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Abstract: Language proficiency assessments are pivotal in educational and professional decision-
making. With the integration of AI-driven technologies, these assessments can more frequently
use item types, such as dictation tasks, producing response features with a mixture of discrete and
continuous distributions. This study evaluates novel measurement models tailored to these unique
response features. Specifically, we evaluated the performance of the zero-and-one-inflated extensions
of the Beta, Simplex, and Samejima’s Continuous item response models and incorporated collateral
information into the estimation using latent regression. Our findings highlight that while all models
provided highly correlated results regarding item and person parameters, the Beta item response
model showcased superior out-of-sample predictive accuracy. However, a significant challenge was
the absence of established benchmarks for evaluating model and item fit for these novel item response
models. There is a need for further research to establish benchmarks for evaluating the fit of these
innovative models to ensure their reliability and validity in real-world applications.

Keywords: item response theory; bounded continuous data; continuous response model; dictation
task; language assessment; natural language processing; zero-and-one inflated data

1. Introduction

In educational and psychological assessments, continuous response features frequently
arise either as an inherent characteristic of an assessment, such as in reading fluency
measures (e.g., DIBELS, University of Oregon 2018–2020) or continuous rating scales
(Bejar 1977; Brumfitt and Sheeran 1999) or as a consequence of summed dichotomous
and polytomous item scores, such as in C-tests (Raatz and Klein-Braley 1981) or Maze
assessments (Guthrie et al. 1974). In addition, the rapid evolution of machine learning and
AI-driven technologies (Bommasani et al. 2021) offers new opportunities for more frequent
and innovative use of constructed-response items from which continuous features can be
derived. These features can be used as indicators of person-level proficiency traits and
can yield inferences about these traits when combined with appropriate theoretical and
measurement models.

In practice, it is common for “continuous” features to have observed distributions
that are best described by a mixture of discrete and continuous distributions. For instance,
when a continuous feature has a bounded distribution (e.g., between 0 and 1), it may have
a nontrivial probability of being 0 and/or 1 when computed from a sample of responses
from some target population. An example that we consider in this study arises from the
use of edit distance (Levenshtein 1965) to evaluate the accuracy of a response to a dictation
task, in which a test taker is asked to listen to a target sentence in English and then type the
sentence in English (Buck 2001; Cardwell et al. 2023). If the typed response matches the
target sentence, one could assign a grade of 1. Lower grades can be assigned as the typed
response deviates more from the target sentence with respect to some edit distance. A
grade of 0 can be assigned to responses for which the edit distance exceeds the length of the
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target sentence. Depending on the complexity of the target sentence and the distribution of
English proficiency in the target population of test takers, the distribution of this grade may
be best described by a mixture of discrete probability masses at 0 and 1 and a continuous
distribution on the open unit interval (0, 1).

Building on the diverse applications of continuous response features in educational
and psychological assessments, the psychometric literature has witnessed a significant
evolution of Item Response Theory (IRT) models proposed for continuous response features.
The pioneering works by Samejima (1973), who presented a Continuous Response Model
as a special case of the Graded Response Model, and Müller’s extension (Müller 1987) of
the Rating Scale Model, along with a simple linear response model by Mellenbergh (1994),
laid the groundwork for subsequent models that catered to more complex data structures.
These studies emphasized the need for models that could handle ceiling and floor effects
inherent in continuous data. The exploration of bounded continuous response features,
such as those ranging from 0 to 1, gained momentum with the contributions of Noel and
Dauvier (2007), who presented a Beta Item Response Model. This model addresses the
complexities and nuances of response distributions within bounded continuous data. This
model incorporates an interpolation process as the response mechanism, leading to a beta
distribution for responses. Therefore, unlike early IRT models, it effectively captures the
asymmetric nature of such data, thereby enriching the theoretical and practical applications
of IRT in bounded continuous data scenarios. Recent contributions have expanded the
scope of continuous response modeling in IRT. Flores et al. (2020) introduced a model
leveraging the simplex distribution to model response times within a bounded framework.
This model significantly advances handling response features that exhibit continuous and
discrete characteristics, particularly in time-limited assessment scenarios.

