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Abstract: Measurement invariance of the Wechsler Intelligence Scale for Children, Fifth Edition
(WISC-V) 10-primary subtest battery was analyzed across a group of children and adolescents with
ADHD (n = 91) and a control group (n = 91) matched by sex, age, migration background, and parental
education or type of school. First, confirmatory factor analyses (CFAs) were performed to establish
the model fit for the WISC-V second-order five-factor model in each group. A sufficiently good fit
of the model was found for the data in both groups. Subsequently, multigroup confirmatory factor
analyses (MGCFAs) were conducted to test for measurement invariance across the ADHD and control
group. Results of these analyses indicated configural and metric invariance but did not support
full scalar invariance. However, after relaxing equality constraints on the Vocabulary (VC), Digit
Span (DS), Coding (CD), Symbol Search (SS), and Picture Span (PS) subtest intercepts as well as on
the intercepts of the first-order factors Working Memory (WM) and Processing Speed (PS), partial
scalar invariance could be obtained. Furthermore, model-based reliability coefficients indicated that
the WISC-V provides a more precise measurement of general intelligence (e.g., represented by the
Full-Scale IQ, FSIQ) than it does for cognitive subdomains (e.g., represented by the WISC-V indexes).
Group comparisons revealed that the ADHD group scored significantly lower than the control group
on four primary subtests, thus achieving significantly lower scores on the corresponding primary
indexes and the FSIQ. Given that measurement invariance across the ADHD and the control group
could not be fully confirmed for the German WISC-V, clinical interpretations based on the WISC-V
primary indexes are limited and should only be made with great caution regarding the cognitive
profiles of children and adolescents with ADHD.

Keywords: Wechsler Intelligence Scale for Children; fifth edition; measurement invariance; ADHD;
clinical sample

1. Introduction

Attention deficit hyperactivity disorder (ADHD) is one of the most common neurode-
velopmental disorders in childhood and adolescence, with an estimated prevalence rate of
approximately 5% (prevalence rates between 2% and 7% are commonly reported) (Huss
et al. 2008; Mohammadi et al. 2021; Polanczyk et al. 2007; Sayal et al. 2018). ADHD mani-
fests as a consistent behavioral pattern of inattention, hyperactivity, and/or impulsivity
that occurs across various environments, such as at home and school, and can lead to severe
difficulties in social, educational, or occupational settings (Harpin 2005). In the Diagnostic
and Statistical Manual of Mental Disorders (5th ed.; DSM-5; American Psychiatric Association
2013) three major types of ADHD are specified according to symptomatology: ADHD
with predominantly inattentive symptoms, with predominantly hyperactive-impulsive
symptoms, or with combined symptoms. ADHD is also associated with specific cognitive
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deficits or with a specific profile of cognitive performance described in more detail in the
following paragraph.

1.1. Cognitive Profiles of Children and Adolescents with ADHD

Theories pertaining to ADHD propose that this mental disorder is accompanied by
fundamental deficits in behavioral inhibition that involves the capacity to restrain pre-
existing or interfering responses, subsequently affecting other cognitive domains (Barkley
1997). In children and adolescents with ADHD, cognitive deficits have mainly been found
regarding working memory (Kasper et al. 2012; Martinussen et al. 2005) and processing
speed (Gau and Huang 2014; Salum et al. 2014; Shanahan et al. 2006). However, findings of
an extensive meta-analysis suggest a set of additional deficits across a variety of neurocog-
nitive domains to be associated with ADHD, including reaction time variability, response
inhibition, intelligence/achievement, and planning/organization (Pievsky and McGrath
2018). Further meta-analytical studies point toward lower levels of cognitive abilities in
children and adolescents with ADHD (Frazier et al. 2004; Pievsky and McGrath 2018).
However, achieving lower scores on intelligence tests (IQ tests) might not only be attributed
to decreased working memory capacity or processing speed in individuals with ADHD,
but may also be caused by additional attention deficits and increased levels of impulsivity
during the test administration itself (Jepsen et al. 2009).

1.2. Obtaining Cognitive Measures and Profiles for Children and Adolescents with ADHD

According to the clinical guidelines for diagnosing ADHD by the American Academy
of Pediatrics, conducting neuropsychological tests when diagnosing ADHD may generally
provide an in-depth evaluation of a child’s or adolescent’s learning strengths and weak-
nesses (Wolraich et al. 2019). In particular, testing for cognitive abilities is recommended as
part of this diagnostic process in order to rule out cognitive over- or underachievement,
which could also cause symptoms similar to those associated with ADHD (Döpfner et al.
2013; Drechsler et al. 2020; Pliszka 2007). Moreover, the need to estimate and discriminate
between different levels of cognitive abilities in this context is additionally underlined
by the high comorbidity between symptoms of ADHD and learning disorders (Mattison
and Mayes 2012; Mayes et al. 2000; Sexton et al. 2012). The Wechsler scales are among
the most common test batteries used worldwide by clinicians to assess specific domains
of cognitive abilities in children and adolescents with ADHD (Becker et al. 2021; Mayes
and Calhoun 2006; Scheirs and Timmers 2009). Various studies using different versions of
the Wechsler Intelligence Scale for Children (WISC), such as the WISC-III (Wechsler 1991),
WISC-IV (Wechsler 2003) or WISC-V (Wechsler 2014b), have already indicated significant
deficits in individuals with ADHD by reporting lower scores on the working memory and
processing speed indexes (Assesmany et al. 2001; Becker et al. 2021; Devena and Watkins
2012; Mayes and Calhoun 2006; Mealer et al. 1996; Yang et al. 2013). Since a study with a
German speaking clinical sample of children and adolescents with ADHD indicates that
such specific deficits can be appropriately identified using the WISC-V (Pauls et al. 2018),
a comprehensive intelligence test battery might be a valid instrument when assessing
strengths and weaknesses in the cognitive profiles of children and adolescents with ADHD.

