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Abstract: Stereolithography technology associated with the employment of photocrosslinkable,
biocompatible, and bioactive hydrogels have been widely used. This method enables 3D
microfabrication from images created by computer programs and allows researchers to design
various complex models for tissue engineering applications. This study presents a simple and fast
home-made stereolithography system developed to print layer-by-layer structures. Polyethylene
glycol diacrylate (PEGDA) and gelatin methacryloyl (GelMA) hydrogels were employed as the
photocrosslinkable polymers in various concentrations. Three-dimensional (3D) constructions were
obtained by using the stereolithography technique assembled from a commercial projector, which
emphasizes the low cost and efficiency of the technique. Lithium phenyl-2,4,6-trimethylbenzoyl
phosphonate (LAP) was used as a photoinitiator, and a 404 nm laser source was used to promote the
crosslinking. Three-dimensional and vascularized structures with more than 5 layers and resolutions
between 42 and 83 µm were printed. The 3D printed complex structures highlight the potential of this
low-cost stereolithography technique as a great tool in tissue engineering studies, as an alternative to
bioprint miniaturized models, simulate vital and pathological functions, and even for analyzing the
actions of drugs in the human body.
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1. Introduction

Both industry and academia have expressed increased interest in the application of various
printing technologies [1,2] because they offer great advantages such as faster production, easy
access, better quality, cost-effective, tailormade design, minor waste generation, and allow large scale
production [3]. Stereolithography has emerged as a more accurate method to design layer-by-layer
light-sensitive hydrogels, rather than strips or droplets as employed in other bioprinting techniques [4,5].
The employment of this technology has promoted the emergence of micro-scale technologies
and microfluidic systems, which are useful tools to overcome the challenges of creating artificial
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microvascular structures [6–8]. Consequently, these tools make bioprinting even more efficient in terms
of versatility, detailing, and capacity to obtain structures with high spatial resolution [9]. Furthermore,
hydrogels have been widely studied due to their unique properties such as biocompatibility and
bioactivity. These materials may be natural or synthetic with an inherent crosslinking ability for
biomedical applications, including tissue engineering scaffolds, artificial blood vessels, wound dressing,
and drug delivery devices [10].

Stereolithography technologies have allowed effective advances in constructing detailed shapes
with these hydrogel-based biomaterials made of complex and accurate media with different physical,
chemical, and mechanical properties to study, create, and recover lost functional tissues and
structures [11–13]. Nevertheless, challenges such as long manufacturing times and high cost still limit
the application of this technology [14].

Furthermore, the selection of appropriate biomaterials for stereolithography intended for
biomedical applications is crucial for engineering optimal and high quality printed structures [12].
Polyethylene glycol diacrylate (PEGDA) and gelatin methacryloyl (GelMA) have proven to be suitable
candidates and have been mostly used to produce printed structures using stereolithography [15].
These light-sensitive and photocrosslinkable hydrogels have significant scientific interest due to their
great advantages such as biocompatibility, hydrophilicity, and ability to promote various cellular
functions, making them suitable for biomedical applications, tissue engineering, and regenerative
medicine, pharmaceuticals, and cancer therapies [15,16]. In addition, these materials have been used
as a cell culture platform to develop constructs or implants [17]. These types of hydrogels are not toxic
and exhibit easy hydration, combine well with other biomaterials, and exhibit adhesive properties.
Upon exposure to light, these materials achieve desirable functionality and are easily crosslinked
suitable for various biomedical applications and three-dimensional (3D) constructions [16]. Moreover,
a microfluidic digital mirror device (DMD) can be employed for micro-stereolithographic detail-rich
constructs, which are required in tissue engineering applications [18,19]. This method enables 3D
microfabrication of solid-state materials by creating images through computer-aided design programs
(CAD) [20,21].

Generally, the stereolithography process consists of a concentrated UV light beam that shines on
the liquid photopolymer, and in parallel, the CAD model is interpreted onto the surface of the liquid.
This process initiates the synthesis of the first layer; subsequently, each additional layer is polymerized
at the predetermined time to form layers until the intended object is fully fabricated. Stereolithography
is widely used to manufacture physical models, such as human anatomy, for surgical procedures, and
implants in medicine and dentistry [22,23].

Herein, we present custom-made low-cost stereolithography-based printing technology.
The system consists of one commercial projector, laser radiation at 404 nm to promote the light
polymerization of the liquid polymers towards a solid structure, and a computer, where the design is
created. The models were produced from simple images and printed layer-by-layer. As a proof of
concept, a wide range of various designed structures were printed.

