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Abstract: Previous experience with discrimination problems that can only be solved by learning
about stimulus configurations enhances performance on new configural discriminations. Some of
these effects can be explained by a shift toward increased configural processing (learning about
combinations of cues rather than about individual elements), or by a tendency to generalize a learned
rule to a new training set. We investigated whether fluid abilities influence the extent that previous
experience with configural discriminations improves performance on subsequent discriminations.
In Experiments 1 and 2 we used patterning discriminations that could be solved by applying a
simple rule, whereas in Experiment 3 we used biconditional discriminations that could not be solved
using a rule. Fluid abilities predicted the improvement on the second training set in all experiments,
including Experiment 3 in which rule-based generalization could not explain the improvement on
the second discrimination. This supports the idea that fluid abilities contribute to performance by
inducing a shift toward configural processing rather than rule-based generalization. However, fluid
abilities also predicted performance on a rule-based transfer test in Experiment 2. Taken together,
these results suggest that fluid abilities contribute to both a flexible shift toward configural processing
and to rule-based generalization.

Keywords: associative learning; fluid abilities; positive and negative patterning; biconditional
discrimination; configural processing; rule-based generalization

1. Introduction

Generalization based on previous learning experiences is an important aspect of intelligence that
can, in principle, generate adaptive behaviours. The ability to learn from previous experiences
and apply this knowledge to new experiences could rely on a reasoning system that performs
computations on mental representations of the perceived events to generate a logical conclusion
or judgment [1]. In particular, previous experiences could result in learning the laws, or rules, that
seem to generate the perceived events. Such rule learning could be particularly useful for predicting
future events that might follow the same pattern. Alternatively, generalization could rely on an
associative system that is generally thought to be automatic and less computationally demanding.
From this perspective, generalization can be described as resulting from the partial activation of
previously learned associations when the current stimuli share some similarities (or features) with
stimuli that were experienced in the past (e.g., [2]).

Students of associative learning regularly study rule-based generalization using patterning
discriminations [3]. In a positive patterning discrimination, participants learn by trial and error
that a combination of two cues, say A and B, is always followed by an outcome (AB+) but when
presented separately neither is followed by an outcome (A− and B−). On the other hand, in a negative
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patterning discrimination the individual cues are followed by the outcome (C+ and D+) but their
combination is not (CD−).

Although some associative accounts can explain this type of learning (e.g., [4,5]), positive
and negative patterning can, in principle, be solved by applying the ‘opposites’ rule whereby the
outcome on compound trials is the opposite to the outcome that follows the individual elements [6].
If participants learn this rule, then it is possible that they transfer or generalize it to other cues.
For example, having experienced a positive patterning discrimination (A−, B−, AB+) and X− and Y−
trials, they might predict that the outcome should occur on XY trials even though they have never seen
that combination before. Alternatively, when presented with a novel combination of cues, individuals
might generalize on the basis of their experience with the individual features of the XY compound, in
which case they might expect similar or even stronger outcomes on compound and single element
trials (e.g., they might expect no outcome to occur on a XY trial after experience with X− and Y− trials).

People’s performance on these transfer tests is prima facie consistent with rule-based generalization
(e.g., [3]) but this type of generalization seems to require more cognitive resources than feature-based
generalization. This hypothesis is supported by studies showing that rule-based generalization is more
likely to occur when there are no time constraints [7] and when learning occurs under low cognitive
load [8]. Furthermore, individual differences in fluid abilities have also been shown to correlate with
generalization patterns. Wills et al. [9] found that individuals with higher working memory capacity had
a greater tendency for rule-based generalization. Maes et al. [10] found a marginally significant positive
correlation between rule-based generalization and abstract reasoning ability, although this was not
statistically significant when performance on the training set was controlled for. Finally, Don et al. [11]
found a positive relationship between rule-based generalization and scores on the Cognitive Reflection
Test, which estimates the degree to which individuals’ performance relies on deliberative processes.

Although these studies suggest that individual differences in fluid abilities might influence
the extent to which individuals engage in rule-based generalization, the evidence for it is relatively
sparse and several questions remain. First, it is still unclear which fluid abilities predict rule-based
generalization in patterning discriminations. Previous studies [9,10] that have investigated this issue
each assessed only one cognitive ability (working memory or reasoning ability) in relatively small
samples (60 or fewer participants). But other fluid abilities, such as processing speed and visuospatial
ability, might also influence generalization strategies. In the following experiments, we investigated the
relationship between generalization strategies and four fluid abilities: reasoning ability, visuospatial
ability, working memory and processing speed.

Second, it is unclear whether fluid abilities influence performance on transfer tests when
participants are exposed to novel cue combinations, or whether they also play a role when participants
are exposed to new discriminations. Previous studies assessed generalization strategies on transfer
tests (e.g., participants were asked whether the outcome would follow the compound XY after
experience with X− and Y− trials) but fluid abilities might also determine generalization strategies
when participants have the opportunity to learn new patterning discriminations. That is, fluid abilities
might influence the extent to which a previously learned discrimination influences learning of a
discrimination involving new cues. For example, after having been exposed to positive (A−, B−,
AB+) and negative (C+, D+, CD−) patterning discriminations, fluid abilities might influence the
acquisition of new patterning discriminations (E−, F−, EF+ and G+, H+, GH−). If so, it would mean
that fluid abilities not only influence generalization strategies in ambiguous situations (e.g., on a
transfer test in which participants are asked to predict the outcome to a combination of cues they
have never experienced) but also in unambiguous situations in which participants receive feedback.
Indeed, it is known that learning to solve one discrimination influences performance on a subsequent
discrimination [12–14]. Our aim was to investigate the role of fluid abilities on the extent to which
learning one discrimination influences the acquisition of new discriminations.

