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Abstract: The present study utilized a recursive feature elimination approach in conjunction
with a random forest algorithm to assess the efficacy of various features in predicting cogni-
tive strategy usage in Raven’s Advanced Progressive Matrices. In addition to item response
accuracy (RA) and response time (RT), five key eye-tracking metrics were examined: pro-
portional time on matrix (PTM), latency to first toggle (LFT), rate of latency to first toggle
(RLT), number of toggles (NOT), and rate of toggling (ROT). The results indicated that
PTM, RLT, and LFT were the three most critical features, with PTM emerging as the most
significant predictor of cognitive strategy usage, followed by RLT and LFT. Clustering anal-
ysis of these optimal features validated their utility in effectively distinguishing cognitive
strategies. The study’s findings underscore the potential of specific eye-tracking metrics
as objective indicators of cognitive processing while providing a data-driven method to
identify strategies used in complex reasoning tasks.

Keywords: cognitive strategy; intelligence; matrix reasoning; eye movement; random forest

1. Introduction

Raven’s Advanced Progressive Matrices (APM, Raven et al. 1998) is a widely utilized
reasoning test in psychology, serving as a benchmark for gauging individuals’ overall
intelligence (Loesche 2020). It consists of non-verbal multiple-choice items, each featur-
ing a sequence of geometric patterns with one missing element, which the test taker is
required to identify from a set of options. This format is designed to minimize cultural
and linguistic biases, making it an effective tool for cross-cultural studies and assessments
(Loesche 2020), as shown in Figure 1. Through a thorough examination of individuals’
performance on the APM, researchers gain insights into the developmental trajectories
of cognitive processes, cognitive strategies, and reasoning abilities (Carpenter et al. 1990;
Hayes et al. 2015; Vigneau et al. 2006; Niebaum and Munakata 2023). Additionally, the
APM plays a pivotal role in clinical psychology, contributing significantly to the evaluation
of diagnoses and treatment plans for disorders such as cognitive dysfunction and intellec-
tual disability (Sukantarat et al. 2005; Vakil and Lifshitz-Zehavi 2012). The multifaceted
applications of APM have spurred extensive research efforts, establishing it as a focal point
in psychological inquiry.
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Figure 1. Example of an item in Raven’s advanced progressive matrices. This item involves a three-
by-three matrix, with graphical elements in the matrix interest area and eight options in the response
options area. One cell in the matrix is missing, and it needs to be selected from the response options
area using analogy and inductive reasoning.

The importance of researching cognitive strategies in the context of the APM cannot
be overstated, as cognitive strategies reflect the thought processes and methods individuals
employ when responding to APM tasks. Understanding these strategies offers valuable
insights into fundamental cognitive processes and serves as a reference for the development
of educational and cognitive training programs. Studies have shown that intervening in
students’ cognitive strategies helps them think more effectively and perform better in tasks
(Hessels et al. 2011; Hayes et al. 2015). Meanwhile, the early studies (Bethell-Fox et al. 1984;
Vigneau et al. 2006) analyzing participants’ eye-tracking data have revealed that different in-
dividuals display distinct eye movement patterns when solving APM items, corresponding
to different cognitive strategies. Examples include the constructive matching strategy and
the response elimination strategy (Vigneau et al. 2006; Hayes et al. 2011). The constructive
matching strategy involves forming a mental representation of the correct answer, while
the response elimination strategy involves ruling out incorrect options through multiple
comparisons of matrix elements and options (Vigneau et al. 2006).

Moreover, the use of these cognitive strategies is closely related to individual in-
telligence, working memory, item difficulty, and can significantly impact response accu-
racy (Gonthier and Roulin 2020; Li et al. 2022; Liu et al. 2023). For instance, individuals
with higher intelligence tend to use the constructive matching strategy, and on certain
items, those using the constructive matching strategy are more likely to answer correctly
(Liu et al. 2023). In-depth research on these cognitive strategies has greatly advanced our
understanding of individual cognitive processes and intellectual development, shedding
light on the thinking processes of different groups and providing an important theoretical
and empirical foundation for cognitive psychology and intelligence research (Laurence and
Macedo 2023). In addition, cognitive strategy research plays a key role in refining the design
and assessment of reasoning tests, improving their accuracy and validity (Becker et al. 2016;
Arendasy and Sommer 2013).

Since cognitive strategies occur in the brain, they are not easily observed, and the
identification of cognitive strategies is the foundation work for conducting research on
cognitive strategies. So, the identification of cognitive strategies in APM has been a focal
point of psychological research, leading to the development of various methodologies.
Current methods for identifying cognitive strategies can be categorized into four main
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types: questionnaire-based methods, think-aloud protocols, eye-tracking data analysis,
and mouse-tracking data analysis (Laurence and Macedo 2023; Liu et al. 2023). The first
two methods, while insightful, have notable limitations. Self-report questionnaires, for
example, rely heavily on participants’” introspection and memory, which can introduce
biases and inaccuracies (Jarosz et al. 2019). Think-aloud protocols, in which participants
verbalize their thought processes while solving problems, provide rich qualitative data but
are time-consuming and may alter the natural problem-solving process due to the dual
task of thinking and verbalizing (Chiu and Shu 2010; Laurence and Macedo 2023).

