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Abstract: When a cognitive ability is assessed repeatedly, test scores and ability estimates are often
observed to increase across test sessions. This phenomenon is known as the retest (or practice)
effect. One explanation for retest effects is that situational test anxiety interferes with a testee’s
performance during earlier test sessions, thereby creating systematic measurement bias on the
test items (interference hypothesis). Yet, the influence of anxiety diminishes with test repetitions.
This explanation is controversial, since the presence of measurement bias during earlier measurement
occasions cannot always be confirmed. It is argued that people from the lower end of the ability
spectrum become aware of their deficits in test situations and therefore report higher anxiety
(deficit hypothesis). In 2014, a structural equation model was proposed that specifically allows the
comparison of these two hypotheses with regard to explanatory power for the negative anxiety–ability
correlation found in cross-sectional assessments. We extended this model for usage in longitudinal
studies to investigate the impact of test anxiety on test performance and on retest effects. A latent
neighbor-change growth curve was implemented into the model that enables an estimation of retest
effects between all pairs of successive test sessions. Systematic restrictions on model parameters
allow testing the hypothetical reduction in anxiety interference over the test sessions, which can be
compared to retest effect sizes. In an empirical study with seven measurement occasions, we found
that a substantial reduction in interference upon the second test session was associated with the
largest retest effect in a figural matrices test, which served as a proxy measure for general intelligence.
However, smaller retest effects occurred up to the fourth test administration, whereas evidence for
anxiety-induced measurement bias was only produced for the first two test sessions. Anxiety and
ability were not negatively correlated at any time when the interference effects were controlled for.
Implications, limitations, and suggestions for future research are discussed.

Keywords: retest effect; practice effect; cognitive abilities; intelligence; figural matrices; test anxiety;
structural equation modeling

1. Introduction

Taking the same or an alternate but equally difficult version of a cognitive ability test more than
once has been observed to lead to an improvement in test performance—a phenomenon widely known
as the retest effect [1] or practice effect [2]. The effect is psychometrically represented by a significantly
increased (mean) test score or ability estimate upon a repeated measurement occasion. Retesting with
cognitive ability tests can be crucial in clinical practice, personnel selection, and research scenarios.
For example, in the evaluation of training procedures (e.g., for mathematical abilities), passive control
groups often pass a simple retesting design to control for practice effects emerging from mere repetition
rather than the training program.
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The progression of retest effects over multiple test sessions and the causes for retest effects are
not yet fully understood. Meta-analytic evidence for increasing test performance in various cognitive
ability tests due to retesting has been reported by several authors [2–6]. The size of the effect is
moderated by several variables such as equivalence of test forms, test-retest interval, participant age,
as well as cognitive ability operation and content. Scharfen et al. [6] observed that scores in a wide
range of cognitive ability tests increased up to the third test administration where they seemed to reach
a plateau. Cognitive ability tests included in this analysis were general memory, processing speed,
divergent thinking, and reasoning. A non-linear progression of retest effects has also been found by a
meta-analysis focusing on score gains in working memory tests [5]. Finally, retest effects in figural
matrices tests seem to follow this pattern as well [6]. This is especially noteworthy because figural
matrices test scores are highly correlated with psychometric g, the construct of general intelligence [7,8].
However, these meta-analyses only included a low number of studies that administered more than
three tests and the authors recommended that researchers investigate retest effects across several test
administrations in the future.

The studies in which cognitive ability tests were administered more than three times [9–20]
are heterogeneous with regards to the population of interest, the cognitive abilities investigated,
the applied measures, the use of parallel test forms, the length of the test-retest intervals, considered
covariates of retest effect-size, and the main research question. For instance, Kaminski et al. [15]
and Fredrickson et al. [14] were interested in the stability of scores of specific neuropsychological
test batteries; Falleti et al. [12] and Bartels et al. [10] explored the influence of the test–retest interval
on retest effect size. Other important covariates of retest effect size were considered by Ferrer et al.,
Rogers et al., Wilson et al., and Wilson et al. [13,17,19,20]. The authors either studied group differences
of retest effects in neuropsychological testing between healthy participants and participants with brain
injuries [17,19] or separated incremental effects of age and aging from actual practice effects [13,20].

Despite the diversity of these studies, they all share some attributes that have important
implications for future studies on retest effects. None of these studies found a significant increase
in test scores after the seventh test administration. This suggests using seven test sessions as
a general guiding value for longitudinal studies on the progression of retest effects. No study
investigated retest effects specifically in the measurement of psychometric g. Most of the studies
focused on basic neuro-cognitive assessments such as reaction time, matching, and monitoring.
Although the investigation of these abilities is a worthwhile task, g is the central variable in cognitive
ability assessment settings for personnel selection and achievement prediction (although other valid
predictors exist [21]). A comprehensive assessment of intelligence requires the use of complete
test batteries that include various ability measures, which are impractical for longitudinal studies,
as they impose a high burden on participants when test–retest intervals are not particularly long.
However, valid proxy measures of g reflect a compromise in this context. Puddey et al. [16] investigated
retest effects within the undergraduate medicine and health science admission test (UMAT). The first
subscale of this test measures fluid reasoning, which provides the highest correlation with g among
the more specific ability factors and is hence often used as a proxy IQ measure [7,8]. This study was,
however, practically-oriented. The covariates of retest effect sizes that were considered included,
for example, testees’ nationality and first language, because these have important implications for
fairness in student selection. However, they do not provide a theory-driven explanation for the
emersion and development of retest effects.

Accordingly, studies on retest effects are noticeably lacking that simultaneously incorporate:
(1) the assessment of general intelligence or at least the use of valid proxy measures, (2) the description
of retest effect development beyond the third test session, and (3) an explanation of this development
within a psychological theory.

Statistical modeling of such a research scheme is not straightforward. A change model must
be employed that quantifies the changes in ability estimates upon retesting to comply with points
(1) and (2). The model must include covariates of the ability to account for point (3). Exact model
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specifications largely depend on the proposed relationship of the retest effects and the covariates
of the ability. Structural equation modeling (SEM) is potentially flexible enough to accommodate
these conditions.

The purpose of this study was two-fold. Firstly, we derived a statistical model for the investigation
of retest effects that considers situational test anxiety as their explanation. Test anxiety was the covariate
of choice because a literature review revealed the potential for this predictor on the theoretical level
and an opportunity for a solid statistical modeling of its impact on retest effects in the frameworks of
SEM. Secondly, a longitudinal empirical study with seven proxy measurements of g incorporating this
methodological approach was conducted.

The rest of this article is thus structured as follows: First, a review of explanations for retest effects
is provided. The potential and particularities of test anxiety are stressed. Second, the literature on
the anxiety test performance relationship is illustrated in more detail and a theory for the impact of
situational test anxiety on retest effects is proposed. Lastly, the statistical model representative of this
theory is derived and the study is presented.

1.1. Explanations for Retest Effects

Lievens et al. [22] introduced a theoretical framework differentiating between three groups of
causes leading to retest effects. More recent theoretical reviews have built upon this framework from
different perspectives [23,24]; yet, they acknowledged the following three categories to be the most
important: (1) Retest effects can reflect a gain in the measured latent ability. In contrast to the other
two explanations, this hypothesis does not assume other states or traits apart from the cognitive
ability itself to be involved in the observed increase of test scores. Frequent amplified usage of the
cognitive ability due to retesting causes a training effect, so that an increased test score manifests as
the result of an improvement in ability. (2) Test-specific strategies and skills (in contrast to the actual
latent ability measured by the test) are assumed to be fostered by retaking a test, leading to higher
scores. For example, across multiple test sessions, a testee could learn how to conclude the right
answer to a multiple-choice test by excluding the wrong answers instead of engaging in the task itself.
The capability to exploit such test-specific strategies to receive a higher score is often referred to as
test-wiseness [25]. (3) The influence of construct-irrelevant factors, such as test anxiety, unfamiliarity,
and rule incomprehension, which initially prohibit testees from performing at their true level of ability,
can be reduced due to retesting.