Third, we were interested in whether fluid abilities influence the subsequent acquisition of a
discrimination by determining the extent to which participants use a rule learned while solving the
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first discrimination. Alternatively, it is possible that fluid abilities influence other mechanisms that
affect performance, such as increasing the tendency to learn about stimulus configurations (configural
processing) rather than about the individual elements of the configuration (elemental processing).
Configural processing refers to the idea that combinations of stimuli are perceived as configurations
rather than as a combination of the individual elements (e.g., the configuration AB is different from
the sum of its individual elements, A and B). These configurations can become associated to outcomes
and their association could be different from the associations between the individual elements and
the outcome. Interestingly associative models that rely on configural processing (e.g., [5]) can explain
positive and negative patterning without assuming that individuals learn rules: the single elements
and the compound configuration acquire opposite associations. This might explain why individuals
are able to solve these discriminations. It has been suggested that configural and elemental processing
lie on a continuum and that individuals can flexibly change their processing style depending on
their experience [12,15,16]. That is, it is possible that experience with discriminations that can be
solved elementally increases elemental processing, whereas discriminations that can only be solved
configurally increase configural processing. This can explain why solving a discrimination that has
only a configural solution (i.e., cannot be solved on the basis of the individual cues alone) facilitates
the acquisition of subsequent patterning discriminations [12–14]. To investigate whether fluid abilities
influence performance on a second discrimination by inducing a shift towards configural processing
or by increasing the likelihood that a learned rule will be applied to the new discrimination, we tested
whether fluid abilities could predict an improvement in performance in situations in which a rule
could be learned and applied to the second discrimination (Experiments 1 and 2). We contrasted this
with a situation in which this would not be possible and participants would have to rely on configural
processing to solve both discriminations (Experiment 3).

In Experiment 1 we tested whether solving patterning discriminations on one set of cues (A−, B−,
AB+ and C+, D+, CD−) could subsequently help solve patterning discriminations on a different set of
cues (E−, F−, EF+ and G+, H+, GH−). That is, we asked whether learning one set of discriminations
could facilitate learning a new set of discriminations. If participants transfer the opposites rule
to the new discriminations, then the second discrimination set should be acquired more rapidly.
We measured the extent to which performance benefits from this rule generalization by comparing
the relative improvement on the second discrimination set to the first. We further tested whether
reasoning ability, visuospatial ability, working memory or processing speed predicted improvement in
performance of rule-based generalization.

In Experiment 2 we replicated Experiment 1. In addition, we included a set of transfer trials in
which some individual cues were followed by feedback (e.g., I−, J−) but the compounds were not
(e.g., IJ?). Participants were required to guess the outcome on every trial regardless of whether they
received feedback. If they transferred the opposites rule from the fully trained set to the transfer set,
then they should make opposite outcome predictions on compound trials (i.e., IJ+). This transfer test
is similar to that used in previous studies [3,9,10]. We could therefore also investigate which fluid
abilities predict performance on transfer trials. On the basis of previous studies [9,10], we expected at
least reasoning ability and working memory to predict performance on the transfer test.

Finally, in Experiment 3 we tested whether the performance advantage on the discriminations
trained second was specifically due to rule learning, or whether such an advantage would also pertain
when there was no obvious rule that could be learned. In this experiment participants were first trained
on a biconditional discrimination (AB+, CD+, AD−, CB−; [17]) before being exposed to a second,
similar, discrimination (IJ+, KL+, IL−, KJ−). Unlike positive and negative patterning discriminations
that can be solved by applying a simple opposites rule, biconditional discriminations have no simple
solution: they cannot be solved on the basis of the individual elements, nor can they be solved by
applying a simple rule like the opposites rule. Rather, participants must learn the outcome associated
with each configuration of cues. If the improvement in performance on the patterning discriminations
trained second in Experiments 1 and 2 was due, at least in part, to factors other than rule learning, such
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as an increase in configural processing, then the second biconditional discrimination in Experiment 3
should be learned more rapidly than the first despite the fact that participants could not learn an easy
rule that would help them solve the second discrimination. Furthermore, if fluid abilities predict an
increased shift towards configural processing, then we expected a relationship between fluid abilities
and performance improvements on the second biconditional discrimination similar to those found
with the patterning discriminations in Experiments 1 and 2. Alternatively, if fluid abilities contribute
to an improvement in performance only by facilitating the generalization of a specific rule from one set
of discriminations to another, then we expected weaker or absent relationships between fluid abilities
and performance improvements on the second biconditional discrimination.

Overall, these experiments allowed us to investigate the relationship between fluid abilities and
performance improvements that could be explained by rule-based generalization or an increase in
configural processing (in Experiments 1 and 2) and improvements that are not easily accounted
for by rule-based generalization but may be explained by an increase in configural processing
(Experiment 3). Furthermore, we investigated whether fluid abilities influence generalization
strategies in unambiguous situations in which participants are required to learn new discriminations
(Experiments 1–3), as well as in more ambiguous transfer tests in which participants do not receive
feedback (Experiment 2).

2. Materials and Methods

The experiments were approved by the McGill University Human Research Ethics Committee.
The computerized tests were coded using Real Studio (Real Software, Austin, TX, USA) and run on
21-inch Apple iMac computers.