Eye-tracking data analysis has emerged as a powerful tool for understanding cognitive
strategies due to the objective and non-intrusive nature of eye-tracking collection. By
recording and analyzing eye movements, researchers can infer the strategies used by
individuals during tasks. For example, eye-tracking metrics, such as fixation duration and
the number of toggles between different areas of interest, provide insights into whether
a participant is using a constructive matching strategy or a response elimination strategy
(Vigneau et al. 2006). Hayes et al. (2011) and Liu et al. (2023) developed different methods
for identifying strategies from data-driven and theory-driven perspectives, respectively.
Despite its advantages, this method also faces challenges. A significant disadvantage is
the complexity of the methods and model interpretation. For example, advanced methods,
such as Markov models and transfer matrices, as proposed by Hayes et al. (2011), require
complex analytical tools and expertise. Similarly, the parameter estimation involved in the
multi-strategy eye-tracking model (MEM) proposed by Liu et al. (2023) requires a certain
programming foundation, which may limit their wider application in research.

Mouse-tracking data analysis captures the movement and clicks of a computer mouse
as participants interact with tasks (Rivollier et al. 2021). This method provides a less in-
trusive and more cost-effective alternative to eye-tracking. Researchers need to develop
specific programs to use mouse movements to simulate the process of eye movements
to obtain information. For example, positioning the mouse over the response options
area reveals this section while the matrix area disappears, simulating a gaze focused on
the option to gather information. By analyzing mouse movement patterns or indicators
(e.g., the amount of time the mouse stays in the response options interest area), researchers
can infer cognitive strategies similar to those identified through eye-tracking (Rivollier et al.
2021). However, this method has notable limitations. Unlike eye movements, mouse move-
ments are intentional actions rather than subconscious processes, potentially falling short
in capturing the spontaneous cognitive processes involved in strategy use. Additionally,
the structure of the test may be altered in such setups, potentially impacting judgments
about individuals’ strategy use (Laurence and Macedo 2023).

Overall, compared to other methods, the collection of eye-tracking data does not
interfere with the individual’s response process, allowing for a more direct reflection of
their thought process during task performance. Furthermore, the richness and comprehen-
siveness of eye-tracking data provide significant potential for inferring cognitive strategies.

Different eye-tracking metrics are used to infer the use of strategies in different studies,
and various studies highlight different eye-tracking metrics as effective predictors of
cognitive strategy usages. For example, Vigneau et al. (2006) identified latency to first toggle
(LFT), proportional time-on matrix (PTM), and number of toggles (NOT) as useful metrics
for predicting strategy use. A higher NOT, shorter LFT, and smaller PTM correspond
to the response elimination strategy, while a lower NOT, longer LFT, and larger PTM
indicate the constructive matching strategy. In Laurence et al.’s (2018) study, the rate
of toggling (ROT) was considered the best predictor of strategy use, correlating with
better performance. Raden and Jarosz (2022) also affirmed the importance of the ROT in
predicting strategy use when studying participants’ strategy use across reasoning tasks.
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In contrast, Liu et al. (2023) found that PTM and rate of latency to first toggle (RLT) are
effective metrics for predicting strategy use, but ROT is not. These differences highlight
an ongoing challenge in the field: the lack of consensus on which eye-tracking metrics
are the most reliable predictors of cognitive strategies. This variability can stem from
differences in the metrics used or the analytical methods applied across studies. As a
result, there is a pressing need for standardized methodologies and comparative studies to
establish more consistent and generalizable findings. Additionally, some studies (Gonthier
and Roulin 2020; Laurence et al. 2018; Gonthier and Thomassin 2015; Liu et al. 2023) have
suggested that strategy affects response accuracy as well as response time. Therefore,
whether response accuracy (RA) and response times (RT) can be used to predict strategy
use alongside eye-tracking metrics is an important question.

The present study aims to explore which features (i.e., RA, RT, and the five eye-tracking
metrics [PTM, ROT, LFT, NOT, RLT]) are most effective for predicting cognitive strategies
by employing a recursive feature elimination approach in conjunction with a random forest
model. Subsequently, the selected features will be used for clustering analysis to investigate
whether the classification results align with theoretical cognitive strategies and to assess
the validity of the cluster analysis in identifying strategies using the selected features.

The remaining sections review relevant background information, including the three
cognitive strategies involved in APM and the MEM, a strategic measurement model used
to distinguish strategies and label data for the random forest model, which is a supervised
machine learning method. An empirical study was then conducted to identify the subset
of features that are most valuable for predicting strategies. This was followed by a cluster
analysis of the selected features and a detailed description of the clustering results. Finally,
a summary of the findings and a discussion of future research directions are presented.