1.3. Structural Framework of the WISC-V

The conceptual and structural framework of the WISC-V (Wechsler 2014b) is based on
the Cattell–Horn–Carrol (CHC) model of intelligence (McGrew 2009; Schneider and Mc-
Grew 2012), thus providing an encompassing taxonomy of neuropsychological constructs
(Wechsler 2014a). As a major change to the previous test version, the WISC-V redefines
the four-factor structure underlying the WISC-IV into a new hierarchical five-factor model
structure. As suggested by the factor analytical findings provided in the WISC-V technical
manuals of both the German and US versions of the WISC-V (Wechsler 2014a, 2017a), this
five-factor model structure (referred to as second-order five factor model) is proposed to
be an adequate representation of the underlying nature of intelligence as described by the
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CHC model. In addition to the Visual Spatial Index (VSI) and the Fluid Reasoning Index
(FSI), which replaced the former WISC-IV Perceptual Reasoning Index (PRI), the Verbal
Comprehension Index (VCI), the Working Memory Index (WMI), and the Processing Speed
Index (PSI) can also be determined in the WISC-V. Scaled scores for each of those five pri-
mary indexes are derived by utilizing two out of a total of ten primary subtests: Similarities
(SI), Vocabulary (VC), Block Design (BD), Matrix Reasoning (MR), Figure Weights (FW),
Visual Puzzles (VP), Digit Span (DS), Picture Span (PS), Coding (CD), and Symbol Search
(SS). The Full-Scale Intelligence Quotient (FSIQ) is derived on the basis of seven primary
subtests, while three additional primary subtests are required to calculate all five primary
indexes. The FSIQ is defined as an estimate of the overall cognitive ability and represents
a global measure for the five underlying cognitive subdomains, which, on their part, are
represented by the WISC-V primary indexes.

1.4. Measurement Invariance of the WISC-V across Different Groups

In order to be able to compare test scores of individuals from different populations
or groups in a meaningful and reliable way, it is essential for any diagnostic instrument
used to provide measures that have the same meaning across those groups in question
(e.g., Chen and Zhu 2012; Millsap and Kwok 2004; Wicherts 2016). Given that the stan-
dardization of diagnostic instruments is often based on population-representative data,
construct validity of such instruments can be significantly affected when conducted on
different populations or specific clinical groups (Chen and Zhu 2012). Thus, providing
measurement invariance is a crucial requirement to ensure test fairness. It is only when
measurement invariance can be established that individual differences in test scores may
be adequately interpreted as true variations in the underlying cognitive domains (Chen
et al. 2005). Multigroup confirmatory factor analysis (MGCFA) is the most commonly used
technique for investigating measurement invariance across different groups. In MGCFA,
a theoretical model is compared with the observed structures in multiple independent
samples (Vandenberg and Lance 2000). Testing for measurement invariance requires a
stepwise approach, in which nested models are sequentially analyzed with additional
constraints being imposed on each subsequent model (Jöreskog 1993; Pauls et al. 2013).

MGCFA has already been used on normative sample data to test for measurement
invariance across sex and different age groups (Chen et al. 2020; Pauls et al. 2020; Reynolds
and Keith 2017; Scheiber 2016). However, studies investigating measurement invariance
of the WISC-V across clinical groups, such as children and adolescents with ADHD, are
sparse and more research on such groups is needed (Chen et al. 2020). Bowden et al.
(2008) tested measurement invariance of the Wechsler Adult Intelligence Scale–III (WAIS-
III; Wechsler 1997) in three different groups: a group of college students with learning
disabilities, a group of college students with ADHD, and an age-matched cohort with no
diagnosis. While measurement equivalence could be demonstrated, there were significant
differences between the groups with respect to the variances, covariances, and means of
the underlying latent factors. Another clinical study investigated the factor structure and
tested for measurement invariance of the ten WISC-V primary subtests across a group
of children and adolescents with a diagnosis of autism spectrum disorder (ASD) and a
healthy control group (Stephenson et al. 2021). Here, measurement invariance could only
be partially established, as the WISC-V primary subtests Coding and Digit Span were found
to be not invariant across the ASD and the healthy control group. Dombrowski et al. (2021)
analyzed measurement invariance of the WISC-V across sex, four different age groups, and
three different clinical groups (ADHD, anxiety disorders, and encephalopathy). Although
they could demonstrate full invariance across sex and the clinical groups, only partial
invariance was found across the age groups under examination. However, Dombrowski
et al. (2021) compared three different clinical groups (ADHD, anxiety, and encephalopathy),
but did not provide a comparison with a matched healthy control group. In this regard, the
current study may contribute towards closing a research gap. Due to a lack of comparable
studies specifically focusing on the structural validity of the WISC-V in individuals with
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ADHD, the aim of the present study was to investigate measurement invariance of the
second-order five-factor model of the German WISC-V (Wechsler 2017b) across a sample
of children and adolescents with ADHD and a matched healthy control group. Given
that model-based reliability and group differences were additionally analyzed, this overall
analytical approach should help to clarify whether the WISC-V model suggested by the
test publishers is fully or partially transferable to an ADHD population.

2. Materials and Methods
2.1. Sample Characteristics

Children and adolescents who had received a confirmed diagnosis of ADHD or atten-
tion deficit disorder (ADD) were selected by a cooperating child and adolescent psychiatric
outpatient clinic using disorder-specific diagnostic instruments and were screened for
further eligibility criteria. For the latter, exclusion criteria included a general IQ score of
less than 70, severe neurological or psychological impairments, severe auditory, visual,
or motor impairments, and insufficient German language skills to follow the instructions
of the WISC-V (Wechsler 2017b). Data of n = 91 children and adolescents, respectively,
n = 26 females (28.6%) and n = 65 males (71.4%), with a mean age of 10.83 years (SD = 2.47;
age range = 7.0–16.6 years), were gathered for conducting single-group and multigroup
confirmatory factor analyses. In total, n = 14 (15.4%) children and adolescents had a diag-
nosis of ADD and n = 77 (84.6%) met the diagnostic criteria of ADHD. N = 63 children
and adolescents had a comorbid diagnosis of a learning disorder (69.2%). For the healthy
control group of the present study, data were selected from the German WISC-V standard-
ization sample of children and adolescents with no reported indication of a diagnosed
ADHD/ADD or learning disorder to match the ADHD group for sex, age, migration
background, and parental educational level for the younger children (aged 6–9 years) or
type of school for the older children and adolescents (aged 10–16 years). Demographic
characteristics of the ADHD and control group are depicted in Table 1.

Table 1. Demographic description of the ADHD group and control group.

ADHD Group
(n = 91)

Control Group
(n = 91)

Age M(SD) 10.83 (2.46) 10.48 (2.45)

n (%) n (%)
Sex (female) 26 (28.6) 26 (28.6)
Migration background 27 (29.7) 26 (28.6)
Type of school (n and %)
• Primary school 47 (52.2) 47 (52.2)

• Secondary school, graduation after 9th grade (German: Hauptschule) 3 (3.3) 5 (5.5)

• Secondary school, graduation after 10th grade (German: Realschule) 0 (0) 6 (6.6)

• Grammar school, graduation after 12th or 13th grade, university entrance degree
(German: Gymnasium) 12 (13.2) 16 (17.6)

• Comprehensive school, different kinds of degrees can be obtained after 9th/10th
or 12th/13th grade (German: Gesamtschule) 25 (27.5) 16 (17.6)

• Special school (German: Förderschule) 4 (4.4) 1 (1.1)
Parental education (n and %)