2.1. Participants

Participants (N = 100 in Experiment 1, N = 74 in Experiment 2, N = 73 in Experiment 3) were
students enrolled at McGill University and participated for course credit.

2.2. Fluid Abilities Measures

We assessed four fluid abilities: reasoning ability, visuospatial ability, working memory and
processing speed. Each fluid ability was estimated from scores on two tests, except for working
memory and processing speed, which were each estimated using one test in Experiment 1. The scores
on all tests were transformed into z-scores and when two tests were used to assess an ability, an overall
ability score was computed as the average of the z-scores.

2.2.1. Reasoning Ability

Reasoning ability was assessed via two paper-and-pencil tests: an abbreviated version of the
Raven’s Advanced Progressive Matrices [18] and the Comprehensive Abilities Battery-Induction
(CAB-I), a test of inductive reasoning [19]. The Raven’s matrices test consisted of 12 items. For each
item, participants were required to identify the missing element that completes a pattern. Participants
were given 15 min to complete the test. Scores consisted of the number of correct items.

The CAB-I consisted of 12 items, each of which was five groups of four letters. Participants were
asked to identify which group of letters did not follow the rule that the other groups of letters followed.
Participants were given six minutes to complete the test and the number of correct responses was recorded.

2.2.2. Visuospatial Ability

Visuospatial ability was assessed via two paper-and-pencil tests, the Mental Rotation Test [20]
and Paper Folding [21]. Each item of the Mental Rotation Test illustrated a target 3D shape and another
four similar shapes. Participants were required to select the two shapes, from the choice of four, that
were images of the target shape viewed from different angles. Correct selection of both answers was
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scored two points, a selection of only one correct answer was scored one point and any other possible
answer (e.g., selecting one correct and one incorrect answer) was scored zero points. There were
20 items to complete in 10 min. One participant in Experiment 1 did not complete the test.

The Paper Folding test consisted of 30 items. Each item showed a target pattern and four 3D
shapes. Participants identified which of the four 3D shapes could be made from the target pattern.
Participants had 12 min to complete the test and the number of correct responses was recorded.

2.2.3. Working Memory

Working memory was assessed using two computerized tests, the Dot Matrix, also known as
Spatial Verification Span [22] and the Sentence Span [23]. Only the Dot Matrix was administered in
Experiment 1, whereas both tests were administered in Experiments 2 and 3. The Dot Matrix required
participants to remember the location of a dot presented on a 5 × 5 grid while verifying a matrix
equation (one equation-grid pair). There were four levels, with participants required to perform
between two and five equation-grid pairs before indicating the location of those dots on a blank grid.
The number of correct location selections was recorded.

The Sentence Span consisted of a series of trials on which participants saw an alternating sequence
of sentences and to-be-remembered consonants. The participants had to judge whether each sentence
was true or false within four seconds, while attempting to remember the consonants for later recall.
There were between four and eight consonant-sentence pairs on each trial, followed by a recall test
that asked participants to type the sequence of consonants in the correct order. There were three trials
per level for a total of 15 trials. The proportion of correctly remembered letters was recorded for each
trial and the total score on the task was the average proportion correct in all trials.

2.2.4. Processing Speed

Processing speed was estimated from two paper-and-pencil tests, the Digit Symbol test from
the Wechsler Adult Intelligence Scales [24] and the Visual Matching test from the Woodcock-Johnson
Psycho-Educational Battery-Revised [25]. Only the Digit Symbol test was administered in Experiment
1, whereas both tests were administered in Experiments 2 and 3. The Digit Symbol test required
participants to fill in blank cells according to a key. Each blank cell was displayed below a digit and
participants had to draw the symbol corresponding to the digit. There were 90 items and participants
completed as many items as possible in two minutes. Two participants in Experiment 1 and four
participants in Experiment 3 did not complete the Digit Symbol test.

The Visual Matching test required participants to search for pairs of numbers. Each item consisted
of six numbers, two of which were identical and had to be circled. There were 60 items and participants
completed as many items as possible in three minutes.

2.3. Learning Tasks

Participants in each experiment completed a computerized learning task that assessed their ability
to learn to discriminate between cues that were followed by an outcome and cues that were not.
The cues consisted of pictures of foods and the outcome was the picture of a spider. On every trial
participants were shown one or two food cues for 1 s in Experiments 1 and 2, or 1.5 s in Experiment
3 and were required to press ‘a’ or ‘l’ on the keyboard (allocated randomly for each participant) to
indicate whether they thought the spider picture would follow or not (Figure 1). Regardless of whether
they made a response during the cue presentation, a 2-s feedback screen followed. On most trials, the
feedback screen consisted of either the picture of the spider or the words ‘No spider,’ along with the
words ‘Correct! +1 point’ or ‘Incorrect,’ which indicated whether the previously made response was
correct, or not. In Experiment 2 participants were informed that they would not receive feedback on
some trials but that they should respond on these trials even if they were guessing. On no-feedback
trials a question mark was shown in place of the normal feedback. If participants did not make a
valid response during cue presentation, then the message ‘Press A or L faster!’ was displayed on
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both feedback and no-feedback trials. The trials were separated by a blank screen during the 1.5-s
inter-trial interval.J. Intell. 2018, 6, x FOR PEER REVIEW  6 of 17 
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follow or not. Regardless of whether they made a response, a feedback screen was shown for 2 s. On 
trials with feedback, the feedback screen consisted of either the picture of the spider or the words ‘No 
spider,’ along with the words ‘Correct! +1 point’ or ‘Incorrect.’ On trials without feedback a question 
mark was presented instead. On all trial types, if no response was made during cue presentation, the 
words ‘Press A or L faster!’ were displayed. 