2. Backgrounds
2.1. Three Cognitive Strategies in APM

Initially, previous studies identified two common cognitive strategies employed in
APM: constructive matching and response elimination (Bethell-Fox et al. 1984; Snow 1980;
Vigneau et al. 2006). Constructive matching involves participants extracting complete
answer rules from the matrix area, mentally constructing the final answer, and making
a selection from the options area. In contrast, response elimination entails participants
extracting only part of the answer rules from the matrix area, gradually eliminating options
that do not fit based on these partial rules and arriving at the final answer.

In recent years, Jarosz et al. (2019) proposed the possibility of another cognitive
strategy—the isolate-and-eliminate strategy—which can be considered a hybrid of con-
structive matching and response elimination. In this strategy, individuals identify specific
rules governing the problem, eliminate incorrect options based on these rules, and then
refine their choices by isolating the most probable correct answer. Liu et al. (2023) also
observed the mixed use of constructive matching and response elimination strategies,
supporting Jarosz et al.’s (2019) argument.

2.2. Five Eye-Tracking Metrics

In analyzing cognitive strategies using eye-tracking data, several key eye-tracking
metrics have been identified. These metrics offer valuable insights into the processes
individuals use to solve matrix reasoning tasks. Below are five important eye-tracking
metrics, along with their definitions, meanings, calculation methods, and their relationship
to cognitive strategies.
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2.2.1. Proportional Time on Matrix (PTM)

PTM is a measure of the proportion of time a participant spends looking at the matrix
area (T"%") relative to the total time spent on the item (Tiem). Tt is calculated using the
formula: PTM = T™7* /Tit™  This metric is important because participants employing the
constructive matching strategy typically spend a high proportion of their gaze time on the
matrix area, as they form a mental representation of the correct answer before making a
choice (Vigneau et al. 2006). A higher PTM indicates deeper engagement with the problem
matrix, which is characteristic of the constructive matching strategy.

2.2.2. Latency to First Toggle (LFT)

LFT measures the time taken from the start of the task until the participant first shifts
their gaze to the options area. This metric is calculated as the time elapsed from the
beginning of the task to the first toggle. A longer LFT suggests that the participant is
spending more initial time analyzing the matrix, indicative of the constructive matching
strategy. Conversely, a shorter LFT reflects a quicker shift to the options area, which aligns
with the response elimination strategy (Vigneau et al. 2006).

2.2.3. Rate of Latency to First Toggle (RLT)

RLT is the ratio of the latency to the first toggle to the total time spent on the item. It
is calculated using the formula: RLT = LFT/T"™. This metric indicates the proportion of
the initial time spent on the matrix before considering the options. Participants using the
constructive matching strategy typically have a higher RLT, as they invest more time in
understanding the problem rules and extracting information from the matrix area before
looking at the options (Liu et al. 2023).

2.2.4. Number of Toggles (NOT)

NOT counts the total number of gaze shifts between the matrix and the options area
during the task. This metric is important because a higher number of toggles corresponds
to the response elimination strategy, where participants frequently scan back and forth to
eliminate incorrect options. In contrast, a lower number of toggles indicates a more focused
and deliberate approach, characteristic of the constructive matching strategy (Vigneau et al.
2006; Hayes et al. 2011).

2.2.5. Rate of Toggling (ROT)

ROT measures the frequency of toggles between the matrix and the options area per
second. It is calculated as ROT = NOT/T"". Participants employing the response elimina-
tion strategy tend to have a higher rate of toggling, as they toggle more often within a given
time. Conversely, participants using the constructive matching strategy exhibit a lower rate
of toggling because they spend more time forming a comprehensive understanding of the
problem before making a decision (Vigneau et al. 2006; Laurence et al. 2018).

Overall, these metrics—PTM, LFT, RLT, NOT, and ROT—provide valuable insights
into the cognitive strategies individuals use during problem-solving tasks. By analyzing
these eye-tracking data, researchers can identify more effective metrics and improve the
accuracy of strategy prediction models.

2.3. Multi-Strategy Eye-Tracking Model

The MEM is a theory-driven psychometric model that is designed to estimate the
probability of cognitive strategy usage by participants and their intelligence. In contrast
to existing “black-or-white” approaches to strategy identification, the MEM estimates
participants’ strategy use and further identifies it in the form of probabilities, which opens
up the possibility of using MEM to discover a third strategy. Specifically, Liu et al. (2023)
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observed that for some specific items, some participants did not use specific cognitive
strategies of construct matching and response elimination strategies with high probability,
but rather showed ambiguity in strategy use, most likely by using both strategies (i.e., the
isolate-and-eliminate strategy) in the problem-solving process.

For the APM, assuming I participants using M = 2 strategies (i.e., constructive matching
and response elimination strategies) with | = 36 items, the MEM can be expressed as:

M
P(Y; =1/6;) = ) P(Yij = 1|6;,m;;) x P(m;) (1)
m=1

where P(Yj; = 1|6;, m;j) represents the strategy implementation model, and P (1) repre-
sents the strategy selection model. Specifically, m;; = 1 indicates that participant i applied
the constructive matching strategy to item j, and m;; = 2 indicates that participant i applied
the response elimination strategy to item j.