Lower education level 10 (11.0) 8 (8.8)
Medium education level 31 (34.1) 33 (36.3)
High education level 23 (25.3) 22 (24.2)
Highest education level 27 (29.7) 28 (30.7)

Note. Parental education is defined as the highest level of education achieved by either one parent or both (low
educational level = no diploma or school certificate after 9th grade, medium educational level = school certificate
after 10th grade, high educational level = university entrance qualification/certificate after 12th or 13th grade,
and highest educational level = college/university degree).
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The ADHD group and the control group were compared in terms of demographic
variables. A t-test indicated that both groups did not differ in respect to their ages,
t(180) = −.959, p = .342. Chi-square tests were calculated to test whether the distribu-
tion of sex or migration status differed between the two groups, which was neither the case
with sex, χ²(1) = 0.00, p = 1.000, φ = 0.00, nor with migration status, χ²(1) = 0.27, p = .870,
φ = 0.12. The distributions of the variables parental educational background and type of
school were compared between the groups using the Mann–Whitney U-test. There was no
statistically significant group difference in parental educational background, U = 4009.00,
Z = −.255, p = .798, nor in type of school, U = 3739.00, Z = −1.096, p = .273.

2.2. Measurement Instruments

Following the guidelines of a standardization kit that provides the basic framework
for all European WISC-V versions, the German WISC-V (Wechsler 2017b) was adapted
from the original US version (WISC-V USA; Wechsler 2014b) to provide a comprehensive
test of intelligence. Unlike the original version including 21 subtests, the German WISC-
V comprises a total of 15 subtests, including the ten primary subtests Similarities (SI),
Vocabulary (VC), Block Design (BD), Matrix Reasoning (MR), Figure Weights (FW), Visual
Puzzles (VP), Digit Span (DS), Picture Span (PS), Coding (CD), and Symbol Search (SS),
from which seven primary subtests (BD, SI, MR, DS, CD, VC, and FW) are used to derive the
Full-Scale Intelligence Quotient (FSIQ). The scaled scores of all ten primary subtests (M = 10,
SD = 3) are required to calculate the five primary index scores for Verbal Comprehension
(VCI), Visual Spatial (VSI), Fluid Reasoning (FRI), Working Memory (WMI), and Processing
Speed (PSI). These primary index scores, as well as the FSIQ, are defined by standard
scores on the IQ scale (M = 100, SD = 15). Although an excellent internal consistency
with Cronbach’s alpha values ranging from 0.81 to 0.93 has already been demonstrated
for the primary subtests of the German WISC-V (Wechsler 2017a), omega-hierarchical
and omega-hierarchical subscale coefficients have been frequently recommended as more
appropriate reliability measures for hierarchical model structures (Brunner et al. 2012; Reise
2012; Sijtsma 2009; Yang and Green 2011). Therefore, the according model-based reliability
coefficients are additionally described in detail in the following subsection and reported in
the results section of the present article.

2.3. Analytical Procedures
2.3.1. Single-Group Confirmatory Factor Analyses (Phase 1)

Since confirmatory factor analyses have already indicated a hierarchical model solution
to satisfactorily represent the factorial structure of the German WISC-V (for EFA and CFA
analyses and for a visualization of the model on the 10 primary subtests (see Pauls and
Daseking 2021; Wechsler 2017a), the second-order five-factor model (e.g., with five first-
order factors representing the five primary indexes) proposed by the test publishers was
used as a baseline model for all subsequent analyses. Initially and prior to measurement
invariance analyses, the second-order five-factor model was tested for the ADHD group
and the matched control group separately in order to test its overall fit in both groups
(Phase 1). The formal scoring procedure reported in the WISC-V Technical and Interpretive
Manual (Wechsler 2014a, p. 83) was applied to specify the baseline model. The latter
includes scaled scores of the ten WISC-V primary subtests as indicator variables for five
first-order factors and one second-order factor. Reflecting specific cognitive abilities, the
first-order factors are then suggested to be best represented by the five WISC-V primary
indexes: VCI indicated by scaled scores on the subtests SI and VC, VSI derived using scaled
scores on the subtests BD and VP, FRI indicated by scaled scores on the subtests MR and
FW, WMI composed of scaled scores on the subtests DS and PS, and PSI derived using
scaled scores on the subtests CD and SS. The second-order factor was specified to account
for the intercorrelations among the five first-order factors and was thus best represented by
the FSIQ.
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2.3.2. Multigroup Confirmatory Factor Analyses (Phase 2)

Analyses of measurement invariance across the ADHD and matched control group
were based on the variance–covariance structure of the underlying data and were conducted
using AMOS 29 (Arbuckle 2022). For all confirmatory factor analyses required, scales of
latent variables were identified by fixing one factor loading of each latent variable to one
(Keith 2015). Since scaled scores were used for all measurement invariance analyses, each
subtest was initially checked for normality. In the ADHD group, skewness for the scaled
scores on the ten WISC-V primary subtests ranged from −0.50 to 0.34 and kurtosis ranged
from −0.65 to 0.47, with a multivariate kurtosis of −1.28. In the matched control group,
skewness for the scaled scores ranged from −0.79 to 0.35 and kurtosis ranged from −0.51
to 0.93, with a multivariate kurtosis of 2.62. Since skewness and kurtosis values did not
indicate any excessive deviation from normality (see West et al. 1995, for an overview),
maximum likelihood was used as a robust procedure for model estimation.

Provided that a reasonable fit of the hypothesized second-order five-factor model
could be established for the ADHD and matched control group individually by conducting
single-group confirmatory factor analyses (Phase 1), measurement invariance across both
groups could then be evaluated by testing different invariance levels using multigroup
confirmatory factor analyses in Phase 2 (Keith 2015). Following a hierarchical structure for
testing measurement invariance, each level was specified and analyzed within subsequent
models with decreasing numbers of parameters to be estimated due to the inclusion of pa-
rameter constraints, one at a time. Given that each subsequent model and its corresponding
parameter constraints were nested in the previous model, measurement invariance models
then became increasingly more restrictive.

At the first and weakest level of invariance (configural invariance), invariance was
evaluated based on whether the overall baseline model (M1) appeared to be equally struc-
tured across the ADHD and control group (e.g., equal numbers and patterns of factors).
Once configural invariance could be established, another model was specified at the second
level of invariance to test whether both groups responded to the test items in the same
way (metric invariance). This model (M2) was specified by constraining all loadings of the
subtest indicators on the associated first-order factors to be equal across both groups (first-
order metric invariance). In a subsequent model at the third level of invariance (M3), all
second-order factor loadings were additionally constrained to be equal across both groups
in order to test whether the scales of the latent factors as well as the units of measurement
could be characterized as invariant across the ADHD and matched control group (second-
order metric invariance). For the next model at the fourth level of invariance (M4), all
subtest intercepts were additionally constrained to be equal across the ADHD and matched
control group (scalar invariance for the observed indicator variables). Scalar invariance
would indicate that examinees with the same score on a certain latent variable would
obtain the same score on the observed variable irrespective of their group membership. To
evaluate whether mean scores of the first-order factors might be considered comparable
across the ADHD and matched control group, a subsequent model was specified at the
fifth level of invariance (M5) by additionally constraining the intercepts of all first-order
factors to equality across both groups (scalar invariance for the first-order factors). A final
model was specified at the sixth level of invariance (M6) to examine the equivalence of
variances in measurement errors by constraining the error terms of the observed variables
to be equal across the ADHD and control group (residual invariance). Establishing residual
invariance would then indicate that all group-related differences on the indicator variables
were attributable to group-related differences on the corresponding first-order factors.

