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Abstract: Performance in elementary cognitive tasks is moderately correlated with fluid intelligence
and working memory capacity. These correlations are higher for more complex tasks, presumably
due to increased demands on working memory capacity. In accordance with the binding hypothesis,
which states that working memory capacity reflects the limit of a person’s ability to establish and
maintain temporary bindings (e.g., relations between items or relations between items and their
context), we manipulated binding requirements (i.e., 2, 4, and 6 relations) in three choice reaction
time paradigms (i.e., two comparison tasks, two change detection tasks, and two substitution tasks)
measuring mental speed. Response time distributions of 115 participants were analyzed with the
diffusion model. Higher binding requirements resulted in generally reduced efficiency of information
processing, as indicated by lower drift rates. Additionally, we fitted bi-factor confirmatory factor
analysis to the elementary cognitive tasks to separate basal speed and binding requirements of the
employed tasks to quantify their specific contributions to working memory capacity, as measured by
Recall−1-Back tasks. A latent factor capturing individual differences in binding was incrementally
predictive of working memory capacity, over and above a general factor capturing speed. These
results indicate that the relation between reaction time tasks and working memory capacity hinges
on the complexity of the reaction time tasks. We conclude that binding requirements and, therefore,
demands on working memory capacity offer a satisfactory account of task complexity that accounts
for a large portion of individual differences in ability.

Keywords: mental speed; binding; working memory capacity

1. Introduction

Some people process information fast, others do it more slowly. Although it is yester-
day’s news that the processing efficiency of information is subject to individual differences
(e.g., Carroll 1993; Roberts and Stankov 1999), there is still debate as to how individual
differences in processing efficiency correspond to differential levels in human cognitive
ability. On the one hand, empirically, it is a well-established finding that measures of mental
speed correlate moderately with measures of cognitive ability (Sheppard and Vernon 2008).
Further, this correlation becomes stronger as the complexity of the mental speed tasks
increases. On the other hand, however, this well-replicated moderation by task complexity
is not well understood (Deary et al. 2001; Sheppard and Vernon 2008). In fact, there is
not even a satisfactory and theory-driven account of “task complexity”. Presumably, the
most prominent proposition of “task complexity” is in terms of requirements on working
memory capacity (WMC; e.g., Larson et al. 1988).

In the current study, we addressed this proposition by disentangling the underlying
cognitive requirements of several mental speed tasks into basal requirements of mental
speed and an incremental requirement on WMC in line with the binding hypothesis of
WMC (Oberauer 2005a). This study aimed to contribute to a better understanding of task
complexity in mental speed tasks. To this end, we combined theory-driven experimental
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manipulations with cognitive modeling and the analysis of individual differences. In
the next sections, we embed mental speed into the framework of cognitive abilities and
describe its typical mode of measurement. In addition, we explore how the complexity
of elementary cognitive tasks can be understood in terms of WMC, before presenting the
research aims of the current study.

1.1. Mental Speed as a Cognitive Ability and Its Measurement

The study of mental speed has a long tradition in psychology, dating back to the
very beginnings of research on individual differences in cognitive ability (Galton 1883).
The theoretical and empirical association between mental speed and cognitive ability is
nowadays still evident in all broad models of intelligence that comprise broad mental
speed factors, starting with the Gf–Gc theory (Cattell 1963) and continuing in the Three-
Stratum theory (Carroll 1993) and Cattell–Horn–Carroll (CHC) theory (McGrew 2005, 2009).
Generally, mental speed is understood as the ability to solve simple tasks quickly, i.e., to
give as many correct responses as possible in a predefined time, or put differently, to carry
out supposedly simple mental processes efficiently in a given time (Carroll 1993; Danthiir
et al. 2005a). In this paper, we refer to mental speed as “the ability to make elementary
decisions and/or responses (simple reaction time) or one of several elementary decisions
and/or responses (complex reaction time) at the onset of simple stimuli” (McGrew 2009,
p. 6), focusing on the idea of mental speed being indicative of efficiently processing limited
information.

There are numerous studies on mental speed, but its structure is still inconclusive
(e.g., Danthiir et al. 2005a). In part, somewhat ambiguous interpretations and differences
in the suggested taxonomic models may contribute to this situation (Carroll 1993; Danthiir
et al. 2005a; McGrew 2009). Historically, two different approaches have been adopted in
studying mental speed (Danthiir et al. 2005a; Roberts and Stankov 1999). One approach is
the descriptive psychometric approach of mental speed that is primarily concerned with
providing simple indicators for a group factor of intelligence. The other one, the explanatory
approach, focuses on studying the relationship between diverse measures derived from so-
called elementary tasks and psychometric indicators of intelligence (Danthiir et al. 2005a).
Current taxonomies of human abilities (McGrew 2005, 2009) comprise two distinguishable
speed factors, namely processing speed (Gs; also “clerical speed”) and reaction and decision
speed (Gt; also “elementary cognitive speed”). While Gs refers to the ability to smoothly
carry out overlearned cognitive tasks, elementary cognitive speed refers to the ability
to classify presented stimuli by means of button presses in computerized paradigms.
Both factors capture the communality in tasks originating from the psychometric and
explanatory traditions, respectively. However, this factorial distinction seems, to a large
extent, to reflect differences in the assessment methods (Schmitz and Wilhelm 2019).

Psychometric models of mental speed suggest a general factor of mental speed (e.g.,
Burns and Nettelbeck 2003; Hale and Jansen 1994; Neubauer et al. 2000; Neubauer and
Bucik 1996). However, studies using a broader selection of mental speed tasks conceive
mental speed as a multifaceted construct (O’Connor and Burns 2003; Roberts and Stankov
1999). From the latter perspective, mental speed is seen as a construct of specificity,
depending on the class of tasks (e.g., modalities and types of tasks). Recent research
synthesized both perspectives by providing evidence for a hierarchical model of mental
speed, comprising a general factor and several task-specific factors (Danthiir et al. 2005b,
2012; Kranzler and Jensen 1991; Roberts and Stankov 1999; Schmitz and Wilhelm 2016).
Consequently, a wide variety of tasks have been proposed to be suited for measuring mental
speed, for both paper–pencil and computerized contexts (Danthiir et al. 2005b, 2012).

Mental speed is usually assessed by means of so-called elementary cognitive tasks
(ECTs; Carroll 1993). These tasks are labeled “elementary” because they only require basal
cognitive processes and no specific knowledge or previous experience. In fact, the assumed
simplicity of these tasks is accentuated through the idea that every person should be able to
solve the tasks correctly given enough time. The small number of mental processes that are
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to be carried out to arrive at the correct solution comes with the advantage that unwanted
sources of individual differences are minimized, strategy use is prevented, and empirical
control of task complexity is supposedly provided (Schubert et al. 2015). Although the
cognitive demands of these tasks might be low, several cognitive processes are involved
when completing ECTs: (sustained) attention; initial perception of stimuli; encoding,
updating, and retrieval from working memory; response preparation; and execution of a
motor response (Ackerman and Kyllonen 1991; Kyllonen and Christal 1990).

