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Abstract: Geary (2018, 2019) suggested that heritable and environmentally caused differences in 

mitochondrial functioning affect the integrity and efficiency of neurons and supporting glia cells 

and may thus contribute to individual differences in higher-order cognitive functioning and 

physical health. In our comment, we want to pose three questions aimed at different aspects of 

Geary’s theory that critically evaluate his theory in the light of evidence from neurocognitive, 

cognitive enhancement, and behavioral genetics research. We question (1) if Geary’s theory explains 

why certain cognitive processes show a stronger age-related decline than others; (2) if intervention 

studies in healthy younger adults support the claim that variation in mitochondrial functioning 

underlies variation in human intelligence; and (3) if predictions arising from the matrilineal heredity 

of mitochondrial DNA are supported by behavioral genetics research. We come to the conclusion 

that there are likely many more biological and social factors contributing to variation in human 

intelligence than mitochondrial functioning. 
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1. Introduction 

In the summary of his theory on intelligence differences, Geary (2019) outlined the elementary 

ideas of his hypothesis that individual differences in mitochondrial functioning are the main driving 

force for individual differences in human intelligence (Geary 2018, 2019). Geary suggested that 

heritable and environmentally caused differences in mitochondrial functioning affect the integrity 

and efficiency of neurons and supporting glia cells and may thus contribute to individual differences 

in higher-order cognitive functioning and physical health. His theory aimed to account for different 

phenomena of intelligence research, including the positive manifold (Spearman 1904), the association 

between intelligence and health (Batty et al. 2007; Deary 2008; Der et al. 2009)1, the joint age-related 

decline in performance across different cognitive domains (Rhemtulla and Tucker-Drob 2011; 

Salthouse 2009; Salthouse and Ferrer-Caja 2003; Tucker-Drob 2011; Tucker-Drob et al. 2014), and the 

greater variability in intelligence test scores in males than in females (Hedges and Nowell 1995; 

Johnson et al. 2008; Wai et al. 2010). As such, Geary’s theory is very compelling because it provides 

an elegant account of many important empirical phenomena of intelligence research. Moreover, it 

 
1 We thank an anonymous reviewer for pointing out that recent evidence suggests that this association may 

reverse in highly intelligent individuals (i.e., those within the upper 2% of the general population), who may 

be at a higher risk than the general population to develop certain psychological disorders as well as 

physiological conditions (Karpinski et al. 2018). 
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integrates biological and cognitive approaches to studying intelligence by acknowledging that 

elementary cognitive processes underlying human intelligence are bound to the integrity of the brain, 

which is one of many bodily organs and, therefore, affected by basic physiology.  

In our comment, we want to pose three questions aimed at different aspects of Geary’s theory 

that critically evaluate his theory in the light of evidence from neurocognitive, cognitive 

enhancement, and behavioral genetics research.  

1.1. Can Geary’s Theory Explain Why Certain Cognitive Processes Show a Stronger Age-Related Decline 

than Others? 

Geary (2018) argued that parameters of certain cognitive processes such as working memory 

(WM), which “refers to a system, or set of processes, holding mental representations temporarily 

available for use in thought and action” (Oberauer et al. 2018, p. 886), are more strongly related to 

intelligence and show greater age-related decline than parameters of other cognitive processes, such 

as short-term memory (STM), due to higher energy demands. Because more energy-demanding 

systems show greater metabolic activity than less energy-demanding systems, they create more 

reactive oxygen, which results in more rapid accumulation of mutations across the life span. 

This argument relies on the assumption that working memory processes require intermodular 

neural connections that are supported by intact axonal connections between modules, whereas other 

cognitive processes rely to a larger degree on intramodular connections. Hence, both higher energy 

use and the dependence on a larger number of intermodular axonal connections are supposed to 

account for the greater age-related decline in WM than in STM. We believe that this conclusion is 

neither supported by cognitive theories on memory systems nor by neuroscientific evidence. 

Cognitive psychologists have been abandoning a strict distinction between WM and STM towards a 

broader definition of working memory that includes short-term memory processes (Oberauer et al. 

2018). If there is a conceptual distinction between the two memory systems, it typically entails that 

STM involves the mere maintenance of information, whereas WM involves the simultaneous 

maintenance and manipulation of information (Cowan 2017). This additional manipulation of 

information may indeed require higher levels of cellular energy. However, there is ample evidence 

that the encoding, maintenance, and retrieval of information required both in WM and STM rely on 

long-range intermodular neural connections. In particular, these processes have been shown to 

require the integration of neural activity elicited from the ventrolateral prefrontal cortex, the inferior 

temporal cortex, the ventral posterior parietal cortex, and the medial temporal lobe (Nee and Jonides 

2011, 2013a, 2013b; Öztekin et al. 2008). Therefore, it is implausible to assume that individual 

differences in axonal integrity and neural plasticity or age-related myelin degradation account for 

greater age-related decline in WM than in STM, as both WM and STM processes require long-distance 

intermodular information transmission. 