The experimental designs and types of trials and their outcomes for the learning tasks are 
summarized in Table 1. Experiments 1 and 2 included positive and negative patterning 
discriminations whereas Experiment 3 included biconditional discriminations. Cue-picture 
assignment was randomly determined for each participant. Each trial type was shown 10 times in 
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Because initial pilot testing revealed that the biconditional discriminations were more difficult 
to acquire than the patterning discriminations, cue duration was increased in Experiment 3 from 1 s 
to 1.5 s and the number of training blocks per phase was increased from 10 to 16. The results of the 
three experiments subsequently confirmed that the biconditional discriminations were more difficult 
even after the adjustments mentioned above. 

Performance on the training sets was quantified as a discrimination score. We first computed a 
discrimination score for each discrimination as the difference between the proportion of spider 
predictions for trials that were followed by the spider picture and the proportion of spider predictions 
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between the average proportion of correct spider predictions on AB and CD trials minus the average 
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Figure 1. Trial procedure. After a 1.5-s inter-trial interval one or two food cues appeared for a fixed
duration of 1 s (Experiments 1 and 2) or 1.5 s (Experiment 3). During this time participants were
required to press ‘a’ or ‘l’ on the keyboard to indicate whether they thought the spider picture would
follow or not. Regardless of whether they made a response, a feedback screen was shown for 2 s. On
trials with feedback, the feedback screen consisted of either the picture of the spider or the words ‘No
spider,’ along with the words ‘Correct! +1 point’ or ‘Incorrect.’ On trials without feedback a question
mark was presented instead. On all trial types, if no response was made during cue presentation, the
words ‘Press A or L faster!’ were displayed.

The experimental designs and types of trials and their outcomes for the learning tasks are summarized
in Table 1. Experiments 1 and 2 included positive and negative patterning discriminations whereas
Experiment 3 included biconditional discriminations. Cue-picture assignment was randomly determined
for each participant. Each trial type was shown 10 times in Experiments 1 and 2 and 16 times in
Experiment 3. The trials were randomly intermixed and there was no obvious transition between phases.

Because initial pilot testing revealed that the biconditional discriminations were more difficult to
acquire than the patterning discriminations, cue duration was increased in Experiment 3 from 1 s to
1.5 s and the number of training blocks per phase was increased from 10 to 16. The results of the three
experiments subsequently confirmed that the biconditional discriminations were more difficult even
after the adjustments mentioned above.

Performance on the training sets was quantified as a discrimination score. We first computed
a discrimination score for each discrimination as the difference between the proportion of spider
predictions for trials that were followed by the spider picture and the proportion of spider predictions
for trials that were not followed by the spider picture. For example, in Phase 1 the positive
patterning discrimination score was computed as the difference between the proportion of correct
spider predictions on AB trials which were paired with the spider [p(spider|AB)] minus the mean
proportion of incorrect spider predictions on A and B trials {[p(spider|A) + p(spider|B)]/2}. Thus, the
discrimination score for positive patterning was:

Discrimination Score Positive Patterning = p(spider|AB) − [p(spider|A) + p(spider|B)]/2

For the negative patterning discrimination (CD− C+ D+) the individual features were correct, so
the difference between elements and compound was reversed:

Discrimination Score Negative Patterning = [p(spider|C) + p(spider|D)]/2 − p(spider|CD)

The discrimination scores for Experiments 1 and 2 for the positive and negative patterning
discriminations were averaged. The discrimination scores for Experiment 3 were computed similarly.
For example, in Phase 1 (AB+ CD+ AD− CB−) the discrimination score was computed as the difference
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between the average proportion of correct spider predictions on AB and CD trials minus the average
proportion of incorrect spider predictions on AD and CB trials:

Discrimination Score = [p(spider|AB) + p(spider|CD)]/2 − [p(spider|AD) + p(spider|CB)]/2

This resulted in two discrimination scores for each experiment, one for the discriminations trained
in Phase 1 and one for the discriminations trained second (in Phase 2 or 3). We could therefore analyse
the performance improvement on the discriminations trained second relative to the discriminations
trained first by comparing these two scores.

In Experiment 2 we also computed a transfer score for each phase using the predictions made on
trials that were not followed by feedback. Following Maes et al. [10], we defined the transfer score as
the proportion of outcome predictions consistent with rule-based generalization. For example, the
transfer scores for Phase 1 were computed as the proportion of spider predictions on IJ trials and
no-spider predictions on KL trials:

Transfer Score = [p(spider|IJ) + p(no spider|KL)]/2

Transfer scores above 0.5 indicated a stronger tendency for rule-based generalization than
feature-based generalization, whereas transfer scores below 0.5 indicated a stronger tendency for
feature-based generalization.

It is worth noting that performance on transfer tests is influenced by the extent to which the
original discriminations are learned [3,10,26]. Some previous studies have attempted to control
for individual differences in the speed of acquisition of the first discrimination by implementing a
performance criterion whereby participants do not proceed to the transfer test unless they have
reached a minimum performance criterion (e.g., [10]). Such a procedure, however, introduces
additional confounds, such as increased familiarity with the cues which could change the way they are
processed [26,27], or fatigue, in those participants who require more trials to solve the discrimination.
We therefore gave all participants the same amount of training. But to control for potential differences
in the extent to which the fully trained discriminations were learned, we regressed the transfer scores
on fluid abilities, as well as performance on the training sets, age and gender to control for their
potential confounding effects. Similarly, we regressed the improvement on the second trained set
described above on fluid abilities, as well as performance on the first discrimination set, age and gender.