While Item Response Theory (IRT) models for bounded continuous features are well-
studied, Molenaar et al. (2022) highlighted a significant limitation in these models, mainly
when dealing with data concentrated at the boundaries. For instance, significant clustering
at these limits may occur in assessments where responses are naturally bounded between
0 and 1. This clustering poses challenges for traditional IRT models, which typically
do not account for such high concentrations at the boundary values. Molenaar et al.
(2022) demonstrated that even a small proportion of responses at these boundaries could
significantly impact parameter estimates, leading to potential biases in the interpretation
of data. They proposed a set of new IRT models that better accommodate these boundary
concentrations, providing more accurate and reliable analysis in such scenarios. These
models are suitable for features with distributions having a mixture of discrete point masses
and continuous values on a bounded interval. As these and other novel IRT models emerge,
empirical evaluations of their performance with real data from diverse contexts are essential
to the research and practitioner communities to improve measurement science.

In this study, we evaluate the performance of three novel IRT models, zero-and-one-
inflated extensions of the Beta, Simplex, and Samejima’s Continuous IRT models proposed
by Molenaar et al. (2022) by (a) using a dataset characterized by its extreme sparsity,
(b) supplementing these models with a latent regression component, and (c) conducting
model comparisons using cross-validation and posterior predictive checks. The dataset
used in this study comes from a high-stakes English language proficiency assessment. It
exhibits a substantial proportion of “1” grades and a smaller occurrence of “0” grades,
providing a challenging yet ideal scenario for examining models designed to handle a
mixture of discrete and continuous data. To address the sparse nature of our dataset, we
incorporate latent regression, using standardized writing and speaking scores as auxiliary
variables within the IRT framework to improve the accuracy and precision of parameter
estimation. This integration is directly in line with established research suggesting that
including auxiliary information leads to more accurate estimates. Moreover, we employ
cross-validation and posterior predictive checks as a means of model evaluation.
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2. Materials and Methods
2.1. Data

We analyzed responses from a sample of the Duolingo English Test test takers, a
computerized-adaptive assessment of English language proficiency designed to support
high-stakes decisions in English-medium settings (Cardwell et al. 2023). The sample
consists of 295,157 test sessions from 222,568 unique test takers (some repeat the assessment).
All sessions in the sample occurred before September 2022. Test takers in the sample
represent more than 200 unique countries (India = 22%, China = 18%, all others < 5%)
and 146 native languages (Mandarin = 19%, Spanish = 9%, English = 9%, Telugu = 8%, all
others < 5%). Approximately 47% of test takers are female, 39% percent report the intention
to apply to undergraduate programs, and another 39% percent report the intention to apply
to graduate programs.

As previously described, we focus on the test takers’ responses to dictation items. This
task aims to evaluate the test taker’s capacity to identify individual words and retain them
in memory for a sufficient amount of time to reproduce them with precision. Each test taker
in the dataset has responses to between 4 and 7 dictation items, with the majority (91.6%)
responding to 6 items. The first dictation item is randomly assigned for each test taker,
whereas the remaining items are assigned adaptively based on the test taker’s performance
on previous items. As a consequence of adaptive assignment, no two test takers in the
sample have responses to the same set of dictation items, making the person–item linkage
structure highly sparse. The dataset consists of 1,789,297 responses to 2738 dictation items.

The response of a given test taker to a given item is graded on the interval [0, 1] using
a function of the character-based edit distance between the target sentence and what is
typed by the test taker. The grades are defined so that a value of 1 indicates an essentially
perfect rendering of the target sentence, whereas lower grades correspond to increasing
discrepancies. A minimum grade of 0 occurs when the edit distance equals or exceeds the
length of the target sentence. Approximately 47% of the item responses receive a grade of
1. Grades of 0 occur but are rare (0.03%). The remaining 53% of grades have a mean of
0.87 and a standard deviation of 0.125. The dataset also includes each test taker’s score
on the speaking and writing portions of the assessment, which we use in some models as
predictors of dictation proficiency via latent regression. Details on the tasks contributing to
these speaking and writing scores and other technical details about the assessment can be
found in Cardwell et al. (2023).