The evaluation of each measurement invariance model was based on a preselected set
of model fit indexes in order to overcome the limitations of each single index (see Kline 2016;
McDonald and Ho 2002; Thompson 2000, for an overview). Accordingly, model evaluation
was based on the examination of absolute fit indexes such as the likelihood ratio chi-square
statistic (χ2), the standardized root mean square residual (SRMR), and the root mean square
error of approximation (RMSEA). The overall model fit was considered acceptable if χ2
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was found not to be significant. According to Hu and Bentler (1999), an SRMR value of
zero indicates a perfect fit, whereas values less than .05 correspond to a good fit, and a
value of .08 indicates an acceptable fit to the data. RMSEA values less than or equal to
.01 indicate an excellent fit and a value of .05 corresponds to a good fit, whereas values
greater than or equal to .10 indicate a poor model fit (MacCallum et al. 1996). Along with
the aforementioned absolute fit indexes, parsimonious fit indexes were also examined for
model evaluation, including the chi-square to degrees-of-freedom ratio (χ2/df), with a ratio
of 5:1 or less corresponding to an acceptable model fit (Schumacker and Lomax 2004), and
the comparative fit index (CFI), with values above .95 indicating a good fit (Hu and Bentler
1999). Finally, the Akaike information criterion (AIC) was examined to compare nested and
non-nested models, with lower values representing a better model fit (Kaplan 2000).

In line with the criteria commonly used for determining evidence of measurement
invariance (Byrne and Stewart 2006), invariance models were partly evaluated by examining
differences between χ2 values of successive models (∆χ2) to test whether the absolute fit of a
more restrictive invariance model was significantly lower than for the less restrictive model.
A non-significant ∆χ2 value implies that both invariance models fit the data equally well.
Additionally, a change in RMSEA values between successive models (∆RMSEA) greater
than .015 was also determined as an indication of a meaningful drop in model fit (Chen
2007). The change in CFI values (∆CFI) was also examined in order to provide a measure of
invariance that was relatively independent of sample sizes and model complexities (Cheung
and Rensvold 2002). As recommended for ∆CFI, values above .01 were regarded as an
indication of an unacceptable deterioration in model fit. For the overall evaluation of each
single level of invariance to be as unbiased and reasonable as possible, ∆χ2 and ∆CFI tests
were jointly evaluated. However, if changes in both fit indexes indicated contrary results,
the overall evaluation was primarily based on the more liberal ∆CFI value (Kline 2016).
In cases where full invariance was rejected on a certain level of invariance based on the
aforementioned criteria, an examination of partial invariance was consciously considered
and subsequent models were based on partial invariance (e.g., Byrne and Watkins 2003).
For this purpose, an improvement in the inadequate model fit was intended by relaxing
those non-invariant model parameters, which were indicated by the critical ratios for
pairwise parameter comparisons provided by AMOS 29 (Arbuckle 2022).

2.3.3. Model Parameter Estimations and Model-Based Reliability

Model-based reliability estimates have often been proposed as an alternative measure
of reliability for structural equation modeling (Brunner et al. 2012; Reise 2012; Rodriguez
et al. 2016) due to the practical limitations of Cronbach’s alpha (Dunn et al. 2014; Sijtsma
2009; Yang and Green 2011). Thus, omega (ω), omega-hierarchical (ωH), and omega-
hierarchical subscale (ωHS) coefficients have been deemed to provide an appropriate
estimation of reliability for multidimensional constructs (e.g., Canivez 2016; McDonald
1999). On the one hand, reliability analyses using ω are based on the proportion of total
systematic variance in each factor attributed to the blend of general and subscale variance.
On the other hand, ωH indicates the reliability of the higher-order factor adjusted for the
subscale variance and ωHS indicates the reliability of each lower-order factor independent
of the general factor variance as well as all other subscale variances.

Despite being commonly referred to as reliability estimates, ω coefficients may also
enable an evaluation of whether specific factors included in the model can, or even should,
be interpreted in a meaningful way (Dombrowski et al. 2018). In the present study, model-
based reliability was thus analyzed using ωH and ωHS coefficients in order to determine
whether the WISC-V primary index scores can be considered to precisely reflect the under-
lying cognitive domains and whether additional information above and beyond the FSIQ
can be provided by scores at the index level (see Rodriguez et al. 2016 for an application). A
robust ωHS coefficient, for instance, might indicate that most of the variance in the primary
subtests can be explained by the corresponding WISC-V primary index independent of the
FSIQ. Conclusively, individual cognitive abilities may then be interpreted more specifically
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at the index level (Brunner et al. 2012). By contrast, low values of ωHS would imply that
most of the reliable variance is instead explained by the FSIQ. In the latter case, the WISC-V
primary indexes would provide rather insufficient representations of specific cognitive
domains and interpretations on the index level would likely be flawed (Rodriguez et al.
2016). According to general recommendations, ωH and ωHS values near .750 are preferred,
and values should not fall below .500 (Reise et al. 2013).

Along with ωH and ωHS, the H coefficient was additionally calculated as a measure of
construct replicability in order to estimate whether latent variables were adequately repre-
sented by the associated indicator variables (Hancock and Mueller 2001). H values should
not be less than .700 to indicate that indicator variables are useful for stable replications
of latent variables across studies (Hancock and Mueller 2001; Rodriguez et al. 2016). Both
ω and H coefficients as well as other sources of variance were obtained using the Omega
program (Watkins 2013) according to an orthogonalized higher-order factor model with five
first-order factors. For this purpose, decomposed variance sources from the second-order
five-factor model were initially derived using the SL procedure provided by the MacOrtho
program (Watkins 2004).

2.3.4. Group Comparisons

Finally, mean and distributional differences in the subtest scaled scores, index scores,
and the FSIQ were analyzed across the ADHD and control group by conducting a set of
unpaired t-tests. The significance level of the analyses was determined as α = .05. The
alpha level for multiple comparisons was adjusted by using the Bonferroni–Holm method.
Furthermore, effect sizes for group differences were indicated by Cohen’s d that was
interpreted according to Cohen (1988) as follows: d = 0.20 indicating a small, d = 0.50
indicating a medium, and d = 0.80 indicating a large effect size.