The MEM hypothesis posited that participants utilizing the constructive matching
strategy would exhibit a higher or equal probability of providing correct responses com-
pared to those employing the response elimination strategy (Gonthier and Roulin 2020;
Mitchum and Kelley 2010; Laurence and Macedo 2023), as follows:

P(Yij:1|6i,mij:1) ZP(lf,'j:1|9i,mij:2) (2)

Specifically, 6 )
_exp(0;—bj+e;
1+exp(0; — b +e)

_ exp(0; — bj)
1+ exp(el- - b])

P(Yi]' = 1|9i, ml-j = 1) (3)

P(Yi]' = 1|91‘, T}’l,‘j = 2) (4)
where b; denotes the difficulty of item j, 6; denotes the latent ability (i.e., intelligence) of
participant i; ¢j, which in formula 3 is the strategy sensitivity parameter and is constrained
to be non-negative (i.e., ¢; > 0), representing the gain in the correct response probability
by using the constructive matching strategy compared to using the response elimination
strategy on item ;.

In addition, the strategy selection model represents the probability of participant i
applying strategy m on item j, and Y2, P(m;;) = 1.1tis inferred using three eye-tracking
measures (i.e., PTM, ROT, and RLT), and its value is constrained to a number between 0
and 1, with a logistic function as follows:

exp(wy X fiij + wa X faij + W3 X f3i7)
1+ exp (w1 X frij + w2 X foij + w3 X f3i7)”

and

where P(m;; =1) and P(m;; = 2) represent the probability that participant i used the
constructive matching strategy and the response elimination strategy, respectively, on item
J; f1ij, f2ij, and f3;j represent participant i’s PTM, ROT, and RLT on item j (each eye-tracking
metric for all participants is standardized for each item to put all weight parameters on the
same scale), and w1, wy, and w3 represent the weights of the three eye-tracking measures,
indicating the degree to which the three eye-tracking measures influence the probability of
strategy selection by the participant.

According to the MEM, strategy identification can be achieved using two approaches.
The first one is based on whether P(m;; = 1) is greater than or equal to a particular cut-off
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point (e.g., 0.5): when P (m;; = 1) exceeds the cut-off point, the participant is identified
as using the constructive matching strategy on item j, and when P (m;; = 1) is less than
one minus the cut-off point, the participant is identified as using the response elimination
strategy on item j. Another one is based on whether the posterior probability distribution
of P(m;; = 1) is significantly different from 0.5. When the posterior probability distribution
of P(m;; = 1) is significantly greater than 0.5 (i.e., the 2.5% highest posterior density of
P(m;; = 1) exceeds 0.5), it is considered that the participant uses the constructive matching
strategy on item j. Conversely, when the posterior probability distribution of P (m;; = 1) is
significantly less than 0.5 (i.e., the 97.5% highest posterior density of P (1m;; = 1) is less than
0.5), it is considered a response elimination strategy on item j. While, the remaining cases
are determined to be an isolate-and-eliminate strategy, which is a combination of the two
strategies (Liu et al. 2023).

2.4. Recursive Feature Elimination and Random Forest Algorithm

Recursive feature elimination is a commonly used feature selection method for re-
gression and classification problems. Its basic idea is to remove features recursively in
continuous iterations until a predefined number of features is reached (Darst et al. 2018).

Random forest is an ensemble learning algorithm developed based on decision trees,
meaning a random forest consists of multiple decision trees (Breiman 2001). By combining
the predictions of multiple decision trees, the random forest algorithm can significantly
improve the model’s accuracy and robustness (Biau and Scornet 2016). Each tree is inde-
pendently generated during training. For trees t (t =1, 2, ..., T), random samples with
replacement (m samples) and random subsets of features (f features) are drawn from the
training set to construct each tree (Figure 2). This introduces diversity in the decision-
making process of each tree.

Dataset

m; samples n 7 samples my samples
f; features /> features Jr features

Decision Tree-1 Decision Tree-2 Decision Tree-T

ok o}

Result-1 Result-2 Result-T

Majority Voting

Final Result

Figure 2. A brief schematic of the random forest algorithm. Each circle represents a node. Green
means the path node with the highest probability value.
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In classification tasks, the random forest algorithm determines the final classification
result by voting on the results of each tree. Due to its integration of multiple trees” decisions,
the random forest has strong resistance to overfitting and is less sensitive to noise and
missing values, making it widely applicable in various fields (e.g., Han et al. 2019; Biau
and Scornet 2016; Rigatti 2017).