These three categories can be differentiated in terms of their implications for the consequences
of retesting on the construct validity of a cognitive ability test. The first cause, increased latent
ability leading to higher scores, would have no consequences on the construct validity of the
test as it still measures the underlying ability without deterrence due to retesting. In the second
case, when test-specific strategies and skills are fostered, the measurement of the latent ability is
deterred due to retesting, meaning that taking a test repeatedly leads to lower construct validity.
In contrast, as construct-irrelevant factors are reduced, construct validity is enhanced due to retesting.
Yet, conclusions on the weights of these potential causes cannot be drawn as empirical evidence is
mixed with regards to whether construct validity is influenced by retesting [9,26–29].

Randall and Villado and van Iddekinge and Arnold [23,24] expanded Lievens et al.’s [22] framework
by explicitly reviewing specific variables that possibly explain retest effects. The authors concluded
that some factors seem to moderate the size of the retest effects (e.g., demographics, test-wiseness,
and equivalence of test forms), whereas more research is needed for most of the construct-irrelevant
factors. This is especially the case for motivational states and emotions that influence (re)test
performance. This conclusion was also drawn by Scharfen et al. [6]. The authors introduced theoretical
deliberations on how motivational and emotional states relating to test achievements might change over
multiple test sessions. For example, it was argued that test anxiety strongly inhibits test performance
at the first test administration but gradually stabilizes with successive test repetitions. In this context,
Van Iddekinge and Arnold [24] specifically stressed that anxiety scores were found to decrease upon
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retesting [30,31] and that a long line of research has been dedicated to the relationship between test
anxiety and test performance (see below); however, research on the effect of test anxiety on ability score
changes is still missing. Matton et al. [32] specified a longitudinal SEM approach in which the impact of
construct-irrelevant factors on ability estimate changes across time can be tested. They demonstrated
how a general residual factor representative of such construct-irrelevant variables can be added to the
model equations and estimated (see also [33]). Test anxiety was mentioned as a central theoretical
component cumulated in that factor but not assessed directly. Similarly, Reeve et al. [34] emphasized
the importance of an exact statistical specification of the influence of construct-irrelevant factors on
ability test performance. They reported an example of the impact of test anxiety and test familiarity
on ability scores in the framework of classical test theory and elucidated the implications of these
specifications with a Monte Carlo simulation. Again, test anxiety was not assessed directly.

The specific construct of test anxiety has, however, been studied since 1952 [35] and is now well
established, measurable, and incorporated into various theories on cognitive ability test performance.
These theories have been recently translated into concrete statistical formulas in the framework of
SEM [36] and can be extended to longitudinal research on test performance improvement. It follows
that the request for a more precise insight into the incremental contribution of test anxiety to the
emersion and progression of retest effects can now be pursued.

1.2. Definition of Test Anxiety

Broadly, test anxiety refers to a facet of general anxiety that is specific to evaluative situations [37–39].
As with general anxiety, an important distinction is made between trait test anxiety and state test
anxiety. The former reflects a quite stable dispositional proneness to anxious thoughts and feelings
when being tested [40,41]. The latter is more fluctuating and dependent on the attributes of a specific
test situation [40,42]. For this reason, state test anxiety is also often referred to as situational test anxiety
(STA) [43,44]. More recently, researchers have started to emphasize the incremental effects of trait
and state anxiety on test performance [38,45–48], but most research so far has focused on the link
between STA and test scores [39]. STA is often operationalized in the framework of current achievement
motivation (CAM) [49–51]. For example, the questionnaire for current achievement motivation [52]
includes the sub-facet fear of failure (FOF), which reflects worrisome cognitions and beliefs toward the
test outcome in a specific evaluative situation and can be considered a measure of STA.

1.3. Test Anxiety and Test Performance: Interference and Deficit Hypotheses

Meta-analytic evidence suggests that test anxiety and test performance are negatively
correlated [53] and subsequent empirical work further supports this finding [36,38,44,46,54–56].
However, the nature of this relationship is still debated. Two contrary approaches compete as potential
explanations: the interference hypothesis and the deficit hypothesis.

The interference hypothesis claims that anxiety reduces test performance. High levels of anxiety
prevent testees from performing at their true level of ability because cognitive resources are depleted
for the processing of and/or emotional coping with worrisome thoughts about the test outcome [57–59].
Hence, the interference hypothesis suggests that measurement bias evolves due to the influence of
anxiety [38,44].

Conversely, the deficit hypothesis postulates no causal relationship between test anxiety and
performance. The negative correlation between anxiety and test performance emerges merely due to
an activation of test anxiety by the confrontation with an ability test. If a person generally achieves
high test scores, they might report less anxiety toward testing situations. In contrast, those testees
that perform worse in testing scenarios become aware of their deficits when confronted with a test
and report higher test anxiety [38,39,56,60–68]. More refined versions of this hypothesis explicitly
trace the correlation between test performance and test anxiety back to the attenuating third variable,
test competence [54,69–71]. Most importantly, in contrast to the interference hypothesis, the deficit
hypothesis assumes no cognitive ability measurement bias due to anxiety.
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The superiority of either hypothesis in an empirical context has been evaluated by investigating
the presence of anxiety-induced measurement bias and results have been mixed [36,38,44,46,56,65].
For that purpose, Halpin et al. [36] introduced a methodological framework to simultaneously assess
the interference and the deficit hypothesis on the basis of structural equation modeling. In this anxiety
test model (AT model, Figure 1), a latent cognitive ability variable is measured by the ability test items,
and a latent trait or state test anxiety variable is assessed, for example, by proper questionnaire items.
Latent anxiety also negatively influences the ability test items in accordance with the interference
hypothesis because high anxiety should causally reduce the probability of solving these items correctly.
A negative regression coefficient of a test item on latent anxiety thereby reflects systematic measurement
bias and is described as an interference effect. The correlation between latent ability and latent anxiety is
modeled in accordance with the deficit hypothesis. If interference effects are found and this correlation
is significantly lower than zero, then both interference and actual deficits should be assumed to explain
the test outcome. If this correlation decreases to zero, when interference is controlled for, only evidence
for the interference hypothesis can be drawn from the model. Finally, if no interference effect is found
but a negative correlation between the latent variables still emerges, the deficit hypothesis can be seen
as the next best explanation for this correlation. As Halpin et al. [36] pointed out, this simultaneous
modeling of double loadings for the ability test items and the correlation of the latent variables
creates statistical rotational indeterminacy and leaves the model unidentified. However, they also
demonstrated that strategically imposed equality constraints among factor loading parameters solve
this problem.
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Figure 1. Anxiety test (AT) model as proposed by Halpin et al. [36]. A latent cognitive ability variable
(η) is measured by its respective manifest test items (three in this example: I1, I2, and I3). A latent
anxiety variable (ξ) is measured by its respective manifest questionnaire items (again, three in this
example: F1, F2, and F3). The arrows approaching the manifest variables from below represent their
respective error terms. Regressions of the ability test items on latent anxiety are also modeled and
reflect interference effects. The correlation between ability and anxiety is modeled and represents
a potential deficit. Simultaneous modeling of interferences and deficits creates statistical rotational
indeterminacy, rendering the model under-identified. However, strategic equality constraints among
the factor loading parameters (for example: all interference effects are restricted to the same value)
solve this problem.

1.4. A Psychological Theory for the Impact of Situational Test Anxiety on Retest Effects

To the best of our knowledge, the interference and the deficit hypotheses have been evaluated as
explanations for test performance before, but not for retest effects. In accordance with the deliberations
introduced by Randall and Villado [23] and Scharfen et al. [6], measurement bias due to anxiety,
as postulated in the interference hypothesis, might be high in earlier test sessions when participants
do not know what to expect from the test. However, it might play less of a role in later test sessions
when participants have grown accustomed to the test situation and are no longer alarmed by it.
This formulation does not yet explicitly postulate whether the impact of state (i.e., situational) or trait
test anxiety on test performance diminishes with ongoing test repetitions. However, work has been
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published that relates a decrease in anxiety to a habituation process occurring due to frequent exposure
to test situations [6,72,73]. Habituation reflects a flattening effect on a temporally and contextually
fluctuant (emotional) reaction. This kind of reaction dynamic is more accurately represented by the
concept of situational test anxiety as opposed to rather stable trait test anxiety. We therefore focused on
STA in the current work but elaborate upon the significance of trait test anxiety in the discussion.