Due to the simplicity of ECTs, the error rates in these tasks are typically low and
hypothesized to be randomly distributed across trials and individuals (Danthiir et al.
2005a). Apart from error rates, the most prominent variable of interest is response times,
that is, the time it takes a person to give a (correct) response. Take, for example, a stimulus
comparison task (Danthiir et al. 2012) with a binary decision format, where a person is
simultaneously presented with two stimulus strings and is asked to determine whether
these two strings are the same or different. This task is inherently simple, but persons
will differ in their time to give the correct response, as some persons are able to process
the stimuli faster than others are. The emerging response time distributions are suited
for studying individual differences (Schmitz et al. 2018). Response time distributions of
ECTs contain much information, which can be analyzed in detail. However, most studies
used mean response times only as performance indicators (for an overview on scoring
alternatives for mental speed tests, see Schmitz et al. 2018). In order to extract more
information on response times on ECTs, reaction-time models like the diffusion model
(Ratcliff 1978; Ratcliff and Rouder 1998) have become increasingly popular. The diffusion
model’s basic idea is to decompose a binary decision process into well-defined parameters
that may serve to indicate cognitive processes (Ratcliff 1978). For instance, the efficiency of
information processing (i.e., drift rate) is separated from response caution. Additionally,
non-decision time is quantified, which captures motor execution, among other parameters
(for overviews, see Ratcliff and McKoon 2008; Voss et al. 2013; Wagenmakers 2009). Of
these parameters, drift rates were shown to be the most relevant parameter capturing
individual differences in task performance (e.g., Ratcliff et al. 2010, 2011; Schmiedek et al.
2007; Schmitz and Wilhelm 2016). One potential advantage of this performance modeling
is that drift rates capture the information contained in the distributions of both correct and
erroneous responses, controlling for individual differences in the speed–accuracy settings
(Phillips and Rabbitt 1995).

1.2. Correlations of Performance on ECTs with Cognitive Abilities

Performance on ECTs has been studied in relation to individual differences in cognitive
ability. In fact, reductionist theories of intelligence have postulated mental speed as
fundamental for higher cognitive processes (Eysenck 1987; Jensen 1982, 2006; Nettelbeck
2011). This makes mental speed one of the explanatory candidate mechanisms for cognitive
abilities, additionally to WMC (e.g., Chuderski et al. 2012; Kane et al. 2005; Kyllonen and
Christal 1990; Oberauer et al. 2005). Further, it has even been claimed that mental speed
also contributes to WMC, as the processing and rehearsal of information is dependent on a
shared and time-dependent resource (i.e., time-based resource sharing model; Barrouillet
et al. 2007, 2011).

From an empirical point of view, the notion that differential levels of performance
in ECTs correspond to differential levels in cognitive abilities, such as reasoning and
WMC, has been supported in research syntheses: two meta-analyses have shown that re-
sponse times are consistently and moderately negatively correlated with cognitive abilities
(Doebler and Scheffler 2016; Sheppard and Vernon 2008). Across 172 studies, Sheppard
and Vernon (2008) found a mean correlation of r = −0.24, while Doebler and Scheffler (2016)
found a range of correlations from r = −0.18—r = −0.28. Regarding the correspondence
of mental speed with cognitive abilities, it is especially the proposed general factor of
mental speed in hierarchical models, which shows the predictive validity of ability factors
like Gf or WMC, whereas task-specific factors do not contribute to explaining variance in
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those constructs (Schmitz and Wilhelm 2016, 2019). In addition to correlations between
response times as a performance index of ECTs and cognitive ability, several studies have
reported associations for the drift rate of the diffusion model with measures of cognitive
ability. For example, Schmiedek et al. (2007) used structural equation modeling to yield
factors corresponding with the diffusion model’s parameters, hence the reliable shared
variance in the parameter estimates. The drift rate factor was positively correlated with
a broad working memory factor (r = 0.65). In line with this finding, several other studies
found correlations between a drift rate factor and measures of cognitive ability, with mostly
moderate correlations (Ratcliff et al. 2010, 2011; Schmitz and Wilhelm 2016), thus generally
supporting that drift rate is suited to index individual differences in processing efficiency.

There is at least one moderating factor of this predictive validity: it is a well-replicated
finding that ECTs correlate more strongly with cognitive ability as the complexity of the
speed task increases (Sheppard and Vernon 2008). Although the increments of predic-
tive validity towards cognitive ability might be small in magnitude (Deary 2003), this
finding is known as the “complexity hypothesis” (Vernon and Weese 1993). These effects
of task complexity (which might empirically be indicated by slower response times or
lower accuracies) provoke questions: (1) what is “complexity” in tasks that should be
elementary by definition? (2) How and by which means would complexity contribute
to the increased correlations with cognitive ability? Typically, studies investigating the
complexity hypothesis increased the task requirements of ECTs by increasing the bits of
information to be processed (e.g., Roth 1964; Vernon and Weese 1993; Vernon and Jensen
1984; Marshalek et al. 1983). This requirement of ECTs to maintain several arbitrary bits
of information in mind (e.g., stimulus–response (S–R) mapping rules) was hypothesized
to put demands on WMC (Wilhelm and Oberauer 2006)—it has thus been ruled likely
that WMC requirements in speed tasks are the driving factor for the increase in predictive
validity for intelligence (Meiran and Shahar 2018). Hence, it can be hypothesized that
individual differences in WMC contribute to the well-documented complexity moderation
when predicting cognitive ability from mental speed tasks. Specifically, more complex
ECTs should correlate more highly with cognitive abilities like reasoning or WMC than
simple ECTs, as more complex ECTs put more demands on WMC, and are therefore more
akin to tests of reasoning or WMC regarding their underlying cognitive demands (Kranzler
and Jensen 1991; Marshalek et al. 1983).

1.3. Working Memory Capacity and Complexity in ECTs

Working memory can be defined as a cognitive construct, which is used to “mentally
maintain information in an active and readily-accessible state, while concurrently and
selectively processing new information” (Conway et al. 2008, p. 3). It can be understood
as a system that enables more complex cognitive processes, like reasoning, problem-
solving, and decision making (Wilhelm et al. 2013), but also language comprehension and
planning (Cowan 2005). The system simultaneously maintains relevant information and
grants access to prior acquired information, both of which are required for these cognitive
processes. In addition, it is assumed to store information and control cognitive processes
(Miyake and Shah 1999).