Another significant advantage is that random forests can be used for feature impor-
tance evaluation. Mean decrease in impurity (MDI; Louppe et al. 2013), central to feature
importance in Random Forest models, is a measure of each feature’s contribution to reduc-
ing misclassification. During model training, each time a feature is used to split a node, the
impurity of that node decreases, as it divides the data into more homogeneous subsets. The
total decrease in impurity is accumulated for each feature across all trees in the forest and
averaged, yielding the MDI score for each feature. In general, higher MDI values indicate
a more substantial contribution to classification accuracy, as these features play a more
critical role in reducing misclassification. While there is not a strict cutoff value for MD], it
is mainly used to rank features relative to one another. Features with very low or near-zero
MDI values may be candidates for elimination, as their impact on predictive accuracy is
minimal. The formula for MDI can be expressed as:

1 Ny
MDI(f) = TZ?:l ZneNodes(t) N A In(f) @)

where f represents the feature, T is the total number of decision trees in the random forest,
and t denotes the t-th decision tree. Notes (f) represent the set of all nodes in the ¢-th tree.
Ny, is the number of samples in node n and N is the total number of samples in the entire
dataset. Al,(f) represents the decrease in impurity at node n caused by feature f. This is
the amount by which the impurity of the dataset decreases when the subset N, at node
n is split into two subsets (N,1, N,r) based on feature f. The formula for Al,(f) can be
expressed as:

NI (f) = I(Ny) — (%LI(NHL) + %:I(NHRO (8)

where I(N,,) is the impurity of the dataset with N samples at node #n, N,,; and N,r are the
number of samples in the left and right subsets after the split, and I(N,;;) and I(N,g) are
the impurities of the left and right subsets, respectively. Furthermore, dataset impurity is
commonly measured using the Gini index or Shannon entropy (Louppe et al. 2013). In the
present study, The Gini index was chosen to represent the decrease in impurity (Lerman and
Yitzhaki 1984). The Gini index for a sample set is calculated using the following formula:

Gini(N) =1-Y x|} 9)

where K is the number of classes and py is the proportion of samples belonging to class k in
the dataset N.

3. Empirical Study
3.1. Data Description

For the present study, specific eye-tracking data from Liu et al. (2023) involving
192 college students on APM (36 items) were used due to its relatively large size in the
field of reasoning studies combining eye-tracking, making it more representative. All
participants were randomly selected from a university in a coastal province in China and
had not participated in the APM before. The sample consisted of 147 females and 45 males,
with an average age of 22.06 years (SD = 2.54) (socioeconomic status details were not
included in the original dataset).
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Each participant was instructed to complete the APM test individually on a computer.
An EyeLink device (EyeLink Portable Duo, SR Research Ltd., Oakville, ON, Canada) was
employed to record eye-tracking data during the test, while a chin rest was used to stabilize
participants” heads to minimize errors in the eye-tracking data caused by head movements.
Participants were asked to first examine each item and then press the space bar to proceed
with their response. A similar response procedure was adopted in the study conducted by
Hayes et al. (2011). A more detailed description of this dataset, including the acquisition
process, can be found in Liu et al. (2023). As aforementioned, seven features, including RA,
RT, and five eye-tracking metrics (i.e., PTM, LFT, RLT, NOT, and ROT), were analyzed.

3.2. Analysis

Recursive feature elimination and the random forest model were used to assess the im-
portance of seven features in the context of two-class classification (constructive matching
and response elimination strategies) and three-class classification (constructive match-
ing, response elimination, and isolate-and-eliminate strategies), and to select the optimal
combination of features. The specific steps are as follows:

(1) Initialize the feature subset: An initial subset of k features was selected and input into
a Random Forest model. Importance scores (i.e., MDI) for each feature were computed
based on their contribution to reducing classification error across the ensemble of
decision trees. To ensure a robust evaluation, 10-fold cross-validation was applied. In
this method, the dataset was partitioned into ten equal parts (folds), with nine folds
used for training and one for testing in each iteration, cycling through all ten folds.
The average classification accuracy across these folds provided a reliable estimate of
the performance of the initial feature subset.

(2) Remove the least important feature: After computing the importance scores, the
feature with the lowest importance was removed from the subset, resulting in a
new subset of k — 1 features. This reduced subset was re-input into the Random
Forest model, where importance scores were recalculated for the remaining features.
Another round of 10-fold cross-validation was then performed on the updated subset
to obtain a new mean classification accuracy score, allowing for the evaluation of
model performance as the feature count was gradually reduced.

(38) Perform the recursive process: Steps (1) and (2) were repeated iteratively, with the
least important feature removed in each step until no features remained in the subset.
This recursive elimination generated a sequence of k feature subsets, each containing
progressively fewer features. For each subset, 10-fold cross-validation was performed,
recording classification accuracy scores for all subsets to illustrate how model per-
formance varied as features were removed. This systematic approach facilitated the
identification of an optimal balance between model simplicity and predictive power.

(4) Select the optimal feature combination: Choose the feature subset with the highest
classification accuracy as the optimal feature combination.

The identification results of the MEM were used as labeled data in the dataset. We
used whether the posterior probability distribution of P (mij = 1) was significantly different
from 0.5 to identify three cognitive strategies. Subsequently, the datasets were trained
using random forest algorithms for both two-class and three-class classifications to evaluate
which metrics are critical in predicting the use of cognitive strategies. For the three-
class classification, the entire dataset was used for training. However, for the two-class
classification, only data identified as corresponding to the constructive matching and
response elimination strategies were employed.