2.2. Zero-and-One-Inflated Item Response Models for Bounded Continuous Data

Molenaar et al. (2022) discuss some novel IRT models designed for bounded continu-
ous data, addressing the limitations of traditional models when applied to data constrained
within the closed interval [0, 1]. These novel models are particularly adept at handling
situations where responses are clustered at the boundaries of the scale, a common oc-
currence in educational and psychological assessments. The Beta IRT model assumes a
beta distribution for the response propensity, characterized by its flexibility in modeling
various shapes of response distributions. It is suitable for data with natural boundaries, like
percentages or proportions, common in psychological scales. Based on the SB distribution,
the Continuous Response Model is a special case within Samejima’s Graded Response
Model framework. The Simplex IRT model utilizes the simplex distribution, which, while
less common, offers an alternative modeling approach to bounded continuous data. This
model is beneficial in contexts such as response time analysis, where the data is naturally
bounded within a specific range. In this section, we provide a general introduction to the
overall model structure for all these models. All three models operate under the same
structure, and the only difference is the model-specific density function utilized when
modeling the continuous part of the distribution.
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Let Xpi denote the continuous bounded item scores such that Xpi ϵ [0, 1] for the pth
person, p = {1, . . . , P}, on the ith item, i = {1, . . . , I}. We can define a discrete variable
Zpi, representing three possible conditions as the following,

Zpi =


0, i f Xpi = 0
1, i f 0 < Xpi < 1
2, i f Xpi = 1

A logistic Graded Response Model (Samejima 1969) can be written for modeling Zpi
such that,

P
(
Zpi = 0

∣∣θp, αi, γ0i
)
=

1
1 + eαiθp−γ0i

P
(
Zpi = 1

∣∣θp, αi, γ0i, γ1i
)
=

1
1 + eαiθp−γ1i

− 1
1 + eαiθp−γ0i

P
(
Zpi = 2

∣∣θp, αi, γ1i
)
=

eαiθp−γ1i

1 + eαiθp−γ1i

where θp ∈ R is a latent person parameter, αi ∈ R+ is an item discrimination parameter,
and γ0i ∈ R and γ1i ∈ R are category threshold parameters satisfying γ0i < γ1i.

Then, the joint conditional density for the model, which is denoted by k(.), can be
written as the following:

k
(
Xpi

∣∣θp, αi, γ0i
)
= P

(
Zpi = 0

∣∣θp, αi, γ0i
)

k
(
Xpi

∣∣θp, αi, γ0i, γ1i, βi, δi
)
= P

(
Zpi = 1

∣∣θp, αi, γ0i, γ1i
)
× f

(
Xpi

∣∣θp, αi, βi, δi
)

k
(
Xpi

∣∣θp, αi, γ1i
)
= P

(
Zpi = 2

∣∣θp, αi, γ1i
)

where f
(
θp, αi, βi, δi

)
corresponds to the model-specific density function with support on

the open interval (0, 1), βi ∈ R is an item location parameter, and δi ∈ R+ is an item
dispersion parameter. So, in total, each model estimates five parameters per item. Note
that the probability distribution of Xpi is a mixture of a discrete distribution on {0, 1} and a
continuous distribution on the open interval (0, 1). All three models are structurally the
same except for the fact that, the probability density function, f

(
θp, αi, βi, δi

)
, is replaced

with the corresponding model-specific function in the above equations. The specific density
functions for the Beta, Simplex, and Samejima’s Continuous IRT models can be found in
Appendix A.

Figure 1 also visually compares the model-generated response distributions for a
population with latent proficiency distributed as a standard normal distribution. This
figure includes the three models (Beta, Simplex, and SB IRT models) for hypothetical
items with identical item parameters (γ0, γ1, α, and β), but they differ in their dispersion
parameters (δ) since dispersion parameters have different scales across the models. Despite
the distinct mathematical formulations behind the density functions, the figure reveals
significant similarity in the generated response distributions. This resemblance underscores
the models’ robustness and adaptability to different types of distributions, particularly
those that tend to cluster at the scale boundaries. For a comprehensive understanding
of these models and their specific density functions, readers are encouraged to consult
Molenaar et al. (2022) paper, where technical discussions are thoroughly presented.
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Figure 1. Comparison of model-generated response distributions for the Beta, SB, and Simplex IRT
models. Latent proficiency is assumed to follow a standard normal distribution. All item parameters
except the dispersion parameter were the same across models.