2. Materials and Methods

2.1. Materials

The following chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA): PEGDA
(Molecular Weight: 2000 Da), gelatin (Type A, 300 bloom from porcine skin), methacrylic anhydride
(MA), polydimethylsiloxane (PDMS), polymethoxycarbonylmethylene (PMMA) polymers and
phosphate buffered saline (PBS). Photoinitiator lithium phenyl-2,4,6-trimethyl benzoyl phosphinate
(LAP, Allevi, Philadelphia, PA, USA) was used as a photoinitiator. GelMA was synthesized according
to protocol [24]. Food dye (Mago, Sao Paulo, Brazil) was used to visualize the channels. All the
chemicals were used without any further treatments or purifications.
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2.2. Preparation of Formulations for Bioprinting Employing Stereolithography

PEGDA hydrogel: PEGDA (10 wt %) was dissolved in deionized water, followed by the addition of
LAP (0.3 wt %). GelMA hydrogel: various concentrations of GelMA (7, 10, 12, 15, 20 and 25 wt %) were
dissolved in PBS at 37 ◦C, followed by addition of the LAP (0.3 wt %).

2.3. Stereolithography Setup

Figure 1 depicts the custom-made stereolithography-based system for 3D structure fabrication.
The computer program, Thinkercad software, was employed and the masks were built to form the
3D structures. To enable the slicing process, the 3D models were converted into 2D bitmap planes by
using Cura software. The generated planes were designed by an Epson DLP type overhead projector.
The light beam from the projector is a telescope formed by two lenses, which controls the beam
diameter at the lens entrance and consequently the final size of the generated image. The process is
conducted with a working distance of 2 cm. The photocrosslinking of PEGDA and GelMA was carried
out using a coherent® diode laser (404 nm, 500 mW cm−2). An energy meter (Thorlabs) was used
to determine the light intensity and input beam. The PEGDA and GelMA solutions (as previously
described) were placed under PDMS film and fixed in a PMMA mold. The 3D construction process of
the printed layers were designed as biomimetic vascularization model structures, linear systems, and
star shapes to evaluate the potential and resolution of the assembled technique. Different amounts of
each hydrogel were placed on each layer constructed to cover the projection region of the images, and
each layer was irradiated with laser light for up to 20 seconds, depending on the light opening and
hydrogel composition for initiating the crosslinking processes. Constructions of 3 to 7 layers were
obtained employing the devised technology.J. Funct. Biomater. 2020, 11, 12 4 of 10 
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be devised using PEGDA (10 wt %) and the photoinitiator (LAP, 0.3 wt %). The PEGDA hydrogel 
changed into a solid layer at the laser-irradiated site, then moved further downward (z-axis), and a 
new layer of hydrogel was obtained. 

 

                              

Figure 2. Star-like constructions obtained in 7 layers using PEGDA (10 wt %) and LAP (0.5 wt %). 

Additionally, Figure 3a depicts the printing of complex structures from an input drawing. Using 
this mask, a 3D structure could be designed with PEGDA (10 wt %) and LAP (0.3 wt %) with three 
layers, providing figures with a diameter of 1 mm (Figure 3b). Subsequently, a hydrogel structure 
containing GelMA (10 wt %) was printed. These examples highlight the ability to construct and print 

Figure 1. Schematic representation of the custom-made low-cost stereolithography with the various
components including the computer, projector, lenses, digital micromirror device (DMD), mirrors,
objective, and the printed hydrogel. The two lenses form a telescope, which controls the beam size
without divergence. The computer program provides the computer-aided design (CAD) model to be
printed with planned settings through the projector. The laser allows solidification of the hydrogels
through crosslinking layer by layer.
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2.4. Mechanical Testing

The mechanical properties of the hydrogels were characterized by an unconfined compression test.
The solution of respective samples (GelMA (10 wt %), PEGDA (10 wt %), and LAP (0.3 wt %)) were
added into a specific cylindric mold (8 mm in diameter and 1 mm thickness) and placed under UV
light (360–480 nm, 6.9 mW/cm2) for 5 min. The cylindrical discs were further immersed in PBS solution
for 24 h at 37 ◦C to reach swelling equilibrium. Subsequently, the swollen hydrogels samples were
subjected to an unconfined compression test at a rate of 1 mm/min using a texture analyzer (TA.XT
plus, Stable Micro Systems Ltd., Vienna, UK). The compressive modulus was determined as the slop
linear region in the 0%–10% strain range of the stress–strain curve. All experiments were conducted in
triplicate. To statistical test one-way ANOVA followed by post-test multiple Tukey comparisons were
used. p < 0.05 was used to define the significance.

3. Results and Discussions

The stereolithography technology was used to create PEGDA and GelMA hydrogel structures
with channels of varying shapes and sizes. The desired configurations and structures of various
shapes were designed by computer. Initially, as demonstrated in Figure 2, a star-like construct could
be devised using PEGDA (10 wt %) and the photoinitiator (LAP, 0.3 wt %). The PEGDA hydrogel
changed into a solid layer at the laser-irradiated site, then moved further downward (z-axis), and a
new layer of hydrogel was obtained.
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Figure 2. Star-like constructions obtained in 7 layers using PEGDA (10 wt %) and LAP (0.5 wt %).