Based on the aforementioned methods, after selecting the optimal subset of features
for predicting strategies, K-means clustering analysis will be conducted using this feature
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subset to explore whether it is possible to categorize the data into two or three classes. This
will help to verify the validity of the results regarding the importance of features in another
way. The determination of an optimal number of clusters is investigated by comparing the
silhouette coefficients’ magnitudes (Rousseeuw 1987) across different number of clusters

(K=2,3,...,10). Each case corresponds to an average silhouette coefficient. The silhouette
b(n)—a(n)
max(a(n),b(n))
distance from a data point n to other data points in the same cluster, and b(n) is the average

coefficient of a data point 7 is calculated as: sc(n) = , Where a(n) is the average
distance from the data point n to all data points of the nearest cluster. Finally, the silhouette
coefficients of all data points are averaged to obtain the average silhouette coefficient of the
clustering result. The silhouette coefficient takes the value between [—1, 1], and a larger
value indicates large inter-class distances and small intra-class distances, which also means
better classification. Subsequently, the features of different categories will be analyzed
according to the optimal number of clusters.

The recursive feature elimination, random forest, and K-means algorithms were
applied using the scikit-learn package (version 1.3.2; Pedregosa et al. 2011) in Python
(version 3.9). Additionally, the MEM was implemented using the pyjags package (version
1.3.8; Plummer 2012) with settings identical to those in the study by Liu et al. (2023). To
increase the repeatability of the current study, data are available at https://osf.io/rgt6q/
?view_only=4df30b8d57da4ad8993d5a1279419e27 (accessed on 5 January 2025) and the
analysis code used is available upon request from the corresponding author.

4. Result

Figure 3 displays the MDI of seven features and the classification accuracy of the
random forest algorithm when different numbers of features are selected for predicting two
strategies, respectively. The importance of the features is presented in descending order of
MDI values: PTM (0.31), RLT (0.25), LFT (0.19), ROT (0.12), NOT (0.07), RT (0.06), and RA
(0.01). This order indicates the significance of each feature in contributing to the model’s
predictions. The classification accuracy exceeds 0.9 when two features (PTM and RLT) are
selected, and it remains relatively stable as more than three features (°P°TM, RLT, and LFT).
This indicates that PTM, RLT, and LFT are the most three critical features for prediction,
while additional features contribute marginally to the model’s performance.
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Figure 3. Importance of seven features for two cognitive strategies. (a) Mean decrease in impurity
(MDI) of seven feature; (b) Classification Accuracy with Different Number of Features. PTM: pro-
portional time on matrix; RLT: rate of latency to first toggle; LFT: latency to first toggle; ROT: rate of
toggling; NOT: number of Toggles; RA: response accuracy; RT: response time.

Figure 4 displays the MDI of seven features and the classification accuracy of the
model when different numbers of features are selected for predicting three strategies,
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respectively. The importance of the features was broadly consistent with that in the two
cognitive strategies, presented in descending order of MDI values: PTM (0.27), RLT (0.22),
LFT (0.17), ROT (0.13), RT (0.10), NOT (0.08), and RA (0.01). The classification accuracy
exceeds 0.7 when two features (PTM and RLT) are selected for classification, and it remains
relatively stable with more than three features (PTM, RLT, and LFT) are selected. This
means that the three most important features and their ordering did not change when
predicting the three strategies, despite the decrease in classification accuracy.
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Figure 4. Importance of seven features for three cognitive strategies. (a) Mean decrease in impurity
(MDI) of seven feature; (b) Classification Accuracy with Different Number of Features. PTM: pro-
portional time on matrix; RLT: rate of latency to first toggle; LFT: latency to first toggle; ROT: rate of
toggling; NOT: number of Toggles; RA: response accuracy; RT: response time.

Overall, PTM, RLT, and LFT are consistently important in predicting cognitive strate-
gies, whether considering two or three strategies, while other features play a minor role.