2.3. Incorporating Collateral Information

Incorporating supplementary data about persons and/or items into IRT models offers
numerous benefits. Prior studies have reported that including auxiliary information within
the IRT framework can enhance both convergence and the precision of parameter estimation
(Adams et al. 1997; de la Torre 2003; Hall 2007; Joo et al. 2022; Mislevy and Sheehan 1989; Tao
2009). Therefore, we also consider extending the models proposed by Molenaar et al. (2022)
by incorporating information from two auxiliary variables related to person proficiency:
writing and speaking scores. The models above can be extended by proposing a linear
regression model of θp on the auxiliary variables,

θp = ξ1Wp + ξ2Sp + ϵp

where Wp and Sp are the observed writing and speaking scores for the pth examinee, ξ1
and ξ2 are the associated regression coefficients and ϵp is the error term. Both writing and
speaking scores were standardized, so they have a mean of zero and unit variance before
model fitting.

2.4. Model Fitting in Stan

Prior Specifications. We fit each model using the Stan software (Stan Development
Team 2022c). The parameters of each model were estimated by implementing the No-U-
Turn Sampler (NUTS) extension of the Hamiltonian Monte Carlo (HMC) algorithm, as
implemented in the rstan and cmdstanr packages (Stan Development Team 2022a, 2022b)
in R (R Core Team 2022). HMC is more effective for examining the posterior parameter
space than conventional Markov Chain Monte Carlo (MCMC) algorithms, especially when
dealing with intricate, high-dimensional models. Although traditional MCMC sampling
algorithms can investigate the full target distribution for complex, high-dimensional models
given sufficient time, approximating the posterior parameter distribution usually takes
longer. HMC leverages auxiliary momentum variables, allowing each random draw to
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cover more ground in the parameter space, resulting in a quicker exploration of the entire
target distribution. McElreath (2017) offers an accessible introduction to HMC with helpful
visual aids, and more in-depth technical introductions can be found in works by Hoffman
and Gelman (2011) and Betancourt (2018).

Similar to Molenaar et al. (2022), the following priors for the item location, item
discrimination, and category thresholds were adopted

β ∼ N(0, 10)

log(α) ∼ N(0, 1)

γ0 ∼ N(0, 10)

γ1 ∼ N(0, 10), γ0 < γ1

For the dispersion parameters,

δ ∼ N(0, 10)

was used for the Beta IRT model while

log(δ) ∼ N(0, 1)

was used for the SB-IRT and Simplext IRT models. The prior for the error term in the
regression model was specified as

ϵ ∼ N
(

0, σ2
)

σ2 = 1 −
(

ξ2
1 + ξ2

2 + 2ξ1ξ2r
)

, σ > 0

where r is the observed correlation between writing and speaking scores. As mentioned,
the observed writing and speaking scores were standardized with a mean of zero and
unit variance before model fitting. Therefore, this specification implies a standard normal
distribution as a prior for the marginal distribution of the latent person parameters. We also
fit the models without the latent regression approach for comparison purposes. When no
latent regression exists, the latent person parameters are directly modeled with a standard
normal distribution.

Parameter Estimation. Parameter estimation was conducted using an out-of-sample
prediction approach through cross-validation (Stenhaug and Domingue 2022). The com-
plete dataset was divided randomly into six folds, ensuring each fold included at least one
response from every participant with at least six responses (98.9% of respondents). The
responses from participants with fewer than six responses were also randomly assigned to
one of the six folds. Each model was fitted six times, with one fold excluded in each itera-
tion. At the end, each model was also fitted to the entire dataset. This procedure allowed
for comparing models based on their out-of-sample predictive performance. To achieve
this, a model was fitted using a combination of five folds, and the estimated parameters
were then used to predict observations in the excluded sixth fold. Four chains with random
starting values were used when fitting the models, and each chain had 1000 iterations. The
first 250 iterations in each chain were used as a warm-up, and the remaining 750 were used
for inference. The convergence diagnostic measured by R̂, modified by Brooks and Gelman
(1998), was used to assess the convergence of every parameter.