Additionally, Figure 3a depicts the printing of complex structures from an input drawing. Using
this mask, a 3D structure could be designed with PEGDA (10 wt %) and LAP (0.3 wt %) with three
layers, providing figures with a diameter of 1 mm (Figure 3b). Subsequently, a hydrogel structure
containing GelMA (10 wt %) was printed. These examples highlight the ability to construct and print
2- and 3D structures by using this technology and PEGDA and GelMA as the light-sensitive polymer
materials. Interestingly, employing 20 wt % GelMA provided a printed construct with improved edge
resolution compared to 10 wt % GelMA (Figure 3c,d).

Previous studies have demonstrated that GelMA displays good biocompatibility, but insufficient
mechanical properties, and its high viscosity limits its application in inkjet bioprinting [25,26].
Nevertheless, through combinations with other materials such as alginate, its mechanical properties
can be tuned to provide well-organized encapsulated cells, human mesenchymal stem cells, and
endothelial cells [27]. Figure 4a demonstrates the input image with two layers. We also demonstrated
the successful printing of various channels with good distribution and extruded edges employing 20%
(Figure 4b), 15% (Figure 4c), 12% (Figure 4d), 10% (Figure 4e), and 7% (Figure 4f) GelMA and their
x–y-planes resolution analysis using ImageJ (Figure 4g). Note that 25 wt % GelMA did not deliver any
desired printed structure; thus, the concentration was too high to provide a printable polymer solution.
These analyses indicated that the edge resolution increased as the GelMA concentration increased
(Figure 4g). A previous study demonstrated that GelMA concentration between 7 and 15 wt % could
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provide printed cell-laden constructs [28]. However, in the present study, layers with uniform and
structured edges were designed.
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Figure 4. Printed channels using different concentrations of GelMA. (a) The input image consisting of
two layers. The printed structure with (b) 20 wt % GelMA, (c) 15 wt % GelMA, (d) 12 wt % GelMA,
(e) 10 wt % GelMA, and (f) 7 wt % GelMA. (g) The resolution analysis performed using ImageJ.
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Furthermore, Figure 5a illustrates the 3D printed structure using 10 wt % GelMA hydrogel and
Figure 5b a mask used to print the 3D structures. Figure 5c shows the 3D structure with vascularity due
to channels formed in the z-direction, resulting from the presence of dark liquid. Moreover, Figure 5d
illustrates the structure after printing and its transverse section. The perfused printed structures are
in Figure 5e,f. The printed models displayed microstructures and microchannels suitable for tissue
engineering and drug delivery applications using the presented low-cost stereolithography.J. Funct. Biomater. 2020, 11, 12 7 of 10 
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Figure 5. Printed 3D microchannels and microfluidic structures employing GelMA (10 wt %). (a) The
3D printed structure with 10 wt.% GelMA. (b) The mask employed to print the 3D structures. (c) 3D
structure with vascularity. (d) printed structure and its transverse section. (e), (f) Printed structures
with microstructures and microchannels.

The mechanical properties of the crosslinked GelMA and PEGDA hydrogels were further
evaluated (Figure 6a,b). The PEGDA hydrogel displayed higher compressive stress and strain than the
GelMA hydrogel, which indicated that a lower concentration could be used for printing (Figure 6a).
The compressive Young’s modulus of GelMA and PEGDA were 8.72 and 5.70 kPa, respectively
(Figure 6b). The GelMA hydrogel presented relatively “soft” behavior, and based on the mechanical
results, the printability and resolution can be improved by the addition of PEGDA for the engineering
of GelMA composite constructs.

The devised technology presents advancements compared to previous reports that employ
microfluidic systems to manufacture drug carriers or direct delivery of drugs to a target tissue [29].
Other examples have divulged the use of 3D printed microfluidic chips as controllable 3D cell
culture scaffolds, and presented the applicability of the technique in physiological systems for future
bioengineering applications [30]. Our new technology is easily modulated to print different structures
and different channels to construct microbioreactors.
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4. Conclusions

The home-made low-cost stereolithography technology with a projector allowed the successful
construction of 3D structures. The devised technique provides faster construction, higher resolution,
and material conservation. Multi-layers, 3D, and vascularized structures were successfully obtained
using PEGDA and GelMA as the polymers. We also investigated the concentration of GelMA as a
strategy to obtain high-resolution channels with interesting resolutions. The new technology could
be used to develop microbioreactors and opens up the possibility of manufacturing miniaturized
microchannels and vascularized structures suitable as cell models for studies of pathologies, cell
differentiation, or drug interactions. We envision that the presented technology will advance the
research field of developing technologies for printing 3D hydrogel structures.
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