Furthermore, we conducted a K-means cluster analysis of the three eye-tracking
metrics, PTM, RLT, and LFT, in order to explore whether it is possible to categorize the data
into two or three classes. Figure 5 displays the average silhouette coefficients for each item
when clustered into clusters 2~10. The results showed that, for the majority of the items
(27 items), the dataset was optimally categorized into two clusters, followed by four clusters
(5 items), which means participants were optimally categorized into two clusters based
on these three eye-tracking metrics. Figures 6 and 7 display the number of participants
in two clusters and three eye-tracking metrics on each item, respectively. The number of
participants categorized as Cluster 1 was lower than that in Cluster 2 across the majority of
items. And for each of the three eye-tracking metrics, the participants in Cluster 1 exhibited
significantly higher values than those in Cluster 2. This suggests that participants in Cluster
1 spend more time in the matrix area before looking at the options area for the first time and
also focus more attention on the matrix area overall than those in Cluster 2. This indicates
that they tend to extract more information from the matrix. Meanwhile, the paired-samples
t-test results, as illustrated in Figure 8, revealed that participants in Cluster 1 demonstrated
significantly higher values on PTM (¢t = 19.45, p < 0.01, Cohen’s d = 5.41), RLT (t = 70.78,
p <0.01, Cohen’s d = 7.56), and LFT (t = 47.36, p < 0.01, Cohen’s d = 6.91) across the 36 items
compared to participants in Cluster 2. Additionally, participants in Cluster 1 exhibited
significantly greater response accuracy (t = 5.35, p < 0.01, Cohen’s d = 0.38) and shorter
response times (t = 5.14, p < 0.01, Cohen’s d = 0.21) on these items relative to Cluster 2.
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to first toggle; Error bar is the 95% confidence interval of the overall mean.
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Based on the above results and the typical characteristics of the constructive matching
and response elimination strategies, Cluster 1 and Cluster 2 can be inferred to represent the
constructive matching strategy group and the response elimination strategy group, respec-
tively. In such cases, the consistency between the clustering results and the identification
results from the MEM was 82%. Further, PTM, RLT, and LFT were put into the MEM for
strategy identification, and the results show an 82% consistency with the results of the
study of Liu et al. (2023) and a 76% consistency with the results from the clustering method.
These results illustrate the validity of the three eye-tracking metrics (i.e., PTM, RLT, and
LFT) in predicting the use of cognitive strategy.'

Additionally, as illustrated in Figure 6, it appears that participants increasingly adopt
the strategy associated with Cluster 2 (i.e., the response elimination strategy) as the test
progresses. Figure 9 further displays the item difficulty and the number of participants
employing the response elimination strategy for each item. The results suggest a rising
trend in item difficulty as item numbers increase, indicating that later items tend to be
more challenging. Concurrently, the number of participants using the response elimination
strategy also shows an upward trend. The Spearman rank correlation between item
difficulty and the number of participants of response elimination strategy usage is 0.58
(p < 0.01), suggesting that as item difficulty increases, participants are more likely to
employ the response elimination strategy. At the individual level, we further analyzed the
relationship between participants” performance and the frequency of using the constructive
matching strategy. The results revealed a significant positive Pearson correlation (r = 0.33,
p < 0.01) between participants’ scores on the 36 items and the number of times they
employed the constructive matching strategy. Specifically, participants who used the
constructive matching strategy more frequently tended to achieve higher scores. This
finding indicates that the more often an individual uses the constructive matching strategy,
the better they perform in the APM. Figure 10 presents the strategy identification results
for each participant on every item. This detailed data allows for a meticulous examination
of whether participants maintain a consistent cognitive strategy across various items or
exhibit variations in their approaches. The results reveal that participants typically employ
different strategies for different items, and this is associated with both the item difficulty
and their intelligence levels (Liu et al. 2023).
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5. Conclusions and Discussion
5.1. Conclusions

To explore the efficacy of various features in predicting cognitive strategy usage, the
present study employed a recursive feature elimination approach in conjunction with a
random forest algorithm to identify the most effective predictors. In addition to RA and RT,
five key eye-tracking metrics that have been used to study cognitive strategy identification
were considered, including PTM, LFT, RLT, NOT, and ROT. The results primarily indicated
that PTM, RLT, and LFT are the three most critical features for predicting cognitive strategy
usage, with PTM being the most important, followed by RLT and then LFT, while other
features played a minor role.

In addition, clustering analysis of the optimal feature subset (including PTM, RLT,
and LFT) indicated that the data were optimally categorized into two clusters for the
majority of the items. Cluster 1, characterized by higher values of PTM, RLT, and LFT, was
inferred to represent the constructive matching strategy. In contrast, Cluster 2, with lower
values of these metrics, corresponded to the response elimination strategy. The clustering
results showed an 82% consistency with the classifications derived from the MEM, which
further illustrates the validity of the three eye-tracking metrics (i.e., PTM, RLT, and LFT) in
predicting cognitive strategy usage.
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5.2. Discussion

The results of the current study both align with and differ from some established
findings of previous research. Firstly, the use of eye-tracking metrics such as PTM, LFT,
and RLT to predict the cognitive strategy usage corroborates the findings of Vigneau et al.
(2006) and Laurence et al. (2018). However, while Vigneau et al. (2006) and Laurence et al.
(2018) also suggested NOT and ROT as significant predictors of strategy usage, the present
study found their importance to be relatively lower compared to PTM and RLT. This is
consistent with the findings of Liu et al. (2023), but it should be noted that their study
only considered three eye-tracking matrices (PTM, ROT, and RLT). This discrepancy may
arise from differences in methods and the eye-tracking metrics considered. Vigneau et al.
(2006) and Laurence et al. (2018) inferred the relationship between eye-tracking metrics and
strategy usages by analyzing the relationship between eye-tracking metrics and response
outcomes. Raden and Jarosz (2022) affirmed the importance of ROT predictive strategy
use by concluding that there was consistency in the strategies used by participants across
similar reasoning tasks and that ROT was found to be highly and significantly correlated.
Moreover, they did not consider RLT, which was first introduced in Liu et al. (2023). As
a result, RLT’s contribution to strategy identification may have been overshadowed by
ROT and NOT. Another possibility reason is that ROT is more likely to be used to predict
participants’ scores, is correlated with participants’ reasoning ability, and is not an efficient
metric for inferring strategy use. In the present study, strategies were directly used as
the dependent variable, combined with a general feature selection method, and multiple
eye-tracking metrics were compared simultaneously, increasing the reliability of the results.