2.5. Disclosure of the Use of AI or AI-Assisted Technologies

In the preparation and revision of this manuscript, the first author, Cengiz Zopluoglu,
employed AI-assisted technologies to enhance the readability and linguistic quality of the
text. Specifically, he utilized Grammarly for real-time grammar, spelling, punctuation, and
clarity enhancements across the entire manuscript. Additionally, he consulted ChatGPT for
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specific feedback on cohesion, syntax, vocabulary, and grammar improvements, applying
its suggestions to refine his writing. This approach was taken to ensure the manuscript
meets the high standards of linguistic quality expected by the academic community. The
final version of the entire manuscript after revisions was read and approved by both authors
before finalizing the submission.

3. Results
3.1. Model Comparison and Prediction Error

Our approach to comparing models relies on assessing the effectiveness of person and
item parameter estimates in predicting out-of-sample observations. We randomly divided
the entire dataset into six folds, X(r) for r = 1, 2, . . ., 6. Following this, we fitted the models
to each training set, excluding the rth fold X(−r). The derived person and item parameter
estimates were then used to predict the out-of-sample observations in the excluded rth fold,
using the relevant model equations. Subsequently, we computed the sum of squared errors
for each rth fold,

SSE
(

X(r)
pi , X̂(r)

pi

∣∣∣θ(−r)
p , α

(−r)
i , β

(−r)
i , δ

(−r)
i , γ

(−r)
0i , γ

(−r)
1i

)
= ∑

p
∑

i

(
X(r)

pi − X̂(r)
pi

)2

We performed these calculations at each sampling iteration to estimate the posterior
distribution of SSE, utilizing the parameter estimates obtained. To facilitate a more intu-
itive understanding of these results, we established a baseline SSE. We achieved this by
predicting the value of each observation using the corresponding sample average.

Figure 2 illustrates the out-of-sample prediction error for each fold for the Beta, SB,
and Simplex IRT models with the collateral information included via latent regression and
without collateral information during the estimation process. The outcomes were highly
consistent across all six folds, with two key patterns emerging. Primarily, models that
integrated collateral information from external variables via latent regression exhibited
a significantly smaller prediction error, as measured by the sum of squared error, than
those that did not use this collateral information. When not considering the collateral
information, the Beta, SB, and Simplex IRT models displayed a proportional reduction in
prediction error by 14.4%, 11.4%, and 6.8%, respectively, compared to the baseline SSE
(represented by the horizontal lines in the figure). When the collateral information was
included, the proportional error reduction improved to 18.6% for Beta IRT, 15.3% for SB-IRT,
and 10.3% for Simplex IRT. Consequently, including collateral information contributed to
an additional reduction in the prediction error by approximately 4% across models. The
second crucial pattern that emerged was the superior predictive performance of the Beta
IRT model across all folds regarding unseen responses. This superiority indicates that the
Beta IRT model could be a strong candidate for future utilization in processing data from a
similar assessment.

3.2. Model Fit

We evaluated certain aspects of the model fit by using the posterior predictive model-
checking approach (PPMC; Rubin 1984). Essentially, PPMC contrasts actual data with
model-predicted or generated data, utilizing various metrics that pinpoint areas where
the model might not align well. If there is a noticeable divergence between the real data
and the model’s predictions, it suggests that the model is not adequately capturing certain
data facets. For this approach, we first generated data following the models by using
the draw of person and item parameters from their respective posterior distributions
provided by Stan. Visual representations are often the most user-friendly means to conduct
these posterior predictive assessments. So, we created several visualizations to check the
alignment between real data and model predictions. Given the superior predictive fit
exhibited by models incorporating latent regression, we will present the model fit only for
those models with latent regression.
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Table 1 and Figure 3 compare each model’s observed and posterior predictive score
distributions, specifically for test takers who received six items. Given the continuous
nature of scores, which can range from 0 to 6, both the table and figure illustrate that
all three models—Beta IRT, SB IRT, and Simplex IRT—exhibit very similar performance
characteristics. They commendably predict the observed score distribution, albeit with a
noted reduction in skewness and kurtosis. However, the data seem to be heavier tailed than
the model’s predictions, indicating possible limitations in the parametric models employed.
Such models are, in essence, an approximation of any real data-generating model (DGM),
and discrepancies tend to become more pronounced in higher moments, which amplify
differences in the underlying distributions.

Table 1. Descriptive statistics for the sum scores from observed data and the average of posterior
distribution of sum scores.