Theories of working memory share one vital notion, namely, that it has limited capacity.
That is, the possible amount of information that can be stored and processed in working
memory is limited (Baddeley 2012; Conway et al. 2008; Cowan 2005). This limitation is
reflected in the term “working memory capacity” (WMC), which has also been used to
describe individual differences (Cowan 2010; Wilhelm et al. 2013). Accordingly, capacity
limitations in working memory have been theorized to account for performance restriction
in cognitive tasks like reasoning and decision making. Results show that persons with
a lower capacity are outperformed by individuals with higher capacity in these tasks
(Wilhelm et al. 2013). Accordingly, WMC has been found to be strongly related with
reasoning ability (Kane et al. 2005; Kyllonen and Christal 1990; Oberauer et al. 2005) and
discussed as constituting the very core of reasoning ability (e.g., Kyllonen and Christal
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1990). Hence, it can be theorized that WMC plays a central role for the observed associations
between speed and cognitive ability.

With respect to the possible role of WMC in completing ECTs, we would like to
point out two requirements of ECTs. First, all ECTs require fast responses, and second,
most ECTs require maintaining a number of task-relevant bits of information. While
the former requirements translate into a basal speed requirement, the latter might, for
instance, comprise stimulus–response mapping rules (for example, in a substitution task),
which need to be maintained in working memory. Both the basal speed affordance and
the incremental WMC requirement might contribute to explaining variance in human
cognitive abilities.

Referring to the first and more basal requirement of ECTs, mental speed is assumed
to play a causal role for differential levels of all cognitive functions and be causal for
correlations between WMC and intelligence by some researchers (Kail and Salthouse 1994).
Basically, mental speed should determine the efficiency of processing elementary cognitive
operations and information. Thus, the faster and more efficient a person is, the better their
cognitive performance. The time-based resource-sharing model (Barrouillet et al. 2007,
2011) is one such theory. According to this account, individuals who are able to process
information faster (i.e., more efficiently) have more time for rehearsing the information and
therefore show higher levels of WMC. The time-based resource-sharing model predicts
that memory sources decay as a function of time. Assuming that an executive resource is
used for both processing and rehearsal, it can be predicted that faster processing allows for
more time for rehearsing information, thereby counteracting decay and increasing WMC
(but see Lewandowsky et al. 2009 for a critical discussion).

Regarding the second requirement—and therefore referring to the complexity of
ECTs—working memory can be conceptualized as a system of relations, as proposed by
the binding hypothesis of WMC (Oberauer 2005a, 2019; Wilhelm et al. 2013). According to
the binding hypothesis, WMC reflects the limit of a person’s ability to establish, maintain,
and update temporary and arbitrary bindings (e.g., relations between items or relations
between items and their context, new order of words, new spatial arrangements of known
objects, etc.). Therefore, it was hypothesized that the limited capacity of working memory
is the result of interference between diverse bindings (Oberauer et al. 2008; Wilhelm et al.
2013). Given that the capacity of bindings is limited, people can only relate a limited
number of propositions, thereby also limiting reasoning ability (Oberauer et al. 2008). Two
lines of research have supported this particular account of WMC. First, tasks assessing the
ability to build and maintain structural relations have been shown to be correlated with
classical WMC measures and tests of reasoning ability (Oberauer et al. 2008; Wilhelm and
Oberauer 2006), although there are studies that provide less evidence in this regard (Hülür
et al. 2019). Further, it has been shown that WMC limits memory for bindings, rather than
for single items (Oberauer 2019). Second, it has been demonstrated that only recollection is
correlated with WMC (Oberauer 2005b), suggesting a particular role for relational retrieval.

Both accounts of WMC, mental speed, and binding capacity propose an account of
individual differences in cognitive abilities. For the time-based resource-sharing model, it is
the mere time that elapses between encoding and retrieving information, while for the bind-
ing hypothesis, it might be both the interference between but also the mere maintenance of
several diverse bindings that are crucial for the limitation of WMC. Importantly, we predict
that both aspects of working memory contribute to performance in ECTs and their relation
with cognitive ability. That said, basal speed may be the crucial factor in simple ECTs.
However, as task complexity is increased in ECTs (e.g., more S–R mapping rules), so is the
demand on working memory (e.g., binding capacity). Consequently, WMC requirements
in complex ECTs can be assumed to be a causal factor incrementally contributing to the
relation with cognitive ability.
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1.4. The Present Study

The aim of this study was to replicate and extend previous research addressing the task
complexity moderation of the relationship of mental speed with cognitive ability. Using
a well-defined theoretical binding framework, we intended to offer a more meaningful
account of “task complexity”. To this end, we explicitly manipulated task complexity in
three mental speed tasks. In their basic form, all tasks fulfilled the requirements of ECTs in
terms of task simplicity. We then systematically manipulated WMC requirements in terms
of bindings in two conditions. To do so, we increased the number of task-relevant stimulus–
stimulus (S–S) or stimulus–response (S–R) bindings that participants needed to maintain
in an active state while performing the tasks. The manipulation allowed for a targeted
isolation of task complexity. To this end, we aimed at identifying the WMC requirement
condition, which shows the most substantial effects of the experimental manipulations in
terms of mean effects in response times and errors.

We intended to show that increasing WMC requirements by virtue of manipulating
the number of bindings strengthens relations with WMC over and above mental speed.
Specifically, we hypothesized that:

(1) increasing binding requirements results in higher task complexity which would be
reflected by more effortful information processing in the difficult conditions of each
ECT as contrasted with the easier conditions (slower response times, lower accuracies,
and lower diffusion model drift rates);

(2) as binding requirements were manipulated in each ECT, this constitutes an analogous
increase in WM requirements. In turn, this constitutes a WMC-related communality
which can be modeled as a specific factor across tasks;

(3) the WMC-related specific factor is incrementally predictive of cognitive ability over
and above basal speed. This implies that the predictiveness of complex ECTs is partly
driven by WMC contributions to performance.

2. Methods and Materials
2.1. Participants and Procedure

The present study was advertised both with flyers and on social media, and data were
collected in four German cities. Participants had to be between 18 and 35 years and fluent
in German. Data were collected in groups with up to eight persons at a time. Tasks and
instructions were administered by computer. All tasks were presented on identical 14”
notebooks and controlled by compiled C++ programs using SDL libraries for stimulus
timing and response collection. Participants completed tasks in the same order, and trial
lists were presented in a pseudo-random way, meaning that the trialists were randomized
before presentation. Responses were given by pressing the left or right Ctrl key, respectively,
if not specified differently, and participants were instructed to keep their index fingers
on the two response keys. Standardized instructions were provided on screen. A trained
proctor supervised the session and provided instructions if requested. In between the tasks,
participants had two 5 min breaks during which we provided snacks and something to
drink. In total, n = 127 participants were recruited. We did not determine the sample size
in advance, but rather collected data until a meaningful sample size for modeling purposes
was reached (e.g., similar in size as in Wilhelm and Oberauer 2006 or Hülür et al. 2019). A
local ethics committee approved the data collection, and all participants provided informed
consent prior to participation. After completing the 2.5 h computerized test battery, they
were compensated with EUR 20 or partial course credit. The mean age of the sample was
M = 22.1 years (SD = 4), and 72.4% were female. The majority of participants (n = 120) were
highly educated, holding at least a high school degree. Almost all (n = 124) indicated they
were native German speakers.
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2.2. Measures
2.2.1. Speed Tasks