In addition, language-related abilities such as verbal understanding and verbal production, 

which are reflected in measures of crystallized intelligence, stay relatively stable across the lifespan 

and show a much more decelerated age-related decline than both WM and STM (Horn and Cattell 

1967; Salthouse 2004). However, the same processes are known to heavily rely on intermodular 

connections (Barbey 2018; Silbert et al. 2014). As such, the discrepancy in age-related trajectories of 

fluid and crystallized intelligence also contradicts the idea that networks relying on long-distance 

intermodular information transmission show a greater age-related decline due to more extensive 

myelin degradation. 

1.2. Do Intervention Studies in Healthy Younger Adults Support the Claim That Variation in Mitochondrial 

Functioning Underlies Variation in Human Intelligence? 

One very elegant test of Geary’s hypothesis would be to increase mitochondrial functioning 

through pharmaceutical or training-based interventions and to assess whether these interventions 

show effects on general cognitive performance. Geary (2018) cited several studies in which nutritional 

supplementation using ketone agents, creatine, coenzyme Q10, or resveratrol, which affect different 

aspects of mitochondrial functioning, led to increases in cognitive performance in older adults and 
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in adults with neurodegenerative diseases, such as Parkinson’s and Alzheimer’s disease (Henderson 

et al. 2009; Li et al. 2015; Witte et al. 2014). However, these effects seem to only hold for older 

individuals or individuals with certain neurodegenerative diseases, while evidence for cognitive 

enhancement by nutritional supplementation in younger adults is limited.  

A recent review on the beneficial effects of creatine supplementation summarized three studies 

assessing the effects on intelligence test performance in younger adults (Avgerinos et al. 2018). 

Creatine supplies energy to cells with increased energy demands, and its higher-energy phosphate 

bonds can be used for immediate ATP replenishment in energy-demanding situations, such as 

cognitive tasks, that require high neural energy use (Persky and Brazeau 2001). However, the studies 

summarized by Avgerinos et al. (2018) do not provide compelling evidence that increased creatine 

availability increases cognitive functioning in healthy young adults. One of these studies found no 

effect of creatine supplementation on cognitive performance (Rawson et al. 2008), while another 

found a large effect in comparison to a placebo condition that could, however, be attributed to 

substantial baseline differences in intelligence between the two groups (Ling et al. 2009). The only 

study that reported compelling evidence for enhanced cognitive performance following creatine 

supplementation contained a sample of vegetarians (Rae et al. 2003), who typically show lower 

plasma creatine levels due to their diet (Delanghe et al. 1989).  

Similarly, effects of resveratrol administration seem to protect against neurodegenerative effects 

on cognitive function (Foti Cuzzola et al. 2011; Sun et al. 2010; Witte et al. 2014). Resveratrol is best 

known as one of several wine polyphenols thought to be responsible for the health benefits of 

moderate regular wine consumption (Keylor et al. 2015). It is synthesized by plants undergoing 

infectious or ionizing radiation and acts as a potent antioxidant (Malhotra et al. 2015; Salehi et al. 

2018). However, despite showing promising effects in the treatment of neurodegenerative diseases, 

several studies failed to observe any benefits of resveratrol administration on cognitive functioning 

in healthy young adults despite observing resveratrol-related increases in cerebral blood flow 

(Kennedy et al. 2010; Wightman et al. 2014, 2015; Wong et al. 2013).  

Taken together, these results suggest that these nutritional supplementations only affect 

cognitive functioning in older adults, in individuals with certain neurodegenerative diseases, and in 

individuals with dietary restrictions. In a similar vein, animal studies have shown that experimental 

interventions modulating mitochondrial fusion/fission dynamics can facilitate neural regeneration 

(Chien et al. 2018), underlining the role of mitochondrial dynamics in degenerative neurocognitive 

processes. Hence, these studies cannot be cited to support Geary’s (2018) hypothesis that individual 

differences in mitochondrial functioning underlie natural variation in intelligence; instead, they only 

lend credence to the idea that age-related cognitive decline may be mediated by impairments in 

mitochondrial functioning. 

1.3. Are Predictions Arising from the Matrilineal Heredity of Mitochondrial DNA Supported by Behavioral 

Genetics Research? 

There is evidence that variations in mitochondrial DNA (mtDNA) have an effect on 

mitochondrial functioning and several body systems, including the brain (see Geary 2018, p. 1034). 