3. Results
3.1. Single-Group Confirmatory Factor Analyses (Phase 1)

The WISC-V subtest variance-covariance matrix was used for model identification,
and goodness-of-fit statistics for the WISC-V second-order five-factor model for the ADHD
and control group are depicted in Table 2. Although the χ2 statistics suggested a slightly
insufficient model fit to the observed data in the control group, all other fit indexes indicated
a sufficiently good fit of the hypothesized second-order five-factor model to the data of
both groups. Since the majority of fit indexes were in an acceptable range, the WISC-V
factor structure was deemed to be similar for both groups and was thus selected as the
baseline (configural) model for the subsequent measurement invariance analyses.

Table 2. Goodness-of-fit indexes of the single-group confirmatory factor analyses on the WISC-V
second-order five-factor model (Phase 1).

Group
Indexes of Model Fit

χ² df χ²/df p SRMR RMSEA (90% CI) CFI AIC

ADHD (n = 91) 41.423 30 1.381 .080 .050 .065 .011–.110 .961 91.423

Control (n = 91) 48.265 30 1.609 .019 .045 .072 .024–.114 .958 98.265

Note. The WISC-V second-order five-factor model includes ten subtest indicators (SI, VC, BD, VP, MR,
FW, DS, PS, CD, and SS), five first-order factors (VC, VS, FR, WM, and PS), and one second-order factor
(g). SRMR = Standardized root mean square residual, RMSEA = Root mean square error of approximation,
(90% CI) = Confidence interval for RMSEA, CFI = Comparative fit index, AIC = Akaike information criterion.

3.2. Multigroup Confirmatory Factor Analyses (Phase 2)

Measurement invariance was examined by conducting a sequence of multigroup
confirmatory factor analyses (MGCFA) on nested invariance models in a stepwise manner.
Multigroup goodness-of-fit indexes and statistics for each invariance model as well as
the model comparisons are summarized in Table 3. First, configural invariance (M1) was
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tested by comparing the unconstrained baseline model across the ADHD and control group
simultaneously. Since the baseline model M1 provided a good fit to the data (CFI = .971,
SRMR = .055, and RMSEA = .038), configural invariance could be accepted, indicating
the equal WISC-V factor patterns with subtest loadings on the same corresponding latent
factors for both groups.

Given that configural invariance could be established, metric invariance (M2) was next
tested by constraining all first-order factor loadings to be equal across both groups in M1.
Since the fit indexes indicated a good fit for M2 (CFI = .970, SRMR = .060, and RMSEA = .039)
and a model comparison between M2 and M1 did not suggest any significant deterioration
of fit (∆RMSEA = .001; ∆CFI = −.001; ∆χ2 = 4.709, ∆df = 5, p = .452), first-order loadings
could be suggested to be comparable across both groups. In order to complement the
overall metric invariance examination, additionally constraining all loadings on the second-
order factors to be equal across both groups (M3) did not result in a significantly worse
model fit compared to M2 (∆RMSEA = .001; ∆CFI = −.002; ∆χ2 = 5.363, ∆df = 4, p = .252).
Thus, metric invariance could be established, suggesting that the strengths of the linear
relationships between the second-order factor and the underlying five first-order factors
were comparable across both groups.

After metric invariance could be established, scalar invariance was tested by addi-
tionally constraining all subtest intercepts to be equal across the ADHD and the control
group (M4). When compared to M3, however, a significant deterioration of the model fit of
M4 was indicated by all fit indexes (∆RMSEA = .044; ∆CFI = −.130; ∆χ2 = 81.835, ∆df = 5,
p < .001). As illustrated in Figure 1, not all subtest intercepts appeared to be similar across
both groups; therefore, full scalar invariance was rejected. An additional partial scalar
invariance model (M4

†) was specified by analyzing and comparing all subtest intercepts
across the ADHD and the control group. Since critical ratios for the pairwise parameter
comparisons indicated that non-invariance could be attributed to unequal intercepts for
the WISC-V subtests Vocabulary (VC), Digit Span (DS), Picture Span (PS), Coding (CD),
and Symbol Search (SS), partial scalar invariance was tested by relaxing the according five
subtest intercepts in M4. As soon as the subtest intercepts of VC, DS, PS, CD, and SS were
allowed to vary across both groups, the fit indexes indicated no substantial decrease in
the model fit of M4

† when compared to M3 (∆RMSEA = .001; ∆CFI = −.002; ∆χ2 = 5.405,
∆df = 2, p = .067).

To complement the overall scalar invariance examination, a subsequent model was
tested by additionally constraining all intercepts on the first-order factors to be equal
across the ADHD and the control group (M5

†). However, when compared to M4
†, M5

†

did result in a significantly worse model fit (∆RMSEA = .027; ∆CFI = −.078; ∆χ2 = 48.853,
∆df = 5, p < .001). As shown in Figure 2, some intercepts on the first-order factors turned
out to vary across both groups, again suggesting that full scalar invariance could not be
established. Following a critical ratio analysis indicating that non-invariance was likely
due to nonequal intercepts of Working Memory (WM) and Processing Speed (PS), partial
scalar invariance was again tested by relaxing the intercepts of both first-order factors in
M5

††. Once the intercepts of WM and PS were allowed to vary across both groups, fit
indexes for M5

†† did not indicate any substantial decrease in the model fit when compared
to M4

† (∆RMSEA = .001; ∆CFI = −.003; ∆χ2 = 0.307, ∆df = 2, p = .858). Although full
scalar invariance was rejected due to the non-invariant subtest intercepts of VC, DS, PS,
CD, and SS (M4) as well as the non-invariant intercepts of the first-order factors WM and
PS (M5

†), scalar invariance could be partially established when allowing non-invariant
parameters to vary across the ADHD and the control group. For the subsequent invariance
model, the required parameter restrictions were thus based on the partial scalar invariance
model (M5

††).
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Table 3. Multigroup goodness-of-fit indexes and invariance model comparisons for the WISC-V second-order five-factor model (Phase 2).