The decrease in STA interference over time explains the increase in test performance over time.
The larger the reduction of interference (i.e., measurement bias) between two successive test sessions,
the larger the expected retest effect. This also implies an increase in cognitive ability measurement
reliability and validity over time. Oostdam and Meijer [74] investigated the intra-individual change
in anxiety-induced interference within a single assessment session under a comparable theoretical
umbrella, but they did not specifically relate changes in interference to retest effects.

To evaluate this theory, we suggest a method of extending the AT model so that it can be employed
to longitudinal data. In the following, we describe this extension and then demonstrate its usage in a
longitudinal study.

2. A Statistical Model for the Impact of Situational Test Anxiety on Retest Effects

In a first step, repeated measurements of cognitive ability and situational test anxiety have to
be introduced to the original AT model. For that purpose, an AT model is constructed for every test
administration. Combining these models requires theoretical deliberations on the specification of latent
variable correlations. At every test session, latent ability and latent anxiety are modeled to correlate
with each other to account for deficit effects. Latent ability states are modeled to correlate across test
administrations to account for construct stability. The same is applied to latent anxiety states. Figure 2
depicts an example of this extension of the AT model. We refer to it as the longitudinal AT (LAT) model.
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Figure 2. Extension of the AT model [36] to longitudinal data (LAT model). An AT model (Figure 1) is
constructed for every test session i (three in this example but it can be extended to any number of test
sessions). States of latent cognitive ability (ηi) are modeled to correlate between test sessions. The same
is applied to latent state anxiety (ξi).

Although this model allows for an investigation into interference development, it does not
consider retest effects. To compensate for this, the modeled relationships of the latent ability variables
can be further extended to a latent growth curve in terms of the neighbor-change model [75–78]
(for an illustration see [79]). This procedure introduces latent ability difference variables between
each pair of successive test sessions to the model. These difference variables represent individual
ability estimate changes between two successive test administrations. These changes are computed by
residual-free regressions of later ability states to latent ability at T1 and all previous difference variables.
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All regression weights are constrained to 1. Let ηk represent the latent ability state at Tk (k , 1) and let
δi+1,i represent the latent difference variable between Ti and Ti + 1, then for all ηk:

ηk = η1 +
k−1∑
i=1

δi+1,i (1)

holds. From this equation, we can deduce:

δk,k−1 = ηk − ηk−1. (2)

For example, in a case with three test sessions, latent ability at T2 is defined as:

η2 = η1 + δ2,1 (3)

and latent ability at T3 is defined as:

η3 = η1 + δ2,1 + δ3,2. (4)

Solving Equation (3) for δ2,1 gives:

δ2,1 = η2 − η1. (5)

Inserting the right-hand side of Equation (5) into Equation (4) and solving for δ3,2 gives:

δ3,2 = η3 − η2. (6)

These equations display how this procedure computes the latent ability changes between two
successive test administrations for each individual testee. Accordingly, the means of these latent
difference variables reflect the mean retest effects between two successive test sessions. When the model
is identified by constraining the variances of the latent variables to 1, the latent difference variables
are on a standardized scale and the mean retest effects can be interpreted as effect sizes in terms of
Cohen’s d [80]. Note, this computation of retest effects requires strong longitudinal measurement
invariance of the cognitive ability test because the means of the latent difference variables cannot be
estimated and do not have a meaningful interpretation unless intercepts/thresholds of the respective
manifest variables are kept constant across test sessions. For further explanations on measurement
invariance see Section 3). Correlations among latent abilities across test sessions are replaced by this
growth curve in the LAT model. The latent difference variables are modeled to correlate with latent
ability at T1 and with each other. These correlations cannot be interpreted as stabilities of latent states.
This model thereby reflects a special case of a latent growth curve model with a random intercept (η1)
and correlated slope variables (the latent difference variables).

The model contains both retest and interference effects. A change in the amount and overall size
of interference effects between two successive test sessions can be set in relation to the retest effect
between these two test administrations. Since interference effects are estimated at every test session
in this model, we call it the full interference model. However, the model can be restricted by setting
the interference effects of the last test session to zero, thereby creating a more parsimonious nested
model. By comparing both models with a likelihood ratio test, the null hypothesis that no interference
occurs at the last test session is tested. Next, the interference effects of the second to last test session
can be additionally restricted to zero. This model can then be compared with the model in which
only interferences in the last test session are assumed to be absent. This procedure can be successively
continued until all interference effects are restricted to zero. If anxiety-induced measurement bias
only exists up to a certain test session, this session will be revealed by this procedure. The values of
the ∆χ2 test statistic of the likelihood ratio tests can be compared in size to reveal information about
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the magnitude of interference in a given test session. This occurs because, with every step, the same
amount of additional interference effects is restricted to zero given that the number of test items is kept
constant across test administrations, keeping the degrees of freedom constant across all likelihood ratio
tests. The results of these successive tests can be interpreted in the light of the observed retest effects, as
a comparably large retest effect between Tk − 1 and Tk should align with a comparably large ∆χ2 test
statistic when restricting interference effects at Tk to zero. In the following, we refer to this framework
as the interference reduction approach. Figure 3 depicts an example of the full interference model with
three test administrations and visualizes the first step of the interference reduction approach.
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Figure 3. Example of the full interference model with three test sessions. ξi (with i = 1, 2, 3) depicts
situational test anxiety at measurement occasion i. We included a latent variable η*

1 for a more
comprehensible visualization of the model. η1 regresses on η*

1 with a regression weight of 1 and
a residual-variance of 0. Hence, η*

1 = η1. Note that an inclusion of η*
1 is not necessary for model

estimation as η1 can be used for the respective equations instead. By identifying the model by setting
the variances of latent variables to 1, the latent differences variables δk,k−1 (with k = 2, 3) are on a
standardized scale and their means can be interpreted as retest effect sizes in terms of Cohen’s d [80].
Interference effects in the third test session are depicted by dashed lines to illustrate the first step of
the interference reduction approach. A model in which these coefficients are restricted to zero can be
compared with the full interference model via a likelihood ratio test to test the null hypothesis that
interferences disappear in the third test session.

3. An Empirical Study

We investigated the interference reduction approach in a longitudinal SEM framework.
First, an intelligence test was administered seven times to explore the longitudinal development
of retest effects. For economic reasons, we did not want participants to undertake a complete
intelligence test battery that often. Hence, the cognitive ability test of choice was a figural matrices test
that is particularly useful for longitudinal studies because it contains parallel forms (see Section 3.1
and Supplementary Materials (Appendix A)). Figural matrices tests measure fluid reasoning, which
has the highest g saturation of all of the more specific cognitive ability factors. They are arguably the
best IQ proxy measure when only a single measure can, or should, be used [7,8]. Second, situational
test anxiety was assessed at every test session to investigate potential interference on test scores and
their relation to retest effect size. This study thereby reflects one of the first attempts to simultaneously
explore both of the following: retest effects within the measurement of g beyond the third test session,
and the construct-irrelevant factor of test anxiety as a potential explanation for retest effects.
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3.1. Method

3.1.1. Sample

Participants were mainly recruited among students of the University of Münster, Germany via
flyers and invitations on social media channels in 2017. They had the option to select between various
combinations of monetary remuneration and course credit, with a maximum monetary remuneration
of €50. A total of 326 examinees originally participated in the study. Out of these, 297 completed every
test session. This reflects a dropout rate of 8.9%. Another 21 further examinees had to be excluded
because they required more than three hours for one of the tests, which questions the validity of their
data. From the remaining 276, further participants were excluded to account for ceiling effects in
longitudinal test score development. Ceiling effects were defined as yielding a perfect test score in
four or more test sessions or yielding three perfect test scores in a row. The data of the remaining
225 examinees were used for the analysis (see Supplementary Materials (Appendix B) for analysis of
the complete sample). In this sample, 24.9% reported being male and 74.7% being female (one missing
value). The mean age was 23.49 (SD = 4.84). Of the participants, 45.33% studied psychology, 8.44%
studied economics, 2.67% studied communication science, and 10.67% were not students.