Mean SD Skewness Kurtosis

Beta IRT 5.56 0.36 −1.96 7.76
SB IRT 5.56 0.36 −1.87 6.72

Simplex IRT 5.56 0.37 −1.93 6.90
Observed Data 5.56 0.38 −2.90 22.63
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Furthermore, even if the parametric model accurately represented the majority of
the data, real data are often subject to contamination from outliers due to idiosyncratic
events. For instance, a test taker might become distracted and make an atypical error that
would not replicate under different measurement conditions for the same person or item
combination. This is particularly pertinent given that the test takers were required to type
their responses for the items in this dataset; hence, even if they have completely understood
the stimulus, there is still a potential for error during the input phase. Such outliers have a
pronounced impact on higher moments, as they are probably more sensitive to this kind of
data contamination.

Figure 4 illustrates the comparison between the average scores of actual observed
data and those generated by the posterior predictive distributions of the models. This
calculation is performed for each item, and Figure 4 summarizes across items. All three
models—Beta, SB, and Simplex IRT—closely matched the observed average scores. The
mean observed response for all items stood at 0.9307. In contrast, the averages for the
model-predicted responses for the Beta, SB, and Simplex IRT models were 0.9315, 0.9318,
and 0.9320, respectively.
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Figure 5 similarly presents a comparison across items between the standard deviations
of observed item scores and those generated by the posterior predictive distributions of the
models. The observed responses had an average standard deviation of 0.1021 across all
items. On the other hand, the model-predicted responses slightly higher average standard
deviations: 0.1053 (Beta), 0.1067 (SB), and 0.1110 (Simplex IRT). This data also highlights the
Beta IRT model’s superior prediction accuracy for unseen data discussed earlier compared
to the other two models. While all models were relatively consistent in reproducing average
item scores, the Beta-IRT produced predictions with the smallest variance.
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3.3. Parameter Estimates

Given the superior predictive fit exhibited by models incorporating latent regression,
we will summarize the findings regarding parameter estimates specifically for these models.
Each item in these models has five parameters, resulting in many item parameters per
model. We evaluated the convergence of these item parameters, utilizing R-hat values. The
majority of item parameters demonstrated high-quality convergence. Specifically, the R-hat
values for 97.5%, 100%, and 99.9% of all item parameters for the Beta, SB, and Simplex IRT
models were below the threshold of 1.05, indicating good convergence. We also examined
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the convergence for all person parameter estimates for each model and observed a similar
quality. The R-hat values for 99.4%, 100%, and 99.9% of all person parameters for the Beta,
SB, and Simplex IRT models were below the threshold of 1.05.

Across the models, the item and person parameters exhibited strong similarities. The
descriptive statistics for these model parameter estimates are presented in Tables 2 and 3.
Figures 6 and 7 illustrate the relationships and correlations between item and person pa-
rameter estimates among the Beta, SB, and Simplex IRT models. Except for the α parameter,
the parameter estimates from different models aligned very closely, with correlation values
ranging from 0.980 to 0.999. However, the correlations were relatively lower for the α
parameter, falling within a range of 0.91 to 0.94. The supplemental writing and speak-
ing scores were significant predictors of the latent person parameters, and the estimated
parameters were similar across models.
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Table 2. Descriptive statistics for item and person parameters estimated from the Beta, SB, and
Simplex IRT models with latent regression.

Beta IRT Model
with Latent Regression

SB IRT Model
with Latent Regression

Simplex IRT Model
with Latent Regression

Parameters Mean SD Min Max Mean SD Min Max Mean SD Min Max

θ 0.00 0.86 −11.86 3.05 0.00 0.85 −6.99 3.17 0.00 0.85 −10.17 3.20
β 2.18 0.53 −0.09 5.15 2.41 0.54 −0.16 5.27 2.20 0.51 0.12 4.52
α 0.61 0.23 0.02 1.69 0.62 0.25 0.03 1.72 0.59 0.22 0.00 1.77

γ0 −11.62 1.97 −14.51 −4.77 −11.65 1.95 −15.05 −4.81 −11.64 1.96 −14.56 −4.77
γ1 0.10 1.27 −4.47 4.62 0.09 1.28 −4.64 4.35 0.08 1.25 −4.93 4.38
δ * 3.53 0.97 −0.05 13.21 0.66 0.28 0.04 3.30 8.41 5.16 0.26 36.45

* The disturbance parameters (δ) are not comparable across the model.