Invariance Model
Indexes of Model Fit Model Comparison

χ² df χ²/df SRMR RMSEA (90% CI) CFI AIC Comparison ∆RMSEA ∆CFI ∆χ² ∆df p

M1: Configural 79.535 62 1.283 .055 .038 .000–.061 .971 215.535
M2: Metric (1st order) 84.244 67 1.257 .060 .039 .000–.062 .970 210.244 M2 vs. M1 .001 −.001 4.709 5 .452
M3: Metric (2nd order) 89.607 71 1.262 .065 .040 .000–.063 .968 207.607 M3 vs. M2 .001 −.002 5.363 4 .252
M4: Scalar (obs.) 171.437 76 2.256 .189 .084 .067–.100 .838 279.437 M4 vs. M3 .044 −.130 81.835 5 <.001
M4

†: Partial scalar (obs.) 95.012 73 1.302 .064 .041 .008–.062 .966 209.012 M4
† vs. M3 .001 −.002 5.405 2 .067

M5
†: Scalar (lat.) 143.866 78 1.844 .083 .068 .051–.086 .888 247.866 M5

† vs. M4
† .027 −.078 48.853 5 <.001

M5
††: Partial Scalar (lat.) 95.319 75 1.271 .064 .042 .000–.061 .963 205.319 M5

†† vs. M4
† .001 −.003 0.307 2 .858

M6
††: Residual 108.812 85 1.280 .065 .043 .008–.060 .960 198.812 M6

†† vs. M5
†† .001 −.003 13.493 10 .197

Note. M1 = unconstrained baseline model, M2 = model with equal loadings on all first-order factors, M3 = M2 with equal loadings on the second-order factor, M4 = M3 with equal
subtest intercepts, M4

† = M4 with five relaxed subtest intercepts (VC, DS, PS, CD, and SS), M5
† = M4

† with equal intercepts of first-order factors, M5
†† = M5

† with two relaxed intercepts
of first-order factors (WM and PS), M6

†† = M5
†† with equal error variances on all subtests. SRMR = standardized root mean square residual, RMSEA = root mean square error of

approximation, (90% CI) = confidence interval for RMSEA, CFI = comparative fit index, AIC = Akaike information criterion, ∆RMSEA = difference in RMSEA between compared models,
∆CFI = difference in CFI between compared models, ∆χ2 = chi-square difference between compared models, ∆df = difference in degrees of freedom between compared models.
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Figure 1. The WISC-V second-order five-factor model for the ADHD and control group including
standardized estimations of all regression weights, subtest intercepts, and intercepts of the first-order
factors for the 10 WISC-V primary subtests (M4 in Table 3). Note. Second-order factor: g = general
intelligence. First-order factors: VC = Verbal Comprehension, VS = Visual Spatial, FR = Fluid
Reasoning, WM = Working Memory, PS = Processing Speed. Subtest indicators: SI = Similarities,
VC = Vocabulary, BD = Block Design, VP = Visual Puzzles, MR = Matrix Reasoning, FW = Figure
Weights, DS = Digit Span, PS = Picture Span, CD = Coding, SS = Symbol Search. All standardized
parameter estimates are significant at p < .001.
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Figure 2. The WISC-V second-order five-factor model for the ADHD and control group including
standardized estimations of all regression weights, subtest intercepts, and intercepts of the first-order
factors for the 10 WISC-V primary subtests (M5

† in Table 3). Note. Second-order factor: g = General
Intelligence. First-order factors: VC = Verbal Comprehension, VS = Visual Spatial, FR = Fluid
Reasoning, WM = Working Memory, PS = Processing Speed. Subtest indicators: SI = Similarities,
VC = Vocabulary, BD = Block Design, VP = Visual Puzzles, MR = Matrix Reasoning, FW = Figure
Weights, DS = Digit Span, PS = Picture Span, CD = Coding, SS = Symbol Search. All standardized
parameter estimates are significant at p < .001.

In a final step, residual invariance was tested by constraining all error variances of the
observed variables to be equal across both groups (M6

††). As indicated by the fit indexes,
the fit of M6

†† to the data appeared to be acceptable and not significantly worse than the
fit of M5

†† (∆RMSEA = .001; ∆CFI = −.003; ∆χ2 = 13.493, ∆df = 10, p = .197). Therefore,
residual invariance across both groups could be established.

3.3. Model Parameter Estimations and Model-Based Reliability

Standardized parameter estimates based on the residual invariance model (M6
††)

as the most restrictive model are displayed in Figure 3. Parameter estimations included
in the present WISC-V second-order five-factor model for the most part appeared to be
theoretically sound and consistent with the structural framework proposed by the test
publishers. Factor loadings for subtest indicators on the corresponding first-order factors
ranged from .46 for Symbol Search (SS) on Processing Speed (PS) to .81 for Similarities (SI)
on Verbal Comprehension (VC). Among the associations between the first-order factors
and the second-order factor, Visual Spatial (VS) featured the highest loading (.89) and
Processing Speed (PS) had the lowest loading (.71) on General Intelligence (g).
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PS .533 .284       .316 .100   .384 .616 
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Total S2  .357  .028  .025  .027  .024  .022 .482 .518 
ECV  .741  .058  .051  .056  .049  .046   

ω  .876  .753  .738  .707  .623  .362   

ωH/ωHS  .816  .174  .155  .174  .162  .181   

Relative ω  .932  .231  .209  .246  .260  .500   

Figure 3. The WISC-V second-order five-factor model including standardized estimations of all
regression weights, subtest intercepts, and intercepts of the first-order factors for the 10 WISC-
V primary subtests (M6

†† in Table 3). Note. Second-order factor: g = General Intelligence.
First-order factors: VC = Verbal Comprehension, VS = Visual Spatial, FR = Fluid Reasoning,
WM = Working Memory, PS = Processing Speed. Subtest indicators: SI = Similarities, VC = Vo-
cabulary, BD = Block Design, VP = Visual Puzzles, MR = Matrix Reasoning, FW = Figure Weights,
DS = Digit Span, PS = Picture Span, CD = Coding, SS = Symbol Search. RMSEA = root mean square
error of approximation, CFI = comparative fit index. All standardized parameter estimates are
significant at p < .001.

Since the associations between subtest indicators and the second-order factor are fully
mediated by the first-order factors due to the hierarchical nature of the WISC-V second-
order five-factor model, the SL procedure was additionally conducted to derive direct
associations between the second-order factor and the subtest indicators. This approach
allowed for the evaluation of model-based reliability, construct replicability, and other
sources of variance. As shown in Table 4, all ten subtest indicators featured acceptable
loadings on both the second-order factor and their respective first-order factors according
to an SL orthogonalized model framework. However, the proportion of common variance
in the subtest indicators (ECV) that was uniquely explained by the first-order factors was
rather small, ranging from .046 for PS to .058 for VC, compared to the ECV exclusively
accounted for by the second-order factor (.741). Consequently, with approximately 74%,
the greatest portion of explained common variance in the subtest indicators appeared to
be specifically linked to the second-order factor. Values for the ω coefficient ranged from
.362 for PS to .876 for g, suggesting that the common variances in the individual composite
scores could likely be attributed to both the second-order factor (FSIQ) and most of the first-
order factors. In line with the ECV estimates, ωHS coefficients for all first-order-factors were
found to be rather small, ranging from .155 for VS to .181 for PS, and thus falling below the
threshold of .500 proposed by Reise et al. (2013). Since the ωH coefficient value of .816 for
the second-order factor was well above this criterion, the second-order factor appeared to
be precisely measured by the underlying subtest indicators while being scarcely influenced
by variability in other factors. Moreover, the H coefficient value of .860 for the second-order
factor also indicated that this factor was well defined by the ten subtest indicators, whereas,
by contrast, the minimum criterion of .700 (Hancock and Mueller 2001; Rodriguez et al.