For the test sessions, we used three computerized speed tasks: a change-detection task
(Luck and Vogel 1997; Rouder et al. 2011), a stimulus comparison task (Danthiir et al. 2012),
and a substitution task (Danthiir et al. 2012) (see Figure 1 for a schematic overview). Each
task was administered with two different sets of stimulus materials in three different set
sizes (i.e., the presented numbers of stimuli, namely 2, 4, and 6). The set sizes (requiring
stimulus–stimulus or stimulus–response bindings) were manipulated in order to increase
the WMC load of the tasks in line with the binding hypothesis.
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Figure 1. Overview of mental speed tasks (A–C), and of working memory capacity (WMC) tasks
(D–F). Each mental speed task was presented with the set sizes of 2, 4, and 6 stimuli per trial,
respectively.

The change-detection task was used with either color (30 equidistant color tones on a
color circle, with comparable luminescence) or letters (20 capitalized consonants, excluding
“Y”) as stimuli. Each trial started with the presentation of a fixation cross for 400 ms. Next,
the stimuli were shown in the form of a horizontal string on the screen. The presentation
time was 125 ms per stimulus. After the presentation of the stimulus string, participants
were presented with a blank screen for 1000 ms and subsequently with a new stimulus
string of the same length and the same stimulus modality as the first string. Participants
had to indicate whether all elements of the first and second string were identical or whether
some elements swapped their positions. The ratio of change vs. non-change trials was
50:50. Response time was not limited. The change-detection task consisted of 2 parts with
3 blocks each. Blocks contained 44 trials each (2 warm-up trials and 42 trials used for the
analyses). Overall, there were 84 trials per set-size condition. Prior to the testing phase,
participants had to complete 18 practice trials. Inter-trial intervals (blank screens) were
displayed for 100 ms.

The comparison task was administered with 18 different abstract figures or digits (1–9)
as stimuli. As in the change-detection task, 2, 4, or 6 stimuli could be used in each task
variant. Generally, the administration of the comparison task resembled the administration
of the change-detection task, with the difference that the two strings of stimuli were shown
simultaneously on the screen, aligned horizontally. Prior to the presentation of the two
stimulus strings, two fixation crosses were displayed for 400 ms at the respective positions
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where the stimuli would appear. Participants had to indicate whether the strings of stimuli
were exactly identical or different by pressing the corresponding buttons on the keyboard.
In the case of a difference, two elements swapped position. Stimuli remained on screen
until participants responded. The numbers of blocks and trials, including the number of
practice trials, for the comparison task were the same as those in the change-detection task.
For the change-detection and the comparison task, the set sizes (2 stimuli, 4 stimuli, and 6
stimuli per string), the proportion of same/different stimulus pairs, and the position swaps
were balanced across all trials.

For the substitution task, different abstract figures and letters were used as stimuli.
In this task, stimuli were arbitrarily mapped from one stimulus domain to another. For
instance, figures were mapped with colors, and the letters were mapped with numbers.
Depending on the condition, mappings comprised two, four, or six stimulus-response
relations, respectively. Prior to the task, participants had to learn the instructed stimulus-
response mappings and practice them in a practice phase prior to the testing phase. The
task consisted of 6 parts (3 parts per modality per condition two, four, or six), each of
which consisted of 5 blocks with 26 trials (2 warm-up trials and 24 trials used for analyses).
Overall, there were 96 test trials for each complexity condition for both modalities. In each
trial of the substitution task, one stimulus was presented on screen, and the participant
had to respond to that stimulus by pressing a key indicating the respective response
stimulus. The number keys in the top row of the keyboard were used as response keys
and special templates were fixed to them, displaying the response domain’s respective
stimuli. After eliciting a response, participants were asked to press the spacebar with the
index finger of their dominant hand in order to initiate the subsequent trial. Once the next
stimulus appeared, they had to press the corresponding button in the upper row on the
keyboard with their index finger. Again, trial requirements, stimuli, and trial-type order
were balanced in this task, and participants were presented with 18 practice trials.

2.2.2. Working Memory Capacity

We used three Recall−1-Back (R1B) tasks, which have been shown to be psychometri-
cally satisfactory indicators of WMC (Wilhelm et al. 2013). These tasks were designed to
measure the recall of continuously updated stimuli (see Figure 1). They were constructed
following a matrix design, comprising different combinations of memory load and required
updates. Task requirements varied from block to block in terms of working memory load
(1, 2, 3, or 4 stimuli to remember) and updating requirements (6, 9, or 12 updates). First,
participants completed 27 practice trials. Participants then completed 12 blocks (with a
total of 108 responses) in the test phase. For the scoring of the R1B tasks, we applied partial
credit scoring, i.e., the proportion of correct responses in all trials (Conway et al. 2005),
which has been shown to yield reliable scores of task performance.

In the verbal task version, two, three, or four letters (corresponding to three possible
load conditions) were initially presented in two, three, or four separate boxes on the
screen, depending on the load level of the corresponding trial. Stimuli were presented in
boxes horizontally aligned in the center of the monitor and were displayed throughout
the entire run, including the 500 ms inter-trial interval. With every trial, a new letter
appeared in one of the boxes and the participants were asked to type in on the keyboard
the letter previously presented in this particular box. Participants were instructed to type
in the previously shown letter as long as the new letter was shown (3000 ms presentation
time). Responses entered after this period were treated as errors. Prior to the test trials,
participants completed 27 practice trials with one, two, or three boxes to familiarize
themselves with the procedure. In these practice trials, participants were given trial-
wise feedback about the accuracy of their responses. However, feedback was not provided
during the testing phase. All trials were balanced regarding positions and repetitions of
stimuli. The same procedure and design were used in the numerical R1B task, with the
only difference being that numbers from 1–9 were used instead of letters. In contrast to the
previous tasks, a 3 × 3 grid was shown in the figural variant of the R1B task. Simple symbols
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(size: 79 pt × 79 pt) were presented in randomly selected cells (size: 150 pt × 150 pt) of the
grid. Participants indicated by mouse click the position in the grid in which the currently
displayed stimulus had been shown when it was shown the previous time. As in the verbal
and numeral variant, participants had to respond within a window of 3 s during which the
current stimulus was visible.

The final task order was: SUB.fig—part 1, CMP.num—part 1, SUB.fig—part 2, CDT.col—
part 1, SUB.fig—part 3, CMP.num—part 2, CDT.col—part 2, R1B.num, break (5 min),
SUB.let—part 1, CMP.fig—part 1, SUB.let—part 2, CDT.let—part 1, SUB.let—part 3, R1B.fig,
break (5 min), CDT.let—part 2, CMP.fig—part 2, R1B.let, demographical questionnaire.