Table 3. Estimated coefficients from the latent regression.

Writing (ξ1) Speaking (ξ2)

Posterior Mean 95% Credible
Interval Posterior Mean 95% Credible

Interval

Beta IRT 0.351 (0.346, 0.354) 0.345 (0.340, 0.349)
SB IRT 0.347 (0.342, 0.351) 0.352 (0.347, 0.356)

Simplex IRT 0.330 (0.325, 0.334) 0.346 (0.342, 0.351)
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4. Discussion

The present study evaluated the performance of novel IRT models, specifically zero-
and-one-inflated extensions of the Beta IRT, Simplex IRT, and Samejima’s Continuous IRT
models, modeling grades of dictation tasks in a high-stakes English language proficiency
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assessment. We adopted a “predictive fit” approach, discussed and advocated by Stenhaug
and Domingue (2022), to compare the models through cross-validation. Each independent
fold of the whole response dataset included a randomly selected subset of responses from
all test takers. The goal of the comparison was to measure how well a model predicts a
person’s missing response in a certain fold using the item and person parameters estimated
from the remaining folds.

Our findings underscore the potential of these models, especially when they incor-
porate collateral information, to provide accurate estimates and predictions. One of the
most salient takeaways from our research is the superior predictive performance of the
Beta IRT model regarding out-of-sample responses. This finding aligns with Molenaar et al.
(2022), who found the Beta IRT model best fitting for 11 out of 22 scales they included in
their study. We can argue that, among the models evaluated, the Beta IRT model holds the
most promise for future applications in a similar assessment context, particularly when the
task is administered adaptively. However, it is crucial to note that while the Beta IRT model
demonstrated superior predictive accuracy for unseen data, the differences in model fit and
parameter estimates among the models were not substantial. It is also important to consider
the concept of fitting propensity when evaluating these models. While our study highlights
the effectiveness of these models, especially the Beta IRT model, in high-stakes English
assessments, a detailed comparison of their relative parsimony and flexibility remains an
area for future exploration. Understanding whether the Beta IRT’s success is due to its
greater flexibility than the other models could be crucial for its application. Future studies
could focus on a fitting propensity analysis, like the work by Bonifay and Cai (2017) and
Ergin (2020), to comprehensively evaluate these models.

Our research has also highlighted specific gaps in the current understanding of novel
IRT models studied in this paper. A notable challenge was the scarcity of established
benchmarks or guidelines for evaluating model fit and item fit specifically for these ad-
vanced IRT models. This issue is particularly pressing given the fundamental importance
of accurate model fit assessment in ensuring the validity and reliability of a model’s predic-
tions. The absence of well-established evaluative criteria or methods leaves researchers and
practitioners uncertain about the appropriateness of these newer models. In addressing
this gap, our study primarily relied on heuristic visual checks based on model-generated
data from respective posterior distributions of the item and person parameters. While
established discrepancy measures for assessing model fit are relatively better researched
and documented for traditional dichotomous and polytomous IRT models (e.g., Sinharay
et al. 2006), such measures are not yet fully developed for these recent IRT models, par-
ticularly those for continuous responses or those introduced in recent research, such as
by Molenaar et al. (2022). There is a need for dedicated research to develop and validate
a comprehensive set of discrepancy measures for assessing model fit for these novel IRT
models. Such research would enhance the credibility and utility of these models and
equip researchers and practitioners with the essential tools they need to make informed
decisions about model selection and interpretation. Considering the generally modest
differences among the models in various performance metrics reported in our study, the
selection in real-world settings could be based on alternative criteria such as interpretability,
computational stability, and simplicity.

As high-stakes computerized adaptive assessments for language proficiency continue
to evolve, the integration of recent NLP technologies is anticipated to introduce novel item
types. These advancements necessitate analytical models capable of accurately processing
and interpreting data from such items. The models evaluated in our study, particularly
their ability to handle bounded continuous outcomes, are well-suited for this emerging
landscape. Our research indicates that these IRT models could be instrumental in managing
the data complexities presented by NLP-driven assessment items, thereby supporting more
nuanced and effective language proficiency evaluations.
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