3.1.2. Measures

Figural Matrices Test

The figural matrices test was an updated version of MatrixDeveloper, which was described in
detail by Freund et al. [81]. Per test session, 13 items had to be solved. With every item, a 4 × 4 matrix
was presented to the participants. The matrix was filled with symbols following certain rules that were
applied row-wise. The cell on the bottom-right of the matrix contained a question mark. Participants
had to identify the correct cell to replace that question mark according to the symbol rules out of
the 16 options that were displayed below the matrix. One of the options was “No option is correct”.
The time limit was set to three minutes for each matrix item. Feedback on whether the given answer
was correct was provided immediately. For any given item, participants scored one point when the
correct answer was selected and zero points for the wrong answer.

MatrixDeveloper is software that generates a test on the basis of rule-based automatic item
generation [82,83]. The rules that dictate the symbol patterns are considered the radicals of the test and
determine the psychometric properties of the items. The test creator can decide which of the six rules
shall be active in any given item. The color (either black or white), shape, and amount of symbols are
randomly chosen to follow an activated rule. They are considered the incidentals of the test that have
no effect on the psychometric item properties. This item generation procedure theoretically allows for
the creation of a nearly infinite number of parallel test forms.

The rules that determine symbol patterns are explained to the testee before the test administration.
In other words, this matrices test does not require participants to discover the rules themselves but to
recognize the already known rules in symbol patterns and to logically conclude the correct answer.
For a detailed explanation of these rules, refer to Freund et al. [81].

Since presenting the exact same test several times confounds underlying retest effects of interest
with mere memory effects of already seen test items, we aimed to create seven different but equally
difficult tests. Thus, items were selected via a matching system: easiness (probability of solving an
item correctly given average cognitive ability) parameters of a pool of items were available from a
calibration study. Each test session’s items were selected so that their easiness parameters covered a
wide range of ability. We ensured each item for a specific test session had a matched item in every
other test session that had a similar difficulty. Since at every test session items were presented in order
of increasing difficulty, the match of an item from one test session was always presented in the same
position (from 1 to 13) in any other test session. The mean easiness for the 13 items belonging to a
respective test session ranged from Min(M) = 0.551 to Max(M) = 0.558 (M(M) = 0.554) and the standard
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deviation for item easiness in a test ranged from Min(SD) = 0.241 to Max(SD) = 0.271. For a more
detailed description of the test item easiness parameters see Supplementary Materials (Appendix A).

Situational Test Anxiety

Situational test anxiety was assessed in the framework of current achievement motivation
(CAM) [49,51]. STA was measured with the subscale fear of failure (FOF) of the German version of
the questionnaire for CAM (“Fragebogen zur Erfassung aktueller Motivation (FAM)” [52]) by five
statements. Participants rated these statements on a 7-point-Likert scale, ranging from “I strongly
disagree” to “I fully agree”. One example statement is: “When I think of these tasks, I feel a little
disconcerted”.

3.1.3. Procedure

Data were collected via an online survey. The time interval between subsequent test sessions
was three to four days. Three days after completing a test session, participants received an email
with the link to the next test, which was required to be undertaken within the next 48 h. Participants’
email-addresses were solely used for distributing the links to the later test administrations. They were
deleted after the end of the field time of the study.

In every test session, participants were greeted and informed about the study purpose, anonymity
of participation, the alternatives for reimbursement, and the requirement for study completion to
receive any form of remuneration. They were further informed that by proceeding, they consented
to participation and use of their anonymized data for analysis. They first had to provide their email
address and generate (in the first test session) or enter (at the subsequent test sessions) their participant
code. Next, the figural matrices test and the item rules were explained. Afterward, the FAM was
administered. Then, participants again received a short overview of the matrices test rules. This was
followed by the figural matrices test. Afterward, participants had the opportunity to leave comments.

During the course of the seven test sessions, the procedure varied in some cases. In the first session,
every matrices test rule was explained in detail and every explanation was followed by a training
exercise to ensure complete understanding of the respective rule. Participants that failed to answer
any training item correctly within the first three attempts were prohibited from continuing. In the
remaining test sessions, the rules were only briefly repeated, and no practice items were presented.
At the end of the first session, demographic information was collected, and at the end of the seventh
test session, participants could choose their combination of monetary and course credit reimbursement.
Three weeks after the study field time closure, compensation was distributed to all participants.

3.1.4. Analytic Strategy

Data were analyzed using SEM with the R [84] package lavaan version 0.6-3 [85]. Generally, in
all models containing the binary answers to figural matrices items (0 = wrong answer, 1 = correct
answer), parameters were estimated with the DWLS discrepancy function [86,87], whereas robust
standard errors were obtained via the WLSMV method. Parameters and standard errors of models
containing only the FOF-scale items were estimated using the robust maximum likelihood (MLR)
method. For all models, fit was evaluated via the χ2 overall model fit test statistic, χ2-to-df ratio,
RMSEA, CFI, and TLI. The cut-off criteria for all these fit indices were taken from West et al. [88]. For the
nested models, we used likelihood ratio tests according to the Satorra method [89] for DWLS-estimated
models, and the Satorra–Bentler method [90] for MLR-estimated models. Additionally, we compared
CFI values. A decrease in CFI larger than 0.01 after imposing restrictions on model parameters is
considered a substantial decline in model fit [91].

Longitudinal latent state confirmatory factor analyses (CFA) [92] were used to model the test
scores of the figural matrices test (ability-CFA; Figure 4) and the FOF-scale of the FAM (STA-CFA;
Figure 5). Since the FAM contained the same questions in every test session, latent variables accounting
for indicator-specific covariance [93,94] were included in the STA-CFA. Measurement invariance [95,96]
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across test sessions for the measurement models of both latent variables was investigated. The most
general form of measurement invariance is indicated by configural invariance. In the case of the
models employed here, it implies uni-dimensionality of the matrices test and the FOF across test
administrations. Weak invariance is a more restrictive form of configural invariance in which factor
loadings are kept constant over test sessions. Comparisons between correlations and regressions
involving latent variables are valid only when weak invariance holds. Strong invariance is achieved by
additionally restricting the item difficulties of a test to be equal across administrations. Note that in the
case of the ordinal answer patterns in the matrices test, intercepts of manifest variables are fixed to zero
and difficulties are indicated by item category thresholds [94]. Changes in latent variable means across
test administrations can be interpreted as true latent variable changes only when strong invariance
holds. Since in the described interference reduction approach, differences in latent means over time are
only relevant for cognitive ability, strong invariance was targeted for the ability-CFA, whereas weak
invariance was targeted for the STA-CFA.

To assess retest as well as interference and deficit effects, the strong invariant ability-CFA and the
weak invariant STA-CFA were combined into one LAT model and extended to a full interference model.
Note, a neighbor-change model holds the same fit as a strong invariant longitudinal CFA of the same
test because the regressions used to introduce the difference variables are residual-free and the degrees
of freedom are identical [79]. The measurement invariance equality constraints among both respective
measurement models eliminated the problem of rotational indeterminacy [36] and over-identified
the model as a whole. However, Halpin et al. [36] derived the AT model and its properties solely for
cross-sectional usage. Hence, they did not consider model identification via the implementation of
longitudinal measurement invariance constraints. Instead, they suggested imposing testable equality
constraints among several interference effects. Therefore, we present an alternative strategy for model
identification in Supplementary Materials (Appendix C). Here, a LAT model was used and only
configural invariance constraints were implemented. All interference effects of a respective test session
were restricted to be equal. This is considered the most conservative approach to interference effect
testing [36]. The results delivered by this approach led to the same conclusions.