J. Intell. 2024, 12, 6 14 of 24

2016) was not met by any of the first-order factors, with values ranging from .199 for PS to
.245 for VC.

Table 4. Sources of variance in the 10 WISC-V primary subtests for the control and ADHD samples
according to the SL orthogonalized WISC-V second-order five-factor model (M6

††).

WISC-V Subtest
g VC VS FR WM PS

b S2 b S2 b S2 b S2 b S2 b S2 h2 u2

SI .709 .505 .388 .151 .653 .347
VC .654 .428 .358 .128 .556 .444
BD .688 .473 .354 .125 .599 .401
VP .672 .452 .346 .120 .571 .429
MR .645 .416 .369 .136 .552 .448
FW .639 .408 .365 .133 .542 .458
DS .622 .387 .369 .136 .523 .477
PS .533 .284 .316 .100 .384 .616
CD .339 .115 .339 .115 .230 .770
SS .326 .106 .326 .106 .213 .787

Total S2 .357 .028 .025 .027 .024 .022 .482 .518
ECV .741 .058 .051 .056 .049 .046
ω .876 .753 .738 .707 .623 .362

ωH/ωHS .816 .174 .155 .174 .162 .181
Relative ω .932 .231 .209 .246 .260 .500

H .860 .245 .218 .237 .212 .199
PUC .889

Note. General factor: g = General Intelligence. Group factors: VC = Verbal Comprehension, VS = Visual Spatial,
FR = Fluid Reasoning, WM = Working Memory, PS = Processing Speed. Subtest indicators: SI = Similarities,
VC = Vocabulary, BD = Block Design, VP = Visual Puzzles, MR = Matrix Reasoning, FW = Figure Weights,
DS = Digit Span, PS = Picture Span, CD = Coding, SS = Symbol Search. b = factor loading (significant at p < .05),
S2 = explained variance, h2 = communality, u2 = unique variance, ECV = explained common variance, ω = omega
coefficient, ωH = omega-hierarchical coefficient (general factor), ωHS = omega-hierarchical coefficient (group
factors), H = replicability index (construct reliability), PUC = percentage of uncontaminated correlations.

3.4. Group Comparisons

Table 5 shows the descriptive statistics for the ten WISC-V primary subtests, the five
primary indexes, and the FSIQ across the ADHD and control group as well as t-test statistics
and effect sizes for group comparisons.

Table 5. Mean, standard deviation and t-test statistics for group comparisons on the ten WISC-V
primary subtests and indexes.

WISC-V Subtest
/Index

ADHD Group
n = 91

Control Group
n = 91 Test Statistics

M SD M SD t (df) p pcor. d

SI 10.27 2.63 10.87 2.68 1.51 (180) .133 >.999 −0.23
VC 9.58 2.75 11.15 2.77 3.84 (180) <.001 .016 −0.57
BD 9.78 2.62 10.36 2.99 1.39 (180) .164 >.999 −0.21
VP 10.56 2.71 10.35 2.82 −0.51 (180) .611 >.999 0.07
MR 9.71 2.58 10.10 2.84 0.96 (180) .339 >.999 −0.14
FW 10.52 2.58 10.47 2.91 −0.11 (180) .914 >.999 0.02
DS 8.44 2.67 10.62 3.04 5.38 (170) a <.001 .016 −0.76
PS 10.64 2.78 10.10 3.11 −1.23 (180) .220 >.999 0.18
CD 8.60 2.53 10.58 3.15 4.66 (180) <.001 .016 −0.69
SS 8.71 2.73 10.25 2.82 3.74 (180) <.001 .016 −0.56

VCI 99.48 13.48 105.47 13.18 3.03 (180) .003 .030 −0.45
VSI 100.73 13.47 101.91 14.34 0.58 (180) .566 >.999 −0.09
FRI 100.70 13.24 101.71 13.90 0.50 (180) .616 >.999 −0.07

WMI 96.99 12.75 102.70 15.07 2.45 (180) .015 .135 −0.41
PSI 92.63 12.64 102.45 15.44 4.69 (180) <.001 .016 −0.69

FSIQ 96.81 12.34 104.21 13.78 3.82 (180) <.001 .016 −0.57

Note. a An adjustment to the degrees of freedom using the Welch–Satterthwaite method was made due to unequal
group variances as shown by the Levene test. Subtest indicators: SI = Similarities, VC = Vocabulary, BD = Block
Design, VP = Visual Puzzles, MR = Matrix Reasoning, FW = Figure Weights, DS = Digit Span, PS = Picture Span,
CD = Coding, SS = Symbol Search. Primary indexes indicators: VCI = Verbal Comprehension Index, VSI = Visual
Spatial Index, FRI = Fluid Reasoning Index, WMI = Working Memory Index, PSI = Processing Speed Index,
FSIQ = Full Scale IQ. pcor . = p corrected based on the Bonferroni–Holm method. d = Cohen’s d.
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The control group showed significantly higher mean subtests scores in the subtests
VC, DS, CD, and SS as well as in the indexes VCI, WMI, PSI, and FSIQ. After adjusting
α with the Bonferroni–Holm method, only WMI no longer differed significantly between
the groups. The effects sizes for the subtests ranged from −0.56 for SS up to −0.76 for DS,
which are, according to Cohen (1988), medium to large effect sizes. For the indexes, the
effect sizes ranged from −0.45 for VCI up to −0.69 for PSI; therefore, the effect sizes were
also medium to large.