Table 1. Learning tasks designs 1.

Phase 1 Phase 2 Phase 3

Experiment 1

Training set:
Positive patterning A−, B−, AB+ E−, F−, EF+
Negative patterning C+, D+, CD− G+, H+, GH−
Other trials I+, O+ IJ+, KL+, MN+ K+, Q+

U−, V− OP−, QR−, ST− U−, V−
Experiment 2

Training set:
Positive patterning A−, B−, AB+ E−, F−, EF+
Negative patterning C+, D+, CD− G+, H+, GH−
Transfer set:
Positive patterning I−, J−, IJ? M-, N-, MN?
Negative patterning K+, L+, KL? O+, P+, OP?

Experiment 3

Training set:
Biconditional discrimination AB+, CD+, AD−, CB− IJ+, KL+, IL−, KJ−
Other trials EF+, GH− MN+, OP−

1 There were 10 trials of each type in Experiments 1 and 2 and 16 trials of each type in Experiment 3. “+” indicates
that the spider picture followed the cue(s), “−” indicates that the spider picture did not follow the cue(s) and “?”
indicates that no feedback was given.
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3. Results

3.1. Improvement on the Second Training Set

Table 2 summarizes the demographic and behavioural data and Figure 2 shows the discrimination
performance in each experiment. The discrimination scores on the sets trained second increased relative
to the Phase 1 discrimination scores in all three experiments; t(99) = 4.47, p < 0.001, CI95 [0.067 0.173];
t(73) = 6.18, p < 0.001, CI95 [0.107 0.209]; and t(72) = 5.27, p < 0.001, CI95 [0.116 0.257] for Experiments 1,
2 and 3, respectively.

Table 3 lists the correlations between the learning measures and fluid abilities. We estimated a
series of multiple regression models in which the performance improvement on the second training
set was regressed on each fluid ability, as well as the potentially confounding factors age, gender
and learning performance on the Phase 1 training set. Including the performance on the Phase 1
training set as a predictor ensured that our results were not confounded by the extent to which the
original discriminations were learned, which has been shown to influence rule-based generalization
(e.g., [3,10]). Note, however, that excluding this predictor from the regression models did not change
the pattern of results reported below (compare Tables 4 and 5). Reasoning ability predicted the
improvement in performance on the patterning discriminations (Experiments 1 and 2) and the
biconditional discrimination (Experiment 3; see Figure 3b). Working memory was also a predictor of
the performance improvement on the second biconditional discrimination (Experiment 3; Figure 3a)
but not on the patterning discriminations (Experiments 1 and 2).

We also ran relative importance regression models that regressed the improvement on the second
training set in each experiment on all four fluid abilities simultaneously (excluding the confounding
variables). This allowed us to determine the relative contribution of each fluid ability to the overall R2

in a multiple regression model [28]. The first three bars in Figure 4 show the relative contribution of
the four fluid abilities in explaining the improvement scores. All models were significant or were close
to the significance level, R2 = 0.10, F(4, 93) = 2.50, p = 0.048; R2 = 0.12, F(4, 69) = 2.41, p = 0.057; and
R2 = 0.14, F(4, 68) = 2.85, p = 0.030 for Experiments 1, 2 and 3, respectively. Reasoning ability accounted
for over half of the explained variability in improvement scores in all experiments (55–74% of R2).
Working memory accounted for 36% of the total R2 in Experiment 3. The other abilities had modest
contributions (<18% explained variability).

Finally, we combined the data from the three experiments, as follows. First, we established
that improvements on the second training sets were comparable across experiments via one-way
ANOVA with improvement as the dependent variable and experiment as the independent variable.
Mean improvements on the second training sets were not significantly different across experiments,
F(2, 244) = 1.37, p = 0.26. We also compared the distributions of improvement scores in pairwise fashion
via Kolmogorov-Smirnov tests and found no significant differences (minimum p = 0.41; see Figure 5).
Second, we estimated latent general fluid ability (gF) using all available measures across the three
experiments in MPlus v7.3 [29]. The fit of the measurement model was good, χ2(18) = 23.5, p = 0.17,
RMSEA = 0.04 and CFI = 0.98. Third, we estimated two models: in the first we regressed gF on age
and gender and performance improvement on gF; in the second model, we additionally also regressed
gF on performance on the Phase 1 training set. In both these models, the regression of performance
improvement on the second training set on gF was statistically significant (regression coefficient = 0.050,
CI95 [0.009 0.091], SE = 0.021, p = 0.017 for the model controlling for age and gender; and regression
coefficient = 0.047, CI95 [0.017 0.077], SE = 0.015, p = 0.002 for the model controlling for age, gender
and performance on the Phase 1 training set). Thus, a general factor of fluid intelligence predicted
the performance improvement on the discriminations trained second, even when performance on the
Phase 1 discriminations was controlled for.
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3.2. Transfer Scores in Experiment 2

The transfer scores in Experiment 2 were significantly smaller than 0.5 in both Phase 1 and
Phase 2, t(73) = 9.19, p < 0.001, CI95 [0.260 0.345] and t(73) = 3.36, p = 0.001, CI95 [0.368 0.466]
for Phases 1 and 2, respectively. This indicates that on average participants were more likely to
demonstrate feature-based generalization rather than rule-based generalization, although the transfer
scores changed in the direction of more rule-based generalization from Phase 1 to Phase 2, t(73) = 4.54,
p < 0.001, CI95 [0.064 0.164].