The interference reduction approach was executed to quantify the amount of interference reduction
between all pairs of successive test sessions and to compare interference reduction to retest effect sizes.
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Figure 4. Cognitive ability-confirmatory factor analysis (CFA). η1–η7 represent the latent ability
variables measured by the figural matrices test items in every test session. I1,1 represents the first item
in the first test session, I13,7 represents the 13th item of the seventh test session, etc. (items 2–12 of any
test session are not shown but are represented by the respective three dots). Factor loadings can vary
without any restrictions in a configural invariant model, but the loading of any item is restricted to
the same respective value across test administrations when a more restrictive from of invariance is
implemented. The threshold of any test item (not shown) is also restricted to the same respective value
across test administrations when strong invariance is imposed. The arrows approaching the manifest
variables from below represent their respective error-terms. The model was identified by setting the
factor loading of the first item at every test session to 1.
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Figure 5. Situational test anxiety-confirmatory factor analysis (STA-CFA). ξ1–ξ7 represent the latent
STA variables measured by the fear-of-failure (FOF) items of the “Fragebogen zur Erfassung aktueller
Motivation” (FAM) at every test session. F1 represents the first item of the questionnaire and F5

represents the fifth item. Items 2 to 4 are not shown, but are represented by the respective three
dots. Loadings from latent STA variables on the manifest items can vary without any restrictions in a
configural invariant model, but the loading of any item is restricted to the same respective value across
test administrations when weak invariance is implemented. The free arrows approaching the manifest
variables from below represent their respective error terms. Since the same items were applied in
every test administration, five item-specific latent variables [93,94] were added to the model to account
for indicator specific covariance. Only indicator-specific latent variables for items 1 and 5 are shown
(ζ1 and ζ5, respectively), but the other three are represented by the three dots in between. The model
was identified by setting the factor loading of the first item for every factor to 1.

3.2. Results

In this section, we focus on the results directly related to our research questions. Data, an analysis
script, and the results are provided online (see Supplementary Materials) and can be used to assess
the descriptive statistics of every measured study variable and the complete parameter estimates of
all models.

3.2.1. Descriptive Statistics

Table 1 presents descriptive statistics (means, standard deviations, ranges, internal consistencies,
and correlations) for sum scores of the figural matrices test and for the FOF scale. Matrices test scores
increased over time, reaching a maximum for the fourth test session and then remaining relatively
constant (M1 = 7.658; SD1 =3.110; M4 = 9.938; SD4 = 2.621). FOF scores decreased over the entire study
length (M1 = 16.582; SD1 = 6.200; M7 = 11.889; SD7 = 6.014). Internal consistencies of all measures
varied over time but always settled above 0.70 (α = 0.711–0.881).

Only the matrices scores of the first test session was significantly correlated with the FOF scores
of any point in time and these correlations were, as expected, negative (range: r = −0.133 for FOF at T7
to r = −0.197 for FOF at T2). Correlations between scores of a respective test over time were found to
be high. For the matrices scores, correlations increased over time, reaching the absolute maximum
between the sixth and the last test session (r = 0.768). Correlations for the FOF scores followed a similar
pattern. Any correlation including a FOF score for a test administration after the second one was above
0.80. The maximum was reached with the correlation between T5 and T6 (r = 0.906).
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Table 1. Descriptive statistics and correlations of study variable sum scores.

Descriptive Statistics Correlations

FM FOF

Measure Test session Mean SD Min Max 1 2 3 4 5 6 7 1 2 3 4 5 6 7

FM 1 7.658 3.11 1 13 0.776

2 9.187 2.63 0 13 0.700 *** 0.711

3 9.631 2.69 0 13 0.640 *** 0.684 *** 0.761

4 9.938 2.621 1 13 0.584 *** 0.705 *** 0.660 *** 0.754

5 9.782 3.043 0 13 0.579 *** 0.616 *** 0.738 *** 0.687 *** 0.819

6 9.791 3.058 0 13 0.619 *** 0.690 *** 0.695 *** 0.681 *** 0.714 *** 0.819

7 9.822 2.905 0 13 0.594 *** 0.639 *** 0.707 *** 0.643 *** 0.736 *** 0.768 *** 0.798

FOF 1 16.582 6.2 5 31 −0.157 * −0.104 −0.088 −0.05 −0.042 −0.067 −0.054 0.84

2 15.116 6.352 5 34 −0.197 ** −0.094 −0.087 −0.032 0.023 −0.033 −0.037 0.785 *** 0.881

3 13.569 6.001 5 32 −0.177 ** −0.131 −0.099 −0.062 0.005 −0.033 −0.057 0.729 *** 0.864 *** 0.868

4 12.929 5.95 5 28 −0.148 * −0.058 −0.04 −0.035 0.02 −0.013 −0.002 0.700 *** 0.826 *** 0.888 *** 0.867

5 12.48 6.15 5 28 −0.148 * −0.11 −0.085 −0.1 −0.013 −0.011 −0.014 0.633 *** 0.812 *** 0.882 *** 0.891 *** 0.878

6 12.36 6.005 5 30 −0.159 * −0.124 −0.107 −0.116 −0.068 −0.069 −0.077 0.574 *** 0.759 *** 0.826 *** 0.838 *** .906 *** 0.875

7 11.889 6.014 5 28 −0.133 * −0.106 −0.057 −0.072 −0.013 −0.057 −0.04 0.594 *** 0.749 *** 0.851 *** 0.853 *** 0.861 *** 0.864 *** 0.877

Notes. N = 225. SD = Standard Deviation; Min = Minimum; Max = Maximum; FM = Figural Matrices; FOF = fear-of-failure scale of the FAM. The diagonal of the correlation matrix
presents coefficients of internal consistency for the respective measure at a given test session. For the matrices test, this is given by the Kuder Richardson coefficient (Formula 20) for binary
data, and by Cronbach’s α for the FOF scale. * p < 0.05; ** p < 0.01; *** p < 0.001.
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3.2.2. Ability-CFA

Table 2 displays the model fit indices and comparisons for the latent state cognitive ability model
in configural, weak, and strong invariant forms. The configural model reached an excellent model
fit delivering a non-significant χ2 test statistic (χ2(3983) = 3283.490, p = 1). However, likelihood
ratio tests and ∆CFI indicated a significant decline in fit with any further invariance imposition.
When strong invariance was implemented, CFI and TLI just barely missed the minimum target value of
0.95 (CFI = TLI = 0.948). The χ2-to-df ratio remained under 2.00 (χ2/df = 1.627), indicating satisfying
model fit. The upper 90% confidence interval bound of the RMSEA settled under 0.08 (RMSEA = 0.053,
90% CI = [0.051, 0.055]). As Chen et al. found in a simulation study, models with such high degrees of
freedom are often rejected based on this criterion when estimated with an N < 400, even if the model
was correctly specified [97]. Thus, we further investigated retest effects on the basis of the strong
invariant model and return to this issue in the discussion.

Table 2. Model fit and comparisons of the configural, weak, and strong invariant ability-CFA.

Implemented Invariance ∆χ2 (df) p χ2 (df) p χ2/df RMSEA [90% CI] CFI TLI

Configural - - 3283.490 (3983) 1 0.824 0.000 [0.000, 0.000] 1.000 1.000
Weak 168.960 (72) <0.001 6038.581 (4055) <0.001 1.489 0.047 [0.044, 0.049] 0.960 0.960
Strong 727.390 (71) <0.001 6712.612 (4126) <0.001 1.627 0.053 [0.051, 0.055] 0.948 0.948

Notes. df = degrees of freedom; RMSEA = Root mean square error of approximation; CI = Confidence interval;
CFI = Comparative Fit index; TLI = Tucker–Lewis index. Models were identified by setting the factor loading of the
first matrices item of any test session to 1.

3.2.3. STA-CFA

Table 3 displays the model fit statistics for the configural and weak latent state test anxiety
models. The results regarding model fit were mixed for both models. Whereas χ2-to-df ratios and
RMSEA suggested satisfying model fit, CFI and TLI barely missed their respective thresholds of
0.95 by a maximum margin of 0.02 (TLI for the weak invariant model). Comparison of the models
yielded, again, mixed results. Based on the likelihood ratio tests, only configural invariance should
be assumed (∆χ2(24) = 74.028, p < 0.001). The CFI value, on the other hand, decreased by only 0.007,
suggesting no substantial decline of model fit when factor loadings are restricted to being equal across
test administrations.

Table 3. Model fit and comparisons of the configural and weak invariant STA-CFA.

