


Supplementary Materials: Development of Scaffolds with Adjusted Stiffness for Mimicking Disease-Related Alterations of Liver Rigidity

Marc Ruoß 1,*, Silas Rebholz 1, Marina Weimer 1, Carl Grom-Baumgarten 1, Kiriaki Athanasopulu 2, Ralf Kemkemer 2, Hanno Käß 3, Sabrina Ehnert 1 and Andreas K. Nussler 1

Table S1. Concentrations of cryogel components which were tested during the development of the scaffolds.

Scaffold Component	Final Concentration Within the Cryogel
ddH₂O	adapted to the other scaffold components
2-HEMA 98%	1%–30%
BAA 2%	ratio 1:1 – 1:6 adapted to the HEMA concentration
Gelatin (300 g/L)	0%–40%
BSA (100 g/L)	0%–60%
Collagen (3.5 g/L)	0%–40%
TEMED	2%
APS 10%	0.2%
Glutaraldehyde 25%	0%–2.5%

Measurement of the Scaffold Permeability

Figure S1. The diffusion rate of the red-colored SRB solution into the scaffold was used to determinate the permeability of the scaffolds. The figure shows representative images of the cross-section of the healthy liver scaffold. These images were used for the analysis of the scaffold permeability.