We further analysed whether the overall performance on the transfer sets in Experiment 2 could be
predicted by fluid abilities. The average transfer scores were regressed on each fluid ability along with
age and gender (Table 4). A second set of regression analyses also included the average performance
on the training sets in the two phases as an additional predictor to control for its potential confounding
influence (Table 5). Processing speed predicted an increase in the transfer scores consistent with
rule-based generalization (Figure 3c). Reasoning ability did not significantly predict the transfer scores
when performance on the training sets was included in the model (Table 5) but it did have a significant
effect when performance on the training sets was excluded from model (Table 4; Figure 3d).

We also ran a relative importance regression model that regressed the transfer scores on the four
fluid abilities (see the last bar in Figure 4). The model significantly predicted transfer performance,
R2 = 0.27, F(4, 69) = 6.22, p < 0.001. Processing speed and reasoning ability accounted for 69% and 21%
of the total R2, respectively.

Table 2. Demographic and Behavioural Data 1.

Experiment 1 2 Experiment 2 Experiment 3

Demographic Data

Age 20.89 (1.48) 21.30 (2.46) 20.26 (1.40)
Gender F:M 64:36 54:20 62:11

Fluid Abilities

Reasoning Ability:
Raven’s Matrices 8.18 (2.38) 8.24 (2.14) 8.97 (2.39)
CAB-I 9.10 (1.85) 8.85 (2.03) 9.67 (1.77)

Visuospatial Ability:
Mental Rotation Test 21.59 (7.77) 15.09 (8.57) 21.07 (6.57)
Paper Folding 19.67 (5.09) 19.30 (5.41) 21.22 (4.36)

Working Memory:
Dot Matrix 36.86 (9.48) 37.55 (9.18) 39.86 (9.78)
Sentence Span 0.69 (0.16) 0.73 (0.17)

Processing Speed:
Digit Symbol 64.23 (14.83) 67.99 (11.01) 70.14 (11.51)
Visual Matching 54.89 (4.67) 55.81 (5.10)

Learning Performance 3

Training Set
Discrimination Scores:

Phase 1 0.21 (0.23) 0.18 (0.21) 0.22 (0.22)
Phase 2 (or 3) 0.33 (0.23) 0.34 (0.26) 0.40 (0.31)
Improvement 0.12 (0.27) 0.16 (0.22) 0.19 (0.30)

Transfer Scores:
Phase 1 0.30 (0.18)
Phase 2 0.42 (0.21)
Improvement 0.11 (0.22)

1 Standard deviations are indicated in parentheses. 2 Only one test of working memory and one test of processing
speed were administered in Experiment 1. 3 The calculations used to obtain the discrimination and transfer scores
are explained in Section 2.3.
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Figure 2. Average trial-by-trial predictions in the learning tasks. Spider predictions were coded as 1
and no-spider predictions were coded as 0. Error bars represent the standard error of the mean. The left
panels show the performance on trials from the training sets in (a) Experiment 1, (b) Experiment 2
and (d) Experiment 3. The right panel (c) shows the performance on trials from the transfer set in
Experiment 2.

Table 3. Correlations Between Learning Measures and Fluid Abilities 1.

Improvement on the Second Training Set Transfer Score

Experiment 1 Experiment 2 Experiment 3 Experiment 2

Reasoning Ability: 0.24 * 0.32 * 0.29 * 0.33 *
Raven’s Matrices 0.25 * 0.23 * 0.14 0.13
CAB-I 0.16 0.30 * 0.34 * 0.42 **

Visuospatial Ability: −0.04 0.11 0.01 0.25 *
Mental Rotation Test −0.06 0.05 0.06 0.15
Paper Folding −0.02 0.16 −0.04 0.29 *

Working Memory: −0.01 0.16 0.25 * 0.11
Dot Matrix −0.01 0.17 0.32 * 0.04
Sentence Span 0.10 0.12 0.15

Processing Speed: 0.09 0.20 0.07 0.48 **
Digit Symbol 0.09 0.15 −0.03 0.48 **
Visual Matching 0.18 0.12 0.30 *

1 Reasoning ability, visuospatial ability, working memory and processing speed scores are average z-scores of
individual tests. Only one test of working memory and one test of processing speed were administered in
Experiment 1. * denotes the correlation is significant at the 0.05 level. ** denotes the correlation is significant at the
0.001 level.
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Table 4. Results of Linear Models That Regressed the Learning Measures on Each Fluid Ability and
Controlled for Age and Gender 1.

Improvement on the Second Training Set Transfer Score

Experiment 1 Experiment 2 Experiment 3 Experiment 2

Additional Predictors Included in the Models
Age Age

Gender Gender

Reasoning Ability
Coefficient 0.085 0.084 0.105 0.057
95% CI (0.022, 0.148) (0.020, 0.147) (0.021, 0.189) (0.009, 0.105)
SE 0.031 0.032 0.042 0.024
p 0.009 * 0.011 * 0.015 * 0.020 *

Visuospatial Ability:
Coefficient −0.005 0.020 −0.010 0.034
95% CI (−0.072, 0.061) (−0.042, 0.082) (−0.095, 0.075) (−0.012, 0.079)
SE 0.034 0.031 0.043 0.023
p 0.880 0.516 0.815 0.143

Working Memory:
Coefficient 0.002 0.037 0.080 0.009
95% CI (−0.054, 0.059) (−0.028, 0.101) (0.002, 0.158) (−0.040, 0.057)
SE 0.029 0.032 0.039 0.024
p 0.934 0.262 0.045 * 0.720

Processing Speed:
Coefficient 0.030 0.053 0.025 0.099
95% CI (−0.026, 0.086) (−0.011, 0.117) (−0.065, 0.114) (0.057, 0.142)
SE 0.028 0.032 0.045 0.021
p 0.291 0.104 0.587 <0.001 **
1 SE = Standard error. * denotes the coefficient is significant at the 0.05 level and ** denotes the coefficient is
significant at the 0.001 level.