Implemented Invariance ∆χ2 (df) p χ2 (df) p χ2/df RMSEA [90% CI] CFI TLI

Configural - - 845.657 (504) <0.001 1.678 0.055 [0.049, 0.061] 0.945 0.935
Weak 74.082 (24) <0.001 913.722 (528) <0.001 1.731 0.057 [0.051, 0.063] 0.938 0.930

Notes. df = degrees of freedom; RMSEA = Root mean square error of approximation; CI = Confidence interval;
CFI = Comparative fit index; TLI = Tucker–Lewis index. Models were identified by setting the factor loading of the
first item for every factor to 1.

3.2.4. Retest Effects

Figure 6 presents the estimated means of the standardized latent difference variables of the full
interference model. They can be interpreted as retest effect sizes in terms of Cohen’s d between two
successive test administrations. The p-values at the top indicate whether differences between two
successive retest effects were significant. In the more parsimonious models from the interference
reduction approach, estimated effect sizes did not change substantially and hypothesis decisions
regarding retest effects were identical (see Supplementary Materials).
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Figure 6. Estimated means of the standardized latent difference variables of the full interference
model, which can be interpreted as retest effect sizes in terms on Cohen’s d between two successive test
administrations. To obtain these parameters, the model was identified by setting the variances of the
latent variables to 1. d2,1 represents the retest effect from the first to the second test administration,
etc. Error-bars indicate two-tailed 95% confidence intervals. p-values at the top refer to the differences
between the respective successive retest effects.

The largest retest effect was found between the first two test sessions (d2,1 = 0.72, p < 0.001).
Retest effects remained positive and significantly different from zero until the fourth test administration
(d4,3 = 0.22, p = 0.009). Between the fourth and fifth test session, mean ability actually decreased,
but this effect was small and not significant (d5,4 = −0.13, p = 0.107). Compared with the first retest
effect, the second decreased substantially (d3,2−d2,1 = −0.56, p < 0.001). After that, the only significant
change in retest effect size occurred between the third and the fourth retest effect (d5,4–d4,3 = −0.35,
p = 0.017). However, as already mentioned, no significant change in mean latent ability was observed
between the fourth and fifth test administration.

3.2.5. Interference Reduction

Table 4 displays all standardized interference effects of the full interference model in which the
interference effects on all items in every test session are estimated. In the first test session, significant
interference was found on six ability test items (λ = −0.272 to −0.395). The amount of interference
effects decreased by two in the second test session and the overall absolute values of the interference
effects decreased (λ = −0.229 to −0.302). In the third test session, only two significant interference
effects emerged (λ = −0.274 and λ = −0.290). In every following test session, only one or two of the
items were found to be significantly biased due to anxiety. The last row of Table 4 displays item
thresholds (i.e., difficulties), which were restricted to be equal across test sessions. The exact order of
item difficulties as determined in the calibration study (see Supplementary Materials (Appendix A))
was not replicated, yet item difficulties still roughly increased in the order of presentation. The most
and the strongest interference effects were observed on items with intermediate difficulty, although
some outliers exist in this regard (e.g., item 1 in the first and item 13 in the second test administration).
These results were expected from a certain theoretical viewpoint because anxiety interference reduces
the maximum level of the ability at which a person can perform. This reduction will probably not
be large enough to hinder the testee from answering particularly easy items correctly and will be
irrelevant for the answers to particularly difficult items as the testee would not have been able to solve
these in the first place [38,39]. The last column of Table 4 further lists the correlations between latent
ability and anxiety for every test session, which are interpreted as deficit effects in the interference
reduction approach. No deficits emerged when interference was controlled for. However, a small [80]
but significant positive correlation between cognitive ability and STA in the fourth test session was
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observed (r = 0.132, p = 0.008). When controlling for interference, these correlations can become
positive [36], yet their interpretation is not straightforward. This particular effect might have emerged
by chance, as it did not reach significance when an alternative model identification strategy was
pursued (see Supplementary Materials (Appendix C)).
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Table 4. Standardized interference effects and correlations of latent ability and anxiety (deficit effects) of the full interference model.

Test Session Item rη,ξ

1 2 3 4 5 6 7 8 9 10 11 12 13

1 −0.300 ** 0.088 −0.272 * 0.041 −0.095 −0.377 *** −0.347 *** −0.340 *** −0.159 −0.395 *** −0.188 −0.106 −0.116 −0.060

2 −0.041 0.064 −0.302 ** −0.074 −0.168 −0.014 −0.037 −0.014 −0.254 ** −0.236 ** −0.127 0.022 −0.229 ** 0.134

3 −0.039 −0.178 −0.274 * −0.118 −0.129 −0.137 −0.290 ** −0.153 −0.087 0.065 0.032 −0.071 0.021 −0.006

4 −0.039 −0.170 −0.196 −0.094 −0.042 −0.246 * 0.026 −0.339 ** −0.133 −0.041 −0.038 0.120 −0.166 0.132 **

5 −0.109 −0.049 −0.21 −0.100 −0.065 −0.012 −0.037 −0.003 −0.195 * −0.024 0.053 0.067 0.047 0.031

6 −0.194 0.016 −0.078 0.009 0.052 −0.237 * −0.168 0.002 −0.037 −0.007 −0.148 −0.015 −0.021 −0.032

7 −0.046 0.117 −0.188 0.034 −0.215 * 0.010 0.017 −0.048 −0.315 ** −0.144 −0.078 0.059 −0.086 −0.035

Threshold −1.019 −0.933 −1.062 −0.702 −0.760 −0.821 −0.536 −0.493 −0.549 −0.447 −0.248 0.059 0.025

Notes: N = 225; rη,ξ = Correlation between latent ability and latent anxiety. Thresholds reflect item difficulties, which were restricted to be equal across test sessions. The model was
identified by setting the variances of the latent variables to 1. Significant interference effects are printed in bold. * p < 0.05; ** p < 0.01; *** p < 0.001.
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Table 5 displays the results of the interference reduction analysis. This more conservative testing
procedure delivered results comparable to those derived from Table 4; no significant interference
occurred within the last five test sessions. The likelihood ratio test suggested a substantial decline in
model fit when interference effects were additionally restricted to zero at the second test administration
(∆χ2(13) = 24.432, p = 0.027). However, the model CFI only reduced by 0.006 in that case. Results
unambiguously suggested a decreased model fit when interference effects were additionally assumed
to be absent at the first test session (∆χ2(13) = 46.045, p < 0.001, ∆CFI = 0.014).

Table 5. Model fit and comparisons of nested models of interference effects in the
interference-reduction approach.

Test Sessions with
Modeled Interference

Effects
∆χ2 (df) p χ2 (df) p χ2/df RMSEA (90% CI) CFI TLI

1 to 7 - - 9766.433 (7753) <0.001 1.230 0.034 [0.032, 0.036] 0.971 0.971
1 to 6 16.882 (13) 0.205 10,079.649 (7766) <0.001 1.300 0.036 [0.034, 0.038] 0.967 0.966
1 to 5 11.459 (13) 0.572 10,272.688 (7779) <0.001 1.321 0.038 [0.036, 0.040] 0.964 0.964
1 to 4 9.749 (13) 0.714 10,423.506 (7792) <0.001 1.338 0.039 [0.037, 0.041] 0.962 0.962
1 to 3 20.410 (13) 0.085 10,790.511 (7805) <0.001 1.383 0.041 [0.039, 0.043] 0.957 0.957

1 and 2 18.128 (13) 0.153 11,126.464 (7818) <0.001 1.423 0.043 [0.042, 0.045] 0.952 0.952
1 24.432 (13) 0.027 11,581.707 (7831) <0.001 1.479 0.046 [0.044, 0.048] 0.946 0.946

None 46.045 (13) <0.001 12,525.000 (7844) <0.001 1.597 0.052 [0.050, 0.053] 0.932 0.932

Notes. df = degrees of freedom; RMSEA = Root mean square error of approximation; CI = Confidence interval;
CFI = Comparative fit index; TLI = Tucker–Lewis index. Models were identified by setting the variances of latent
variables to 1.