It is important to note that the five metrics selected for the present study have been
demonstrated in prior research to effectively infer the strategies employed by individuals,
specifically referring to the constructive matching and response elimination strategies.
Based on these well-defined strategies, our study sought to identify the most effective
combination of eye-tracking metrics for inferring individual strategies more efficiently.
The current study’s findings, that PTM, RLT, and LFT are the best predictors of cognitive
strategies, are theoretically reliable. For instance, high PTM, RLT, and LFT values, which
indicate that participants spent more time in the matrix interest area and a higher percentage
of that time before their first glance at the response options, suggest that individuals
primarily use the matrix area for reasoning and constructing mental representations of the
correct answers.

Furthermore, the observed trend of increased reliance on response elimination as item
difficulty rises is consistent with prior research (e.g., Liu et al. 2023; Gonthier and Roulin
2020). This trend may also help explain why RT were significantly longer for participants
using the response elimination strategy compared to those employing the constructive
matching strategy. Participants may initially attempt a constructive matching approach on
more challenging items; however, when reasoning fails and they cannot mentally represent
an answer, they shift to response elimination. This shift results in longer time spent on the
item and may lead to participants being classified as using response elimination. Recent
findings by Wang and Zhan (2024) further support this, indicating that as item difficulty
increases, participants not only spend more time but also demonstrate a higher frequency
of strategy shifts within each item.

The present study has some limitations. First, the random forest algorithm used in the
present study is a supervised machine learning algorithm, and the strategy labels in the
dataset are derived from the MEM. To the best of our knowledge, the MEM is currently the
only model that can objectively and quantitatively differentiate between strategies using
eye-tracking metrics. While the identification results of this model have some validity and
have been used in other supervised machine learning studies (Wang et al. 2024), the labeling



J. Intell. 2025, 13, 14

18 of 20

may introduce some bias, particularly when used to classify strategies into three categories.
Future research could develop new objective and effective methods for distinguishing
between strategies, followed by further validation of the current results.

Second, the present study primarily utilized only five eye-tracking metrics, with RLT
being introduced and used for the first time in Liu et al. (2023). Although RLT has proven to
be effective so far, it has been used in a very limited number of studies. The validity of this
metric can be further verified, and its introduction may challenge the results of previous
studies. For instance, do ROT and NOT still play important roles when considering RLT?
Moreover, future research might consider integrating additional metrics and combining
eye-tracking data with other biometric indicators, such as the electroencephalogram. This
multimodal approach may provide a more comprehensive understanding of the cognitive
processes underlying strategy use. Such a method could help elucidate the complex
interactions between cognitive, neural, and behavioral factors in reasoning and strategy
usage (Zhu and Lv 2023; Jamal et al. 2023).

It is noteworthy that, based on the PTM, RLT, and LFT metrics, the consistency
between the data-driven K-means clustering algorithm and the theoretically driven MEM
in the present study was 76%, which is somewhat below expectations and lower than
the consistency with the results of Liu et al. (2023)’s study (82%). This discrepancy may
stem from two main factors: first, the K-means algorithm is relatively susceptible to
outliers, which may lead to the misclassification of certain data points (Olukanmi et al.
2022). Second, the theoretically driven MEM incorporates additional information, such as
individual response accuracy, which may enhance its robustness in differentiating cognitive
strategies. As a result, under the same set of indicators, the data-driven K-means clustering
demonstrated lower consistency with the theoretically driven MEM than anticipated. It is
important to note that K-means represents only one type of data-driven approach; future
research could explore alternative data-driven algorithms to further evaluate and compare
the effectiveness and differences between data-driven and theoretically driven methods in
identifying cognitive strategies.

Finally, the study’s sample consisted predominantly of college students, which may
limit the generalizability of the findings to broader populations. College students typically
have higher cognitive abilities, and their eye-tracking patterns may differ from those of
minors or older adults (Niebaum and Munakata 2023; Thibaut et al. 2011; Glady et al. 2016).
To enhance the reliability and generalizability of these findings, future studies should
consider replicating this research with diverse datasets, including those from Vigneau et al.
(2006), Laurence et al. (2018), or other unpublished sources. Such efforts would not only
bolster the credibility of the identified eye-tracking metrics—PTM, RLT, and LFT—but also
provide more robust evidence for their links to cognitive strategies. Moreover, expanding
the sample to include varied age groups, educational backgrounds, and cultural contexts
would enrich our understanding of how cognitive strategies differ across populations,
thereby broadening the applicability and impact of our conclusions.
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