Table 5. Results of Linear Models That Regressed the Learning Measures on Each Fluid Ability and
Controlled for Age, Gender and Training Performance 1.

Improvement on the Second Training Set Transfer Score

Experiment 1 Experiment 2 Experiment 3 Experiment 2

Additional Predictors
Included in the Models

Age Age

Gender Gender

Phase 1 Training Set Discrimination Score Average Training Set Discrimination Score

Reasoning Ability
Coefficient 0.084 0.095 0.120 0.037
95% CI (0.033, 0.134) (0.035, 0.155) (0.042, 0.198) (−0.010, 0.085)
SE 0.025 0.030 0.039 0.024
p 0.001 * 0.002 * 0.003 * 0.121

Visuospatial Ability:
Coefficient 0.033 0.030 0.015 0.023
95% CI (−0.022, 0.088) (−0.029, 0.090) (−0.066, 0.097) (−0.021, 0.066)
SE 0.028 0.030 0.041 0.022
p 0.232 0.315 0.707 0.305

Working Memory:
Coefficient 0.011 0.054 0.112 −0.012
95% CI (−0.035, 0.057) (−0.008, 0.116) (0.039, 0.185) (−0.059, 0.035)
SE 0.023 0.031 0.037 0.023
p 0.626 0.090 0.003 * 0.612

Processing Speed:
Coefficient 0.035 0.060 0.028 0.088
95% CI (−0.010, 0.080) (−0.001, 0.122) (−0.057, 0.113) (0.046, 0.129)
SE 0.023 0.031 0.043 0.021
p 0.126 0.052 0.518 <0.001 **
1 SE = Standard error. * Denotes the coefficient is significant at the 0.05 level and ** denotes the coefficient is
significant at the 0.001 level.
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Figure 3. Scatter plots showing the correlations between learning measures and fluid abilities that were
significant predictors after controlling for at least age and gender (Table 4). The upper panels illustrate
the relationship between the improvement on the second training sets and (a) working memory in
Experiment 3 and (b) reasoning ability in Experiment 1–3. The lower panels illustrate the relationship
between the transfer scores in Experiment 2 and (c) processing speed and (d) reasoning ability.
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Figure 4. Relative importance metrics for the four fluid abilities obtained from relative importance
regression models that included the four fluid abilities as predictors of either the improvement on the
second training set (first three bars) or the transfer scores in Experiment 2 (fourth bar).
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Figure 5. Density plots for improvement on the second training set for Experiments 1, 2 and 3. Pairwise
Kolmogorov-Smirnov tests showed that the distributions were not statistically different from each
other (minimum p = 0.41) and one-way ANOVA showed that the means of the improvement scores
were not statistically different from each other, F(2, 244) = 1.37, p = 0.26.

4. Discussion

4.1. Improvement on the Second Training Set

Similar to previous studies [12,13,26,30], our results suggest that configural processing is
flexible and increases after exposure to configural discriminations. This flexibility is thought to
be advantageous, as it allows individuals to adapt their processing style depending on which strategy
is more useful for learning contingencies between stimuli in the environment. We extend previous
findings by demonstrating that individual differences in fluid abilities predict the extent to which an
individual will benefit from previous exposure to configural discriminations, when performance on
the original discriminations is controlled for. Because reasoning ability predicted this performance
increase in Experiments 1 and 2, in which participants could have learned and generalized an opposites
rule, and in Experiment 3, in which they could not use a simple rule to solve the discriminations,
we propose that reasoning ability is more likely to influence the shift to configural processing. This
explains the results of all three experiments, whereas rule-based generalization only explains the
results of Experiments 1 and 2.

There were, however, some differences between experiments. Whereas reasoning ability predicted
the performance improvement in all experiments, working memory only predicted it in Experiment 3.
One possible explanation is that the biconditional discriminations were more difficult to solve than the
patterning discriminations, thus increasing working memory demands and making it more likely that
we would observe a relationship between working memory capacity and performance improvements
in Experiment 3. Indeed, comparing the discrimination scores in Experiments 1 and 2 to those
in Experiment 3 computed from the first 10 blocks of training (to equate the amount of training
in all experiments) revealed that the discrimination scores in Experiment 3 were lower than those
in Experiments 1 and 2 in Phase 1, minimum t(145) = 3.06, p = 0.003, CI95 [0.039 0.180]. Phase 2
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discrimination scores, however, did not differ between experiments, maximum t(145) = 0.843, p = 0.401,
CI95 [−0.054 0.135].

4.2. Transfer Scores in Experiment 2

Our findings regarding the performance on the transfer sets in Experiment 2 can be compared
to previous studies that used similar transfer tests. First, we found that reasoning ability modestly
predicted performance on the transfer sets. This is consistent with the results from Maes et al. [10], who
also found performance on the Raven’s Standard Progressive Matrices to modestly predict rule-based
generalization following patterning discrimination training but only if performance on the training
sets was not controlled for. Second, we found that working memory did not predict performance
on the transfer sets. This is inconsistent with Wills et al.’s [9] results, which found that individuals
with high working memory capacity showed rule-based generalization, whereas individuals with low
working memory capacity showed feature-based generalization. The fact that we did not replicate
their finding could be due to the data analysis: whereas we analysed the full range of working memory
scores using linear regression, Wills et al. only analysed the upper and lower quartiles of their sample
on the working memory task (approximately 10 participants in each group) and consequently omitted
the data from the 50% of their participants who fell in the middle range. An analysis similar to Wills et
al. on our dataset using extreme quartiles, still did not reveal a significant working memory effect. This
was true even if only the Phase 1 transfer scores were analysed, reflecting the fact that the procedure
used by Wills et al. consisted of only one training phase.