When, in turn, differences in mitochondrial functioning have an effect on general intelligence, then 

one would expect that differences in mtDNA are also associated with differences in intelligence. In 

particular, individuals with similar mtDNA would be expected to show rather similar levels of 

intelligence, and individuals with dissimilar mtDNA would be expected to show rather dissimilar 

levels of intelligence. Because mtDNA has a matrilineal heredity, it follows that the mtDNA of a 

mother and her offspring is much more similar (identical devoid of mutations) than in the case of a 

father and his offspring. In short, one may conclude that the mother–offspring correlation of 

intelligence must be larger than the father–offspring correlation of intelligence and that the size of 

this difference gives a clue on the magnitude of how much mtDNA differences would drive 

differences in intelligence. However, empirical data do not support this prediction. Whitley et al. 

(2011) analyzed data from the 1958 cohort of the National Child Development Study, including 

offspring data from the children of the original study members. They reported that the mother–
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offspring correlation of IQ scores was 0.30, and that the father–offspring correlation was 0.31 (these 

findings are based on 2202 parent–offspring pairs). Thus, there was no larger correlation for mothers 

than for fathers, which suggests that the similarity/dissimilarity of mtDNA does not affect the 

similarity/dissimilarity of IQ scores. 

A tentative explanation of this null finding may be that there are no main effects of mtDNA 

variations on mitochondrial functioning, but that the latter is affected by mito-nuclear interactions 

only. However, this argument is at odds with the evidence that differences in mtDNA do have sizable 

effects on mitochondrial and body system functioning, as noted above. Another tentative explanation 

of this null finding may be that differences in mitochondrial functioning translate only with a very 

small effect size into differences in intelligence—too small to be detected in the study of Whitley et 

al. (2011). In this case, there is a place for many more factors that contribute to the variance of 

intelligence, which run outside the mechanisms of mitochondrial functioning, be they biological or 

social in nature. 

2. Conclusions 

Taken together, Geary’s theory is very compelling because it provides an elegant account of 

many important empirical phenomena of intelligence research. Moreover, it integrates biological and 

cognitive approaches to studying intelligence by acknowledging that elementary cognitive processes 

underlying human intelligence are bound to the integrity of the brain, which is one of many bodily 

organs and is, therefore, affected by basic physiology. We discussed different findings from 

neurocognitive, cognitive enhancement, and behavioral genetics research that challenged various 

aspects of his theory. First, we discussed recent research from cognitive psychology and cognitive 

neuroscience that questioned Geary’s prediction that networks relying on long-distance 

intermodular information transmission show a greater age-related decline due to more extensive 

myelin degradation. As both WM and STM processes require long-distance intermodular 

information transmission, it is implausible to assume that individual differences in axonal integrity 

and neural plasticity or age-related myelin degradation account for the phenomenon of greater age-

related decline in WM than in STM. Second, we looked into the nutritional interventions discussed 

by Geary and concluded that these nutritional supplementations only affect cognitive functioning in 

older adults, in individuals with certain neurodegenerative diseases, and in individuals with dietary 

restrictions, whereas they do not show any cognitive benefits in healthy young adults. Third, we 

reviewed evidence from behavioral genetics research that challenged the prediction arising from the 

matrilineal heredity of mitochondrial DNA that the mother–offspring correlation of intelligence 

should be larger than father–offspring correlation. Data from a large-scale national cohort study 

showed that mother– and father–offspring correlations were virtually identical. 

While our reservations based on neurocognitive and cognitive enhancement research only 

concerned certain parts of Geary’s theory, the discussed evidence from behavioral genetics research 

questioned a core assumption of the theory, namely that variations in mitochondrial DNA have an 

effect on mitochondrial functioning, which, in turn, has an effect on human intelligence. While we 

cannot and do not want to rule out that some amount of variation in human intelligence can be 

attributed to individual differences in mitochondrial functioning, the findings discussed above let us 

conclude that there are likely many more factors contributing to individual differences in intelligence, 

ranging from genes (e.g., genome-wide polygenic scores explain up to 10% of variance in intelligence; 

(Plomin and von Stumm 2018)) to structural (e.g., white-matter tract integrity in the forceps minor, 

the corticospinal tract, the anterior thalamic radiation, the right superior longitudinal fasciculus, the 

uncinate fasciculus, the rostrolateral prefrontal cortex, and the inferior parietal lobe; (Booth et al. 2013; 

Pineda-Pardo et al. 2016; Kievit et al. 2016; Tamnes et al. 2010; Wendelken et al. 2017)) and functional 

brain characteristics (e.g., activation of fronto-parietal brain networks and functional connectivity 

related to higher-order cognitive processes; (Basten et al. 2015; Jung and Haier 2007; Hilger et al. 2017; 

Schubert et al. 2020)), mediating cognitive processes (e.g., processing speed, attentional control, 

working memory; (Engle 2018; Kovacs and Conway 2016; Schubert and Frischkorn 2020)), 
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environmental influences (e.g., prenatally available polyunsaturated fatty acids; (Cohen et al. 2005; 

Lassek and Gaulin 2008)), and developmental interdependencies (Van Der Maas et al. 2006). 
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