of the starting polymer (CH) is characterized by a typical reflex at
2θ ≈ 20◦, which indicates that chitosan as a polymer with low crystallinity index is a rather
amorphous body [53].

Upon the transformation of chitosan into thermosensitive hydrogels, its structure
changes. The diffractogram of the CH/LA/β-GP system (0 min) shows that the hydrogel is
partially crystalline and characterized by a number of small bands and five distinct peaks
with maxima at 2θ angles of about 12, 17, 20, 28 and 32◦. Similar features are visible on the
diffractogram of the CH/HCL/β-GP system (0 min), but in this case the peaks are more
intense and stronger. This is indicative of a structure with a higher crystallinity due to
the formation of a compound between glycerophosphate and chitosan or precipitation of
sodium chloride, which appeared after drying.

In the case of hydrogels conditioned in water for up to 8 (the CH/LA/β-GP system)
or 24 h (the CH/HCL/β-GP system), their structure does not significantly change although
the intensity of the peaks decreases. However, after longer conditioning, due to the leaching
of sodium glycerophosphate, the structure of gels returns to pure chitosan.

The diffractogram of the CH/LA/UMP system (0 min) shows that the hydrogel is
partially crystalline and characterized by six peaks at the angles of 2θ = 16, 18, 20.5, 21, 22
and 25◦. In the case of the hydrogel conditioned in water for up to 4 h, the intensity of the
above peaks decreases. After 6 h, the XRD pattern starts to resemble the diffractogram of
a pure polymer. From 48 h of conditioning, two bands at the angles of 2θ ≈ 11 and 20◦,
characteristic for the CH molecule, are clearly visible.

On the other hand, the diffractogram for the CH/HCL/UMP system (0 min) shows
that the biomaterial is practically amorphous. From 24 h of conditioning in water, the
structure of the hydrogel returns to pure polymer and from 48 h, two typical peaks at
angles of 2θ ≈ 11 and 20◦ are noticeable.

The presented diffractograms confirm the suggestions resulting from the analysis of
FTIR spectra.

3.3. Analysis of the Cytotoxicity of Chitosan Hydrogels

Although chitosan hydrogels crosslinked by β-GP are highly studied in biomedical
research, no information is available as to the biocompatibility of systems with UMP.
Therefore, the safety profile of both types of gels was compared in the present work.

The resazurin assay, a quantitative and rapid colorimetric method, was chosen to prelim-
inarily screen the cytotoxicity range of the CH/LA/β-GP, CH/HCL/β-GP, CH/LA/UMP
and CH/HCL/UMP systems. This method is based on the reduction of oxidized non-
fluorescent blue resazurin to a pink, fluorescent dye (resorufin) by cell activity (likely by
oxygen consumption through metabolism) [54,55].
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The results shown in Figure 13 summarize the viability of HT-29 cells incubated with
the hydrogels for 48 h.
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The studies on cytotoxicity revealed that in the case of all the tested hydrogels, irre-
spective of the solvent and crosslinking agent used, no negative impact on human colon
adenocarcinoma cells (HT-29) was observed.

In the case of chitosan lactate gels (the CH/LA/β-GP and the CH/LA/UMP systems),
increased cell proliferation in relation to the negative control is observed (median of cell
viability: 112.1 and 101.8% respectively). Slightly higher cytotoxic response is noticed for
biomaterials prepared from chitosan chloride (the CH/HCL/β-GP and the CH/HCL/UMP
systems)—the median of cell viability is 91.0 and 98.2%, respectively—which is probably
due to the fact that hydrochloric acid has a lower pH (pH < 1) than lactic acid (pH 2.44).

3.4. Evaluation of Genotoxicity of Chitosan Hydrogels

Apart from cytotoxicity assessment, the evaluation of genotoxicity is another factor
determining the use of biomaterials in medicine. The advantage of in vitro studies on
biocompatibility is that multiple samples can be evaluated simultaneously. Moreover, only
the materials that appear to be effective can be further analyzed in vivo in experimental
models. The use of cell culture assays allows for a quick and easy examination of cellu-
lar processes using small amounts of the tested substance, and their great advantage is
repeatability. These tests are ethically more acceptable in comparison to in vivo animal
experiments and, more importantly, their results may lead to significant clinical conclusions
in biomaterial research [56].