Instead, we found that processing speed strongly predicted transfer scores that are consistent
with rule-based generalization. It is possible that processing speed predicted rule-based generalization
in our Experiment 2 because we used a speeded task in which participants only had one second to
make a response. This could have placed an additional burden on processing that was not present in
previous studies that used self-paced transfer tests, potentially explaining why the transfer scores in
Experiment 2 were predicted so well by processing speed.

The speeded response requirement might also explain why the transfer scores were on average
below 0.5, which indicates that participants were more likely to respond to the transfer compounds
based on feature generalization than on the opposites rule. If feature-based generalization is less
cognitively demanding than rule-based generalization, this might explain why we found that, on
average, participants engaged in feature-based generalization, whereas other studies that used
self-paced tests found a stronger tendency for rule-based generalization [3,7,8,10]; but see [26].
Consistent with the idea that rule-based generalization is more demanding, Cobos et al. [7] found
that self-paced ratings on a transfer test reflected rule-based generalization but performance on a
cued-response priming test was more consistent with feature-based generalization. The authors
argued that feature-based generalization relies on fast associative mechanisms, whereas rule-based
generalization relies on slower deliberative processes that require executive control and is thus more
likely to occur under untimed conditions. It is possible that the speeded response requirement in
our experiments decreased the likelihood that participants could engage in rule-based generalization
by preventing these deliberative processes. Furthermore, our results suggest that participants could
engage in rule-based generalization if their processing speed was sufficiently high, which would
presumably allow more time for rule-based generalization processes.

4.3. Rule-Based Generalization vs. Configural Processing

As explained in the introduction, we were interested in investigating whether fluid abilities
increase the likelihood that participants will use a rule to solve new discriminations or whether they
contribute to a shift to configural processing following experience with discriminations that can be
solved by learning about stimulus configurations. Taken together, the results of the three experiments
suggest that reasoning ability is likely to predict a stronger shift towards configural processing
following experience with configural problems. This is because reasoning ability consistently
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predicted the improvement on the second training set in all experiments, including Experiment 3 that
ruled out the possibility that the improvement was due to rule-based generalization. Furthermore,
reasoning ability only modestly predicted transfer scores consistent with rule-based generalization
in Experiment 2 and this effect was not significant when performance on the training sets was
controlled for. Thus overall, these results suggest that reasoning ability is more likely to generate a shift
toward configural processing following experience with configural discriminations than encourage
rule-based generalization.

Whereas reasoning ability consistently predicted the improvement on the second training set
in all experiments, working memory only did so in Experiment 3, which involved more difficult
biconditional discriminations. Although speculative, it is possible that working memory is a less
reliable predictor of a shift toward configural processing than reasoning ability and this effect only
reached the significance level when participants were exposed to more difficult discriminations.

The relationship between fluid abilities and the transfer scores in Experiment 2, however, cannot
be explained by the possibility that fluid abilities only increase configural processing. That is, if
fluid abilities increase the likelihood that stimuli will be processed configurally after experiencing
configural problems, then one would expect subsequent configural problems to be solved more easily
but one would not necessarily expect an increase in rule-like responses to the transfer stimuli that
were not followed by feedback. This is because an increase in configural processing would merely
help participants learn nonlinear discriminations (so it would improve performance on feedback trials)
but it would not help them ‘deduce’ which outcome should occur on transfer trials (so it would not
influence performance on no-feedback trials). It is therefore more likely that fluid abilities influenced
the extent to which participants would use a rule-based strategy to make predictions on the ambiguous
trials without feedback.

We found, once performance on the training sets was controlled for, that only processing speed
strongly predicted the transfer scores in Experiment 2. However, processing speed did not have a
significant effect on the improvement on the second training set in either experiment. This suggests
that processing speed might determine the extent to which an individual is capable of applying a
learnt rule in ambiguous situations in which feedback is omitted, so performance cannot rely on de
novo learning. Furthermore, if one assumes that such rule-based generalization is computationally
demanding [7], then this might explain why this effect was particularly evident in our study because
we used a speeded response task that imposed a relatively heavy burden on processing speed. So, the
difficulty in generating rule-based generalization might have stemmed from the requirement to inhibit
a more automatic feature-based generalization tendency rather than from discovering the simple
opposites rule. Thus, rule-based generalization in our task might have depended more heavily on the
ability to apply the simple rule within a short timeframe rather than on the ability to learn the rule.
Had we used a more complex rule and given participants more time to respond, then reasoning ability
rather than processing speed may have predicted rule-based generalization.

Nevertheless, although different procedures likely influence the extent to which specific fluid
abilities contribute to performance, our results demonstrate that fluid abilities predict the extent to
which an individual will experience a shift toward configural processing following training with
configural discriminations. They also predict a stronger tendency to exhibit rule-based rather than
feature-based generalization on transfer tests. Future research might further investigate the conditions
in which specific fluid abilities play a role in experience-induced shifts in processing strategies or
rule-based generalization.
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