2.3. Statistical Analysis
2.3.1. Data Treatment

Prior to statistical analysis, the data were carefully checked for outliers and implau-
sible values. To this end, the raw data of n =127 participants were treated in four steps.
First, we removed all warm-up trials from the data and then applied the liberal Tukey
criterion (Tukey 1977), i.e., responses were excluded when they were more extreme than
3 interquartile ranges either above the 75th percentile of the RT distribution or below
the 25th percentile, or below 200 ms. Second, we excluded participants with frequent
missing values (>30) in more than one task (n = 12), leaving n = 115 for the analyses. Next,
we computed task scores. Finally, missing values on the task score level were replaced
using multiple imputations via the R-package Amelia (Honaker et al. 2011), which uses
a maximum likelihood estimator (expectation maximization) to impute the missing data
points. For the comparison and change-detection tasks, no missing data points had to be
imputed, while for the substitution and the Recall−1-Back tasks, less than 0.05% of cells
were imputed.

2.3.2. Scoring of ECT Performance

Several scores were computed for the data, as frequently done when analyzing RT data
obtained in elementary cognitive tasks (e.g., Heathcote et al. 1991; Hohle 1965), including
response times and the error rates (i.e., accuracies). The mean latency of correct responses
is frequently used in laboratory research, as it depicts a parsimonious indicator of the
performance on ECTs, with faster response times indicating better processing efficiency
(e.g., Danthiir et al. 2005a). In turn, error rates might reflect cognitive slips, lapses, or
mistakes, although errors are rare events in ECTs, supposedly due to their simplicity, and
thus error rates exhibit low variability across persons. Both scores might be biased. For
example, the error rates could suffer from individual differences regarding speed–accuracy
trade-offs, where participants either sacrifice speed for accuracy or accuracy for speed in
responses to gain momentum. Although task performance in ECTs is usually reported in
terms of response times, we expected that the manipulation of task complexity also affected
error rates, as usually observed when administering conventional measures of WMC (e.g.,
Conway et al. 2005).

Generally, we expected to find effects of task complexity in both the mean response
times and the mean error rates across the complexity conditions within the task classes
(Lohman 1989). However, as both indicators are prone to individual speed–accuracy trade-
offs, it remains unclear whether these indicators are suitable to depict the effects of task
complexity across persons in a comparable fashion. Usually, faster response times are
associated with higher levels of cognitive abilities (Doebler and Scheffler 2016; Sheppard
and Vernon 2008). According to the complexity hypothesis, this correlation is increased
with elevated task complexity (Sheppard and Vernon 2008; Vernon and Jensen 1984). At
the same time, however, increasing task complexity is paralleled with higher error rates,
which in turn is then also significantly correlated with intelligence (Vigneau et al. 2002).
The desired information of cognitive processing is intrinsically part of both indicators, and
thus it is necessary to find a joint parameter bringing both types of information together.
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In order to capture performance information in both the response times and the error
rates, and additionally to control for individual differences in the speed–accuracy trade-off,
we analyzed the data with a simplified diffusion model (e.g., Ratcliff 1978). Specifically,
we employed the R package EZ (Wagenmakers et al. 2007), which uses a closed-form
expression yielding scores corresponding with the 3 most relevant parameters of the
diffusion model: the drift rate (v), the response criterion (a), and the non-decision time
(Ter). The EZ algorithms have been shown to be robust for the modeling of individual
differences even when only limited trial numbers are available (Ratcliff and Childers 2015;
van Ravenzwaaij and Oberauer 2009), like in the present study.

The diffusion model offers an account for modeling cognitive processes in binary
decision tasks. The drift rate corresponds with the mean rate at which an information
accumulation process reaches the correct response boundary. This parameter reflects person
ability (e.g., Schmiedek et al. 2007). In turn, the response criterion denotes the separation of
the response boundaries (thresholds) and corresponds with the speed–accuracy trade-off.
Depending on how cautious a person is, performance on ECTs could be reflected in either
response times or error rates, or both. The diffusion model accounts and controls for such
differences in response caution and yields the drift rate parameter, which is hoped to be
a less biased measure of task performance and has been shown to be a valid predictor
of WMC and intelligence (Schmiedek et al. 2007; Schmitz and Wilhelm 2016). Finally,
the third parameter, non-decision time, is thought to depict the time beyond the actual
decision and is conventionally interpreted as the time required for motor execution and
stimulus encoding.

Parameters of the EZ diffusion model could be computed for all tasks with a binary
response format. As the substitution tasks required pressing up to 6 response keys, we cal-
culated an alternative performance score capturing the information in speed and accuracy.
Specifically, we computed a composite score reflecting the mean standardized reciprocal
response times (1/RT) and the mean standardized relative accuracy (1-error rate). Such a
composite score has been successfully used in other studies comprising speeded response
time tasks (e.g., Stahl et al. 2014).

2.3.3. Structural Equation Modeling

In order to disentangle speed and binding requirements of the ECTs, we fit bi-factor
models to the data (e.g., Eid et al. 2008), specifying nested factors capturing the effects of
the binding manipulation. For the comparison and the change-detection task, we used
the respective drift rates as indicators, while for the substitution task, we used the above-
described compound scores as indicators. The factors were identified using effects coding
(Little et al. 2006). The following fit indices were considered as an indication for good
model fit: comparative fit index (CFI) ≥ 0.95, root mean square error of approximation
(RMSEA) ≤ 0.06, and standardized root mean square residual (SRMR) ≤ 0.08 (Hu and
Bentler 1999). In addition to that, the following indices were considered for acceptable
model fit: CFI ≥ 0.90; RMSEA < 0.08, and SRMR ≤ 0.10. Prior to modeling, indicator
variables were standardized.

For all statistical analyses, we used R (R Core Team 2020). We used the psych package
(Revelle 2020) for standard psychometric analyses, the effsize package (Torchiano 2020) for
effect sizes and the lavaan (Rosseel 2012) and the semTools packages (Jorgensen et al. 2020)
for the confirmatory factor analysis and structural equation modeling. Scripts and data are
provided in an online repository: https://osf.io/em3sg/ (accessed on 23 March 2021).

3. Results

In Table 1, we report descriptive statistics—including mean response times, mean error
rates, mean compound scores (for substitution tasks), and diffusion model parameters.
Further, effect sizes (Cohen’s d; Cohen 1969) are given for differences in response times
and error rates between experimental conditions (set sizes 4 and 6, respectively, vs. set
size 2) for all tasks. Compliant with our expectations, we observed strong effects for the

https://osf.io/em3sg/
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complexity manipulations on the mean response times of all task classes. Across all task
classes, participants tended to respond slower as the complexity of the tasks increased.
All standardized mean differences exceeded a value of d ≥ 1, indicating that participants
responded more than one standard deviation slower in task conditions with increased
binding requirements. As expected, the effects for the complexity manipulations were most
vital for the tasks administering set size 6.