In this study, a genotoxicity assessment of the chitosan hydrogels was performed
using the alkaline version of the comet assay. This technique is a highly specific, sensitive,
and rapid method, which enables the detection of oxidative DNA damage, single- and
double-stranded breaks as well as the presence of alkaline labile sites. The first versions of
the test were developed in 1978 by Rydberg and Johanson, who described the detection of
single-strand DNA breaks in individual cells embedded in agarose [57,58].

The amount of DNA damage was assessed based on the percentage of DNA in the
comet tail (Figures 14 and 15).
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The obtained results show that all tested variants of chitosan hydrogels, irrespective
of the solvent and crosslinking agent used, do not induce significant DNA damage in
HT-29 cells (all systems give <2% DNA damage). As depicted in Figure 15, cells exposed
to chitosan hydrogels predominantly display a round-shaped head, which is part of the
undamaged DNA without visible tail (fragmented DNA) similar to the negative control
cells (A), indicating that the hydrogels and their components do not induce a genotoxic
effect in human colon adenocarcinoma cells.

The findings of the biological study suggested that all the analyzed chitosan hydrogels
could be candidates for scaffolds with good biocompatibility. However, due to the fact that
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the potential area of application of the developed biomaterials, in particular the hydrogels
containing UMP, is neural tissue engineering, further studies using, for example, the
astrocyte cell line (C8-D1A line), should be carried out.

4. Conclusions

This study demonstrates the thermosensitive chitosan lactate and chitosan chloride
hydrogels. The biomaterials were prepared via sol–gel technique with the use of two
crosslinking agents (β-glycerol phosphate disodium salt pentahydrate (β-GP) and uridine
5′-monophosphate disodium salt (UMP)).

Based on structural studies, it was found that the structure of all analyzed hydrogels
changed due to conditioning in water. Changes in FTIR spectra of hydrogels with β-GP
can be observed in the range of the broad band 3600–3100 cm−1, but mainly in the range of
the amide band 1680–1500 cm−1, band 1500–1200 cm−1 and band 1200–800 cm−1, which
reflects the saccharide structure and is connected with the presence of phosphate ions.
In the case of biomaterials with UMP, the most significant changes are recorded in the
frequency range of 1750–600 cm−1. Regardless of the solvent and type of crosslinking
agent used, conditioning of the hydrogels in water leads to FTIR spectra corresponding to
the spectrum of the pure polymer. The analysis of spectra showed that the biomaterials
containing UMP are characterized by faster release of the crosslinking agent than the gels
with β-GP. Thus, the advantage of UMP could be its presence for delivering it in a possible
neuronal growth procedure, which requires additional studies to be performed on the
retention/release of UMP from the gel in the future. The obtained results of the analysis
carried out with the room temperature powder X-ray diffraction technique confirm the
general conclusions resulting from the FTIR spectra.

Since the anticipated field of application of the manufactured hydrogels is biomedicine,
a crucial factor is their safety for the human body. Therefore, an important step was to assess
the biocompatibility of the hydrogels in contact with the human colon adenocarcinoma cell
line. Biological studies showed that biomaterials are non-cytotoxic and non-genotoxic, and
the chitosan lactate gels (the CH/LA/β-GP and the CH/LA/UMP systems) even increase
the cell proliferation in relation to the negative control.

Thus, the obtained hydrogels can be proposed as scaffolds for potential application
in the clinical and tissue engineering field, being a promising tool in tissue-constructs
development, for example nervous tissue, due to the application of the pyrimidine ribonu-
cleotide (UMP), which has a regenerative effect on the components of the nervous system
by improving neurotransmission.

5. Patents

Majsterek I., Modrzejewska Z., Pieklarz K., Tylman M.; Method for producing chitosan
gels forming in the human body temperature, intended for injection scaffolds for breeding
of nerve cells. Lodz University of Technology, Lodz. Poland. Patent application 235369.
Publ. 29.06.2020 WUP.
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