4. Discussion

In this study, we extended a structural equation model specifically designed to test the interference
and deficit hypotheses on the anxiety test performance relationship for use in longitudinal studies.
This model allows the investigation of the connection of test anxiety to test performance and to changes
in test performance. It was applied in an empirical study where we explored retest effects occurring
when taking a figural matrices test seven times. Test performance improved up to the fourth test session
before plateauing. The gain in test performance was the largest between the first and second test
session and leveled off with increasing test repetitions. These findings are in line with the power law of
practice [98]. The results suggested anxiety interferences to be the cause of impaired test performance.
No significant negative correlation between ability and anxiety emerged when these interferences were
controlled for. The amount and magnitude of interference effects decreased across test administrations.
A substantial reduction in interference between the first two test administrations was aligned with the
largest retest effect. A smaller retest effect in the third test session occurred with a smaller reduction in
interference. Reduced interference did not explain the last observed mean ability estimate increase.
Therefore, a reduction in anxiety-induced measurement bias cannot completely explain the emersion
and development of retest effects. We recommend to refer back to the theoretical framework reported
by Lievens et al. [22] and explore the role of other potential factors in future longitudinal studies.

4.1. Implications and Future Research

Before any further theoretical deliberations on retest effects and test anxiety, we first discuss
the statistical model itself, as it should not be viewed without criticism. As Halpin et al. [36]
acknowledged, imposing equality constraints upon the interference effects for model identification in
cross-sectional settings is not an ideal solution because all interferences can be different in the true
model. We bypassed this issue by identifying the model with the implementation of longitudinal
invariance constraints upon ability and anxiety measurements. However, these strong assumptions
might also be violated in the true model. In this regard, our results were ambiguous (see the last
section of the discussion). Nevertheless, we replicated evidence of an overall absence of deficit effects
and a presence of substantial interference in the first two test sessions using a configural invariant LAT
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model (see Supplementary Materials (Appendix C)). In that model, we implemented a different model
identification strategy that resembles the original approach, as proposed by Halpin et al. This raises the
question: Is the methodological framework robust against certain assumption violations yet sensitive
to others? Simulation studies can provide further insight into this matter. Systematic variations in the
study parameters should include the sizes of interference and deficit effects (zero for both included),
(in)equality of interference effects, and forms of (partial) measurement invariance. In longitudinal
settings, the respective inter-correlations of anxiety and ability states (or latent difference variables,
depending on whether the LAT or the full interference model is used) represent parameters that are not
present in the original AT model. Halpin et al. demonstrated that in cross-sectional settings, the partial
correlation between latent ability and a third latent variable (e.g., a different cognitive ability) controlled
for anxiety does not depend on the identification constraints. Our proposed models, however, do not
statistically represent that case. Firstly, latent ability in every test session was controlled for by a
different latent anxiety state variable. Secondly, latent anxiety states were modelled to correlate with
each other. Thus, these latent correlations added to the original AT model might have important
implications for type I and type II errors in interference and deficit detection given certain model
identification strategies. We strongly recommend considering these issues first before providing
suggestions regarding the control for anxiety in personnel selection settings to practitioners.

The plateau of the mean ability estimate after the fourth test session seems to be at odds
with the meta-analytic results reported by Scharfen et al. [6], where retest effects of fluid reasoning
tasks (often measured using figural matrices tests) were observed only up to the third test session.
However, as Scharfen et al. [5] found, retest effects in the domain of working memory regularly remain
up to the fourth test session. The distinction between reasoning and working memory has been heavily
discussed and high correlations between measurements of both constructs are consistently found
(e.g., [99–101]). This is something to consider, especially in cases where the rules of item object patterns
are explained to testees beforehand, such as in the present study. In these cases, the known rules have
to be actively remembered, whereas representations of the item objects have to be actively manipulated
in working memory to test the fit of object patterns to a rule.

We see potential in the role of working memory to clarify mixed findings on the presence of
anxiety-induced measurement bias. Sommer and Arendasy found no evidence for the interference
hypothesis in three consecutive studies [38,56,65]. They also analyzed their data via the AT model
(or a variant with a manifest instead of a latent anxiety variable), showing explanations for result
heterogeneity due to methodological differences are unlikely. One of these studies employed a
knowledge-based multiple choice test [56]. The other two covered a wide range of cognitive abilities
by investigating several tests [38,65]. Although one of these presented rule-based numerical reasoning
tasks, whether any of these tests reached the same amount of working memory load imposed by
the complex figural patterns present in the current study is questionable. In accordance, Ng and
Lee [46] found anxiety-induced measurement bias specifically at higher levels of working memory
load. Neuroscientific evidence shows that state anxiety (as opposed to trait anxiety) increases brain
activity in the amygdala and other areas associated with bottom-up threat detection [47,59,60,102].
On the basis of attention control theory [59], the hypothesis that this depletes or inhibits cognitive
functions for top-down processing required in working memory tasks could be examined.

The distinction between state and trait test anxiety is another important aspect for consideration.
In the current study, we focused on situational (i.e., state) test anxiety because the interference
reduction approach implies a habituation to the test situation. FOF sum score correlations, however,
indicated very high state stabilities (Table 1) and latent state inter-correlations supported this finding
(see Supplementary Materials). The high stability of a construct does not necessarily imply stability of
the constructs effect on other variables. In this regard, future research on the interference reduction
approach should consider trait anxiety. However, we propose that interference effects from trait test
anxiety will not emerge, at least not if state test anxiety is controlled for. Based on our deliberations
above, interference seems to be specific to an enhanced state of anxiety and to have a negative
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impact specifically on working memory capacity, whereas deficits are more related to general trait
anxiety [56,65] and hence will be observed with tasks with lower working memory capacity demands.
Thus, future research should focus on the differentiation between state and trait test anxiety and their
relationship to the cognitive load demands of different cognitive ability tests.

Future studies should also apply frequent assessments of test anxiety within a single test session.
It seems reasonable to assume that the increase in test anxiety is due to a perceived discrepancy
between the difficulty of a given task and one’s own cognitive ability. This means that fluctuations
in test anxiety across the different items of a test are to be expected. Measuring item-specific anxiety
can lead to refinements in the deficit hypothesis, because it allows testing whether anxiety emerges
specifically in situations where a large discrepancy between item difficulty and cognitive ability is
observed. This finding would be in line with the deficit hypothesis because a large discrepancy of
that kind would mean that the probability of solving the item correctly is very low, regardless of the
experienced anxiety level. To control for interferences, a general anxiety factor could be aggregated
from the item-specific anxiety values. Item-specific assessment of anxiety via a questionnaire would be
aggravating for study participants, but valid one-question anxiety scales are available [103].

Potential confounds of test anxiety that might be especially influential in the early test sessions
should be considered. Comprehension of the test is an important aspect to evaluate in that context.
Testees might consider themselves capable of solving the test items in general, but might fear that the
test outcome will not be representative of their true ability when the structure of the tasks is not yet
fully understood. It is this fear that eventually induces measurement bias. This could especially apply
to tests with beforehand rule explanations. Future studies on the interference reduction approach
should hence control for incomprehension.

