






## Anti-Metastatic Effects of Plant Sap-Derived Extracellular Vesicles in a 3D Microfluidic Cancer Metastasis Model

## Kimin Kim $^1$ , Jik-Han Jung $^2$ , Hye Ju Yoo $^1$ , Jae-Kyung Hyun $^3$ , Ji-Ho Park $^2$ , Dokyun Na $^4$ and Ju Hun Yeon $^{1,\ast}$

- <sup>1</sup> Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea; abc-632@hanmail.net (K.K.); hyeju\_yoo@naver.com (H.J.Y.)
- <sup>2</sup> Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; jjhan@kaist.ac.kr (J.-H.J.); jihopark@kaist.ac.kr (J.-H.P.)
- <sup>3</sup> Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju 28119, Korea; jaekyung.hyun@oist.jp
- <sup>4</sup> School of Integrative Engineering, Chung-Ang University, Seoul 06911, Korea; blisszen@lile.cau.ac.kr
- \* Correspondence: jhyeon@ube.ac.kr; Tel.: +82-41-529-2621; Fax: +82-41-529-2674



**Figure S1.** Uptake of DM-EVs into HUVECs. (**a**) Representative fluorescence microscopic images of cellular uptake of fluorescently labeled DM-EVs. (**b**) A comparison of fluorescence intensity with different time of 0, 1, 3, 6, 9, 12 h, respectively. Scale bar: 50 μm.



© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).