Table 1. Descriptive statistics for speed tasks with mean response times (and standard deviations) in milliseconds, mean
compound scores, diffusion model parameters, and effect sizes (Cohen’s d) across stimuli set sizes (2 vs. 4 vs. 6) within tasks.

Tasks Set
Size MRT Merr a v Ter dRT (95%-CI) derr (95%-CI)

Change
detection

Color

2 665 (135) 0.08 (0.06) 0.13 (0.03) 0.21 (0.06) 0.38 (0.07)

4 843 (210) 0.15 (0.06) 0.13 (0.03) 0.15 (0.05) 0.49 (0.09) 1.00
[0.73; 1.28]

1.10
[0.82; 1.38]

6 949 (253) 0.25 (0.07) 0.13 (0.03) 0.09 (0.04) 0.53 (0.12) 1.35
[1.06; 1.64]

2.60
[2.24; 2.95]

Letter

2 563 (97) 0.04 (0.03) 0.13 (0.03) 0.27 (0.06) 0.32 (0.05)

4 729 (135) 0.09 (0.06) 0.14 (0.03) 0.19 (0.05) 0.40 (0.07) 1.42
[1.13; 1.71]

0.96
[0.68; 1.23]

6 981 (224) 0.16 (0.08) 0.16 (0.03) 0.12 (0.03) 0.50 (0.10) 2.43
[2.09; 2.77]

1.88
[1.56; 2.19]

Comparison

Figure

2 954 (160) 0.05 (0.04) 0.15 (0.03) 0.22 (0.05) 0.64 (0.09)

4 1307 (248) 0.07 (0.06) 0.19 (0.04) 0.16 (0.04) 0.78 (0.13) 1.70
[1.40; 2.00]

0.31
[0.05; 0.57]

6 1739 (402) 0.11 (0.08) 0.21 (0.05) 0.11 (0.03) 1 (0.20) 2.57
[2.22; 2.92]

0.88
[0.61; 1.16]

Number

2 767 (101) 0.03 (0.03) 0.12 (0.02) 0.31 (0.06) 0.58 (0.06)

4 1072 (221) 0.07 (0.04) 0.15 (0.03) 0.19 (0.04) 0.70 (0.11) 1.78
[1.47; 2.10]

0.99
[0.72; 1.27]

6 1563 (316) 0.06 (0.04) 0.21 (0.04) 0.14 (0.03) 0.91 (0.18) 3.40
[2.99; 3.80]

0.85
[0.57; 1.12]

Mcompound

Substitution

Figure

2 500 (89) 0.01 (0.01) 0 (0.59) - -

4 634 (87) 0.01 (0.02) 0 (0.60) - - 1.52
[1.22; 1.81]

0.24
[0; 0.50]

6 748 (115) 0.02 (0.02) 0 (0.66) - - 2.40
[2.06; 2.74]

0.56
[0.30; 0.83]

Letter

2 486 (90) 0.01 (0.02) 0 (0.67) - -

4 703 (116) 0.04 (0.03) 0 (0.67) - - 2.08
[1.76; 2.41]

0.99
[0.72; 1.27]

6 854 (147) 0.03 (0.03) 0 (0.66) - - 3.01
[2.64; 3.40]

0.80
[0.53; 1.07]

Note. M = mean; RT = response time; a = response criterion of the diffusion model; v = drift rate of the diffusion model; Ter = non-decision
time of the diffusion model; d = Cohen’s d (Cohen 1969). Standard deviations are given in parentheses.

In addition to the slowing in response times, the complexity manipulations generally
resulted in increased error rates. However, results were less consistent here. For both
change-detection tasks (i.e., color and letter), the error rates consistently increased with
increasing task complexity, in particular in set size 6 condition. Error rates were also
increased in the comparison tasks (i.e., figure and number), but only the figural variant
had a substantial increase in error rate at set size 6. For the numerical task variant, the
effect of the complexity manipulation for set size 4 vs. set size 6 was comparable. Lastly,
descriptive results for the substitution tasks looked similar. Although the standardized
mean differences between the error rates were increased to a lesser extent compared to
the other two task classes, the effects were still noticeable. For the substitution task with
figural stimuli, the mean error rates were more strongly increased in the more complex
condition (set size 6), while for the substitution tasks with letters as stimuli, the effects of
set size 4 and set size 6 were again comparable. Overall, the effects in the error rates were
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not as strong as in response times, but still substantial, especially for the more complex (i.e.,
set size 6) condition.

We also expected the parameters of the diffusion model to be affected by the experi-
mental manipulations. As can be seen in Table 1, with increasing complexity of the tasks,
drift rate (v) decreased for all tasks, suggesting decreasing processing efficiencies due to
elevated task affordances (e.g., encoding more stimuli into working memory). In addition,
the non-decision time (Ter) increased across the two binary response format task classes
(i.e., comparison and change-detection). Also, the response caution (a) increased with
elevated complexity affordances for the comparison but only to a lower degree for the
change detection tasks.

Given that the most substantial effects of the experimental manipulations were ob-
served in the set size 6 condition, we chose this condition as the high-WMC requirement
condition in addition to the basal set size 2 condition for the latent modeling approach.
The difference in processing efficacy between both set sizes (i.e., 2 vs. 6) was strong enough
to assume that the complexity manipulation was successful and yielded sufficient power
for the intended analyses.

To test whether it was possible to disentangle basal speed and increased complex-
ity requirements (i.e., binding) in the administered ECTs, we first report the fit indices
of a bi-factor measurement model. This model followed one specific construction ratio-
nale: capturing the communality of the speed requirements in the administered tasks
by means of a general factor and capturing the remaining variance in a nested factor
accounting for the elevated binding requirements of the tasks. The measurement model
was specified using the respective indicators of set sizes 2 and 6—put differently, the simple
and the complex indicators. Therefore, the measurement model included 12 indicators
(3 tasks × 2 modalities × 2 complexities). All indicators were loaded on a general factor,
capturing the basal speed requirement of the administered tasks. For this factor, all loadings
were estimated freely. In addition to that, the more complex tasks were also loaded on a
nested factor, capturing the remaining variance for the increased binding requirements
of the tasks. In order to account for task specificities, correlated residuals were allowed
between the simple indicators of a task variant and the more complex indicators of a
particular task. The model is depicted in Figure 2. It yielded an acceptable fit for the data:
n = 115, χ2(41) = 74.33, CFI = 0.923, RMSEA = 0.084, SRMR = 0.058. This model fit the data
significantly better than a single-factor model, not accounting for binding requirements
(∆χ2(7, n = 115) = 23.09, p < 0.05). The loadings are depicted in Table 2; they were all
significantly larger than zero on both factors. The general speed factor accounted for a
substantial proportion of variance in the indicators (ω = 0.83; McDonald 1999), while the
nested binding factor accounted for a smaller yet substantial proportion of variance in
its indicators (ω = 0.40). As both factors had significant variance (ϕSpeed = 0.24, p < 0.001;
ϕBinding = 0.06, p < 0.01), both a general factor reflecting individual differences in speed
and a specific factor capturing individual differences in binding ability were confirmed.
Therefore, binding requirements can be dissociated from basal speed requirements.
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Table 2. Standardized loadings of the models.