Other important construct-irrelevant factors to be considered in the context of the current study
are perceived challenge, interest, and probability of success—the other facets of current achievement
motivation [52]. CAM and test performance are positively correlated [49], but theoretical and statistical
specifications on how these individual facets contribute to this correlation are not as detailed as for
FOF. It is not even clear whether any of these facets can causally influence test performance like
FOF in the context of the interference hypothesis. Their relationship to test performance changes
is not straightforward, either. In what way should what influence of perceived challenge on test
performance change with multiple test administrations? Should we expect a change in perceived
challenge to begin with? Similar questions arise for interest. We could argue that multiple measurement
occasions increase the familiarity with the test procedure so that it seems more approachable and,
hence, the interest of testees is increased. Would this then lead to an increased test performance?
If so, is it the familiarity or the interest that positively impacts the (re)test score? From an opposing
viewpoint, we could argue that repeated assessments of intelligence would simply bore testees and
hence decrease their interest. The facets of perceived challenge and interest and their relation to retest
effects may be best assessed via experimental manipulations and not via mere measurement repetitions.
Regarding probability of success, change due to repeated testing does not seem implausible, especially
when feedback on test performance is provided. People with certain personality traits (supposedly
rather agreeable or neurotic testees) might underestimate their probability of success at the beginning
when they are confronted with the often rather abstract test material. This might have a discouraging
effect and hinder them from performing to their true potential. With repeated positive feedback on
test items they might, however, more realistically estimate their ability and achieve higher scores.
In other words, an underestimation of one’s probability of success leads to an increased emotional
state of discouragement, which in turn induces systematic negative measurement bias on ability test
items. These effects decrease in size with increasing test repetitions. An extended and modified full
interference model could represent this theory. Post-hoc analyses of our data with multiple t-tests
revealed an increase in probability of success up to the fourth test administration before reaching a
plateau. Perceived challenge and interest did not fluctuate in a recognizable systematic pattern.
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4.2. Limitations and Future Research

With regards to issues of construct validity, a methodological drawback of this study must be
discussed. Explaining the rules of a reasoning test beforehand has the advantage of preventing
multiple solutions to items because the cognitive operations required to deduce the correct answers are
determined by the rules. The employment of alternative possible rules leading to different conclusions
that were not considered by the test creators is hence invalid by definition. The major disadvantage,
however, is that this arguably changes the construct to be measured. Important hallmarks of fluid
reasoning are operations of inductive and deductive reasoning to solve novel problems [104]. Cattell
explicitly stated that for a measure of fluid reasoning, a testee must not have “recourse to answers to
such complex issues already stored in memory” [105] (p. 115). Thus, whereas MatrixDeveloper test
items definitely require inductive and deductive reasoning processes for solving, it is questionable
how well these items represent a measure of fluid reasoning and a proxy measure for g accordingly
when the rules are known beforehand (see also our deliberations on working memory in the previous
section). We therefore recommend the usage of our proposed SEM in longitudinal studies with diverse
ability measures.

A shortcoming of the current study lies within its setting. In contrast with assessment centers,
where low test performance can result in undesired outcomes, such as being excluded from consideration
for job positions, here, participants faced no negative consequences for poor performance. Also, test
anxiety was not experimentally manipulated between test sessions or groups. This, of course, limits
the intensity of potentially experienced test anxiety as solely intrinsic values, like competence-based
self-confidence, are at risk. Participants were informed that the employed matrices test did not undergo
a normalization process. Received feedback on the test items therefore limited interpretations of
between-person comparisons. Study replications in high-stakes settings could increase the ecological
validity of our findings [65].

The lack of a high-stakes setting and experimental manipulations of test anxiety also in part
explain the previously mentioned high stability of anxiety states across test sessions. This high state
stability is undesirable in longitudinal studies because it implies multi-collinearity of latent variables.
Similar considerations arise for ability test items. To control for ceiling effects, we had to exclude many
participants (N = 51), which suggests that the tests were generally too easy. This was a surprise to us since
participants in the calibration study were also recruited amongst university students and academics.
This result can probably in part be explained by motivation being lower for participants in the
calibration study as they did not receive monetary remuneration and hence were less eager to perform
their best. Another likely reason is the calibration study being cross-sectional and hence item difficulties
were probably overestimated due to unfamiliarity with the abstract test material. Presenting easy items
repeatedly can also lead to linear dependencies of multiple variables across the test administrations,
producing suboptimal conditions for the statistical analysis. However, these are less severe when direct
relationships between latent state variables are modeled by correlations instead of multiple regressions,
which is the case in all of the applied models. Although we encountered multi-collinearities between
latent variables, all estimation algorithms converged normally and no unexpected or uninterpretable
parameter estimates or standard errors were produced (see Supplementary Materials). Nevertheless,
the utility of optimal study design to avoid such conditions should be stressed. Ideally, researchers
would select the participants based on their abilities so that enough variance on every test item is
produced. This requires pre-study knowledge of participants’ ability parameters, which are provided
only in rare occasions. Alternatively, test items should be carefully chosen, so that their difficulty range
sufficiently covers the expected range in ability while simultaneously considering a decrease in test
difficulty over time.

Despite these caveats, we were able to demonstrate the overall stability of our findings.
We produced comparable results regarding retest effect development, interference reduction, and the
lack of observed deficits with the complete sample including ceiling effects and altered modeling
approaches (Supplementary Materials (Appendices B–D)).
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4.3. Deliberations on Measurement Invariance in Multiple Test Administrations

Lastly, we address a general and major problem in studies with multiple test
administrations—measurement invariance of applied test procedures. In our study, we provided seven
different cognitive ability tests that were assumed to be parallel. In other words, whereas all items
differed from each other, all seven tests had the same difficulty and the difficulty of every item from
each test session matched the difficulty in every other test session. This was achieved by selecting items
based on their difficulty parameters estimated in a calibration study (see Supplementary Materials
(Appendix A)).

The CFA results on the matrices test revealed that only configural invariance should be assumed,
meaning that item loadings and difficulties differed across test sessions. Assuming strong invariance
regardless and testing retest effects in the ability change model framework under such circumstances
has important implications for the interpretation of model retest effect parameters. Although an
alternative name for this model is true change model [78], these true changes do not refer to the
theoretically assumed cognitive ability when strong invariance does not hold. However, the alternative
and classic assessment of retest effects, computation of test sum score differences, is worse because
this procedure implies the more restrictive strict measurement invariance [95,96]. Henceforth, the
ability change model is the best of the two options. Researchers should keep in mind that these latent
differences do not necessarily reflect actual improvements in cognitive ability.

The more difficult problem arises when considering potential explanations for the lack
of measurement invariance; one possible explanation is also an explanation for retest effects,
i.e., the research topic of interest. In the following, we report a method of addressing this problem
(for similar considerations see [33]).

Employing the exact same test for every test session should be avoided, especially when feedback
is provided on item answers because retest effects could then be explained by simple memory effects
of previously encountered items. This implies a loss of construct validity in later test sessions [22].
Yet, the literature suggests that retest effects also occur when parallel forms of tests are provided [4–6].
Accordingly, attempts should be made to create and use different but parallel test versions. When results
suggest that these also cannot be assumed to hold measurement invariance, questions emerge: Were the
pre-study estimations of difficulty parameters biased or inaccurate by chance? Did we determine
invariance of our parallel test forms in a population different from our study population? Does the
measurement of our latent ability construct actually change over time? The last question asks for
explanations of retest effects that jeopardize construct validity at earlier or later test sessions, as suggested
by Lievens et al. [22]. The accuracy of one explanation cannot be checked if all other explanations are
not controlled, which is a difficult, if not impossible, task. Returning to the current study, the overall fit
of the strong invariant cognitive ability model was still acceptable. This corroborates our selection of
presumably parallel items. However, the significant decrease in model fit, when compared with less
restrictive models, cannot be ignored. The whole idea of the interference reduction approach can be
formulated as a longitudinal change in ability measurement (implying inequality of factor loadings and
item difficulties) based on changes of systematically induced measurement bias. Testing this approach
thereby becomes obsolete when any form of invariance more restrictive than configural can be seen
as given. The results of the approach itself suggested that a lack of cognitive ability measurement
invariance could partially be explained by anxiety-induced measurement bias in earlier test sessions.

5. Conclusions

In this paper, we presented a structural equation model that allows for an investigation of
the interference and deficit hypotheses on the negative cognitive ability test anxiety relationship in
longitudinal studies. The model further allows the comparison of retest effect sizes with the magnitude
of interference reduction across the test administrations. In a first study incorporating this approach,
we found that retest effects reflect a reduction in anxiety-induced measurement bias, at least to a certain
extent. Using the employed figural matrices tests, retest effects were observed up to the fourth test
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session, where they plateaued. Situational test anxiety produced substantial measurement bias on test
items in the first two test sessions. This suggests an increase in the reliability and validity of cognitive
ability measurement within the first test repetitions. Yet, we also found that that the interference
hypothesis cannot completely explain the retest effect phenomenon. Future research should focus on
the statistical properties of the model. Differences between trait and state anxiety, differences between
cognitive abilities, the cognitive working memory load imposed by specific tests, and other potential
predictors of retest effects require further investigations.

Supplementary Materials: The following are available online at (http://www.mdpi.com/2079-3200/7/4/22/s1):
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