Measurement Model
(Figure 2) Structural Model (Figure 3)

λ (SE) λ (SE)

Condition Indicator Speed Binding Speed Binding WMC

simple

CMP.fig 0.66 (0.06) - 0.66 (0.06) - -
CMP.num 0.63 (0.07) - 0.63 (0.07) - -

CDT.let 0.84 (0.04) - 0.84 (0.04) - -
CDT.col 0.73 (0.05) - 0.74 (0.05) - -
SUB.let 0.52 (0.08) - 0.52 (0.08) - -
SUB.fig 0.45 (0.08) - 0.45 (0.08) - -

complex

CMP.fig 0.60 (0.07) 0.20 (0.10) 0.60 (0.07) 0.29 (0.09) -
CMP.num 0.52 (0.08) 0.15 (0.11) 0.52 (0.08) 0.15 (0.11) -

CDT.let 0.43 (0.09) 0.18 (0.12) 0.40 (0.09) 0.36 (0.11) -
CDT.col 0.37 (0.09) 0.35 (0.12) 0.35 (0.09) 0.37 (0.11) -
SUB.let 0.47 (0.08) 0.44 (0.12) 0.47 (0.08) 0.38 (0.10) -
SUB.fig 0.35 (0.09) 0.53 (0.13) 0.35 (0.09) 0.36 (0.11) -

R1B.let - - - - 0.65 (0.09)
R1B.num - - - - 0.50 (0.10)
R1B.fig - - - - 0.64 (0.09)

Note. CMP.fig = comparison figural, CMP.num = comparison numerical, CDT.let = change detection letter,
CDT.col = change detection color, SUB.let = substitution letter, SUB.fig = substitution figure, R1B.let = Recall−1-
Back letter, R1B.num = Recall−1-Back number, R1B.fig = Recall−1-Back figure.
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Finally, we tested the predictive validities of the identified factors for the measurement
models. In order to do so, a latent factor for WMC was added to the model and regressed
on the general speed and the nested binding factor. Goodness of fit statistics for the
measurement model of WMC are not provided, as this model was only comprised of three
indicators and therefore just identified. The specification of the measurement model was
not altered. For the measurement model of WMC, the residuals of the two indicators using
stimuli that can be represented phonologically (i.e., letters and numbers) were allowed to
correlate. This model, including the standardized regression weights (betas), is depicted in
Figure 3. Details of the measurement models (i.e., loadings) are given in Table 2.
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Figure 3. Latent regression model with speed and binding predicting working memory capacity (WMC). Parameter
estimates are fully standardized and standard errors are given in parentheses.

The structural model depicting the complexity manipulation of 2 vs. 6 stimuli per
task exhibited good overall model fit: n = 115, χ2(74) = 100.81, CFI = 0.949, RMSEA = 0.056,
SRMR = 0.060. The predictors explained 66.5% of the variance in WMC. All loadings were
significantly larger than zero (see Table 2). The factor saturations associated with the speed
factor, the binding factor, and the WMC factor were ω = 0.83, ω = 0.46, and ω = 0.57,
respectively. Both exogenous factors had significant variance (ϕSpeed = 0.24, p < 0.001;
ϕBinding = 0.08, p < 0.01). The communality of the complexity requirements (i.e., binding)
was incrementally predictive of WMC, over and above the communality of the basal speed
requirement. Both standardized regression weights were significantly larger than zero
(p < 0.001).

4. Discussion

The purpose of this study was to address the task complexity moderation of the
relationship of mental speed with cognitive ability. To this end, we applied a theory-driven
task complexity manipulation in line with the binding hypothesis of WMC on a variety
of elementary cognitive tasks. We tested whether the proposed WMC requirements in
terms of binding could be modeled above mental speed and whether these increased task
requirements were incrementally predictive of WMC. In the next sections, we summarize
and discuss our findings and address their implications.
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4.1. Complexity Manipulations

For our study, we administered three different classes of choice–reaction-time tasks
that are frequently used as elementary cognitive tasks measuring mental speed (Danthiir
et al. 2012; Luck and Vogel 1997; Rouder et al. 2011). In order to pursue our research
questions, we first manipulated task complexity, which can be understood in terms of
WMC requirements (e.g., Larson et al. 1988). Although the administered task classes differ
in their administration, their basic cognitive requirements are comparable. In addition,
all tasks (and thus their trials) consist of a certain number of stimuli to be compared
either with another set of stimuli (S–S bindings) or with an a priori defined response
mapping (S–R bindings). Hence, successfully working on these tasks requires participants
to build, update, and maintain temporary bindings of stimuli as specified in the binding
account of WMC (Oberauer 2005a, 2019). We manipulated task complexity in line with
the binding hypothesis by increasing the number of task-relevant S–S or S–R bindings
that participants needed to maintain in an active state while performing the tasks. These
complexity manipulations were achieved by increasing the set sizes of the tasks from 2
stimuli to 4 and 6 stimuli, respectively. As suggested by previous studies (Schmitz and
Wilhelm 2016), we manipulated complexity within tasks in order to isolate the manipulated
requirement. By applying the same theory-driven manipulations on all task classes, we
ensured that the indicators of task performance could be interpreted meaningfully and
independently of baseline differences between the tasks. Furthermore, employing different
indicators and modeling heir communality by means of SEM helps reduce task impurity
and specificity (Stahl et al. 2014).

We hypothesized that increased binding requirements offer a tractable and broadly
applicable operationalization of task complexity. In line with predictions, this manipulation
resulted in slower response times, lower accuracies, and lower diffusion model drift rates.
Although the task classes might have inherently differed in their difficulty in the baseline
conditions, we observed arguably more effortful information processing with increasing
binding requirements across all tasks. In fact, the complexity manipulations were effective
in all indicators of task performance. The present results are compatible with the binding
hypothesis of working memory (Oberauer 2005a, 2019; Wilhelm et al. 2013) because the
experimental manipulation increased the extent to which the tasks tapped WMC. This was
especially apparent in the most complex task conditions of set size 6. Compared to the
baseline conditions of the tasks with set size 2, the condition of set size 6 showed the most
substantial effects.

4.2. Disentangling Tasks Requirements

We predicted that the applied complexity manipulations would allow for a targeted
isolation of speed and WMC requirements. Of these, speed of processing (Barrouillet
et al. 2011) and binding (Oberauer 2005a; 2019) were here investigated in depth. The
basic idea was that the baseline condition of the ECTs would be a relatively pure speed
measure, comparable to typical speed tasks (e.g., Danthiir et al. 2012; Schmitz and Wilhelm
2016). This baseline condition would be simple and exhibit relatively low error rates. In
contrast, the tasks with increased binding requirements would be more complicated. This
would be reflected in more effortful processing, i.e., reduced diffusion model drift rates,
resulting in slower response times and somewhat reduced accuracies. Although the more
complex tasks should have made it more challenging for participants to come to a correct
solution quickly, these tasks should have still kept their basic characteristics as measures of
mental speed.

The presented results confirm our expectations. Disentangling the task requirements of
the simple and complex tasks by means of a confirmatory bi-factor analysis, we established
two latent factors. The basal speed requirements of all tasks were captured with a general
factor, and the experimentally manipulated binding requirements were captured with a
nested factor. While the general speed factor reflected individual differences in speed, the
binding factor reflected individual differences in binding capacity, above and beyond speed.
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By using 12 indicators, 6 simple tasks and 6 complex tasks, we ensured an appropriate
breadth of the latent factors. In addition to that, substantial loadings across all indicators
indicated sufficient variances in the indicators. This was also true for the identified factors,
which displayed a reliable share of variance across specific tasks.

These results clearly favor the notion of a theory-driven complexity manipulation in
ECTs. Furthermore, our modeling approach replicated previous research, where diffusion
model drift rates were used as indicators for latent factors (e.g., Ratcliff et al. 2010,
2011; Schmiedek et al. 2007; Schmitz and Wilhelm 2016). We were also able to show
that this parameter is suited for investigating individual differences in tasks with binary
decision format.

The experimental procedure used in this study corresponds to the core notion of the
recent process overlap theory (Kovacs and Conway 2016; 2019), namely that cognitive
ability is constituted by a set of diverse executive processes (van Ravenzwaaij and Ober-
auer 2009). In line with the literature (e.g., Kyllonen and Christal 1990) and the process
overlap theory (Kovacs and Conway 2016, 2019), where complexity refers to the extent to
which a test taps underlying executive processes, we claim that task complexity can be
conceptualized in terms of the number and nature of supervisory or executive cognitive
operations required to solve a task. Given our results, we argue that the experimental
manipulation increased the extent to which the tasks tapped binding as an underlying
executive process. This was particularly salient in the most complex task conditions of set
size six. Compared to the baseline conditions of the tasks with set size 2, the condition of
set size 6 showed the strongest effects for the complexity manipulations.

4.3. Relations with Cognitive Ability

As the binding requirements were manipulated in each ECT, this should have consti-
tuted an analogous increase in WMC requirements. In fact, this manipulation gave rise to a
communality, which could be modeled as a nested specific factor across task classes. Lastly,
we hypothesized that this WMC-related nested factor would be incrementally predictive of
cognitive ability over and above the general speed factor. This would reflect expectations
from the complexity hypothesis, which states that the correlation between the performance
on ECTs and cognitive ability increases with task complexity (Sheppard and Vernon 2008;
Vernon and Jensen 1984). In our case, the increased complexity of the administered tasks
was modeled by a nested factor additionally to a basal speed factor.

We found that the nested factor, capturing the communality of the elevated binding
requirements, was incrementally predictive of cognitive ability, over and above basal
speed requirements of the tasks. Predictions from both factors were substantial, and both
factors clearly explained distinct portions of variance in WMC. This can be interpreted
as support of the complexity hypothesis. It is important to note that this does not only
refer to empirical difficulty (as reflected in lower drift rates), but also to an increase in
complexity in line with binding theory of WMC. Taken together, binding requirements in
ECTs were shown to determine the relation with cognitive ability and, thereby, offer a more
satisfactory account of task complexity.

Given that we separated two cognitive processes (i.e., basal speed and binding re-
quirements), and both processes predicted unique shares of variance in WMC, one could
argue that our results support the notion of process overlap theory. However, our results
could also be interpreted as indicating that binding affordances are a key ingredient to
WMC. Although we found complexity requirements to be more strongly related to WMC
(which could be seen as a proxy for g), we also found that the basal speed requirements still
explained almost as much unique variance in WMC as the incremental binding require-
ments. Thus, the general finding of the literature that more complex tasks exhibit higher
loadings on g is certainly true, but this does not inevitably mean that binding is just one
out of many executive processes jointly accounting for WMC. Therefore, we chose to be
agnostic towards the idea of a reflective g factor.
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4.4. Desiderata for Future Research

The sample of this study comprised young adults with an above-average level of
education. Although we found substantial variances in and communalities across all
indicators we cannot rule out range restriction, which would have attenuated the relations
between the proposed latent factors on the predictor side and WMC on the criterion side.
Future studies should replicate the theory-driven complexity manipulations in line with
a WMC account with more heterogeneous samples. If range restriction adversely affects
factor loadings and factor variances, the magnitude of the relations with the WMC factor
might in fact increase.

In this study, we used WMC as a content-free proxy of cognitive ability. Although
previous research has shown that WMC is fundamentally related to reasoning ability
and fluid intelligence (e.g., Kane et al. 2005; Oberauer et al. 2005), future studies should
complement the picture by using more and possibly other factors of cognitive ability.

Additionally, it should be noted that the binding hypothesis is not the only account
suggested as an explanation of WMC. Other theory-driven accounts might also offer an
interesting account for approaching task complexity and substituting it with a more mean-
ingful notion. Other prominent accounts of WMC include, e.g., executive attention (e.g.,
Engle 2002; Miyake and Friedman 2012) and an interplay of primary and secondary mem-
ory (e.g., Unsworth and Engle 2006, 2007). Future research should, therefore, investigate
the complexity hypothesis from the perspective of these accounts in order to further our
understanding regarding task complexity in ECTs. However, these competing accounts of
WMC might not transfer to manipulations of complexity as easily as the binding account.

5. Conclusions

This study contributes to the introduction of an empirically founded perspective of
complexity in elementary cognitive tasks. We showed that complexity can be understood
in terms of working memory capacity requirements. The binding hypothesis of working
memory offered an especially practical account of approaching the notion of manipulating
task complexity in a meaningful and theory-driven way. Our results support the literature
in showing that the predictive validity of elementary cognitive tasks for cognitive abil-
ity indeed hinges on the complexity of these tasks. Furthermore, this study successfully
combined an experimental manipulation of complexity in ECTs with bi-factor CFA mod-
eling in order to separate relevant functions underlying cognitive ability. Taken together,
binding costs account for a large amount of variance in cognitive ability over and above
mental speed.
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