4. Discussion

The aim of the present study was to investigate measurement invariance of the WISC-
V across a group of children and adolescents with ADHD and a matched control group.
For this purpose, confirmatory factor analyses (CFAs) were conducted on the hierarchical
second-order five-factor model based on the ten primary subtests as proposed by Wechsler
(Wechsler 2014a, 2017a). In a first step, the second-order five-factor model was examined
using single-group CFAs for the ADHD and control group separately to assess the model’s
overall fit in both groups. The WISC-V second-order five-factor model was found to
sufficiently fit the data in both groups. Next, MGCFA was conducted on the same model
structure in order to examine measurement invariance across both groups. Configural and
metric invariance could be established, which are, according to Keith and Reynolds (2012),
the most crucial invariance models of all. Since full scalar invariance had to be rejected, the
intercepts of five subtest indicators (VC, DS, PS, CD, and SS), as well as the intercepts of
two first-order factors (WM and PS) had to be relaxed to establish partial scalar invariance.
In practice, it often appears to be difficult to achieve full invariance of subtest intercepts and
intercepts of latent factors (Keith and Reynolds 2012); therefore, non-invariant intercepts
are not infrequent (e.g., Immekus and Maller 2010). There is still an ongoing debate about
the role of scalar invariance as a prerequisite for meaningful mean score comparisons across
different populations or groups (Immekus and Maller 2010). According to Steinmetz (2013),
unequal subtest intercepts can have a notable impact on disparities in factor means and
the likelihood of significant differences. Some authors, such as Muthén and Asparouhov
(2013), take a different approach and suggest that an evaluation of invariance should be
based on approximate rather than full measurement invariance. By allowing for partial
scalar invariance, it is at least possible to conclude that scores on specific latent variables
are comparable across different groups while comparisons on others should be interpreted
with caution.

Based on the suggestions of Byrne et al. (1989) that full scalar invariance is not neces-
sarily a mandatory requirement for further tests of invariance, subsequent measurement
invariance analyses were based on the partial scalar invariance model (M5

††).
In due consideration of the complexity of the WISC-V model structure and the strict-

ness of each measurement invariance test, it was concluded that the German WISC-V does
at least feature full metric but only partial scalar invariance on the item and first-order
factor level across the ADHD and the control group. Therefore, certain group comparisons
can be seen as meaningful, as group differences in five out of ten WISC-V subtest scores are
attributable to group differences in the underlying latent dimensions. Since two out of five
first-order factors were found to be non-invariant across the ADHD and the control group,
associations between the second-order factor General Intelligence (g) and the underlying
first-order factors can be seen as different across both groups. Strictly speaking, scalar
invariance for the first-order factors is a prerequisite for any group comparisons that are
based on the mean scores of the associated second-order factor (Dimitrov 2010). However,
an alternative and less strict interpretation of non-invariant first-order factors relates to
the fact that mean scores of first-order factors are not observed scores and should thus not
be treated in the same manner as scores of subtest indicators (Rudnev et al. 2018). Con-
clusively, a mean score of g should only be treated as a compensatory score representing
a predefined combination of those first-order factors that were found to be invariant. It
should also be noted that the FSIQ, as a representative measure for g, is computed based on
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subtest scores rather than index scores, which represent mean scores of the corresponding
first-order factors. Since the hierarchical model framework (e.g., associations between
subtest indicators and g are fully mediated by the first-order factors) differs from the actual
WISC-V scoring framework (e.g., the FSIQ is directly derived from subtest scores); however,
model-based reliability analysis on the measurement relations between the FSIQ and the
subtest scores might be more indicative of the measurement properties of the FSIQ.

The standardized parameter estimates derived from the most restrictive residual
invariance model were found to be theoretically robust and in accordance with the structural
framework proposed by the test publishers (Wechsler 2014a, 2017a). Regarding the loadings
of subtest indicators on the corresponding first-order factor, CD loaded the lowest on PS,
and SI loaded the highest on VC. VS was the first-order factor that loaded the highest on
the second-order factor g, whereas PS featured the lowest loading on g.

Moreover, the SL procedure was utilized to derive direct associations between the
second-order factor and the subtest indicators. According to this SL orthogonalized model
framework, all ten subtest indicators featured acceptable loadings on the second-order
factor and the first-order factors. However, the proportion of common variance in the
subtest indicators (ECV) that was uniquely explained by the first-order factors was rather
small. Consequently, approximately 74% of the total explained shared variance among the
subtest indicators was specifically associated with the second-order factor. This finding
is consistent with previous studies on the factorial validity of the WISC-V, which also
suggested that the second-order factor accounted for the greatest portion of common
variance in the subtest indicators (Canivez et al. 2016, 2017; Fenollar-Cortés and Watkins
2019; Watkins et al. 2018). The ωHS coefficients for all first-order factors were found to
be rather small and fell below the threshold of .500 as proposed by Reise et al. (2013). In
contrast, the ωHS coefficient for the second-order factor was found to exceed this threshold.
A sufficient reliability of g was also supported by the H-coefficient, which indicated that
the second-order factor was well defined by the 10 subtest indicators; whereas, by contrast,
the minimum criterion of .700 (Hancock and Mueller 2001; Rodriguez et al. 2016) was not
met by any of the first-order factors. These results underpin the psychometric quality of the
FSIQ, which is precisely measured by the underlying primary subtests. Since the WISC-V
primary indexes might not be adequately defined by their corresponding subtest indicators,
or may not seem to produce reliable index scores, clinical interpretations solely based on
the primary indexes should only be made very cautiously.

As indicated by the group comparisons, the ADHD group performed significantly
worse on the primary subtests VC, DS, CD, and SS. Significant group differences were also
found for the VCI, PSI, and the FSIQ. The worse performance of children and adolescents
with ADHD on WMI and PSI is in line with previous research highlighting a decreased
working memory capacity in children with ADHD (Kasper et al. 2012; Martinussen et al.
2005) and limitations in processing speed (Gau and Huang 2014; Salum et al. 2014; Shana-
han et al. 2006). The findings are partially consistent with studies showing the biggest
group differences in performance on working memory tasks (e.g., Pauls et al. 2018) and in
processing speeds (e.g., Yang et al. 2013) when comparing an ADHD group with a control
group. Here, however, only performances on the subtest DS turned out to be lower in the
ADHD group, which may be associated with deficits in the auditory working memory or
phonological loop, while performances on PS did not differ between the groups.

The lower scores on the FSIQ found in children and adolescents with ADHD in the
present sample were also consistent with findings from previous studies (Jiang et al. 2015;
Pauls et al. 2018; Yang et al. 2013). It is thus assumed that deficits in working memory
and processing speed may at least partly contribute to a lower overall IQ, but that lower
performances on cognitive tests may be predominantly caused by ADHD symptoms such
as impulsivity or inattentiveness. Consequently, deficits in working memory performance
may be due to short-term memory problems in children with ADHD (Berlin et al. 2003;
Sinha et al. 2008; Willcutt et al. 2005). In addition, children have also been found to perform
more poorly than healthy controls on subtests measuring processing speed (Chhabildas
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et al. 2001; Shanahan et al. 2006) due to deficits in focused attention (Rucklidge and Tannock
2002), thus achieving lower scores on PSI (Calhoun and Mayes 2005).

This is also highlighted by the present measurement invariance analyses, which
indicated rather non-invariant subtest intercepts on VC, DS, CD, and SS as well as on the
first-order factors WM and PS. Quantitative group differences based on the corresponding
subtest scores and index scores should only be interpreted with due caution, if at all. This is
because failing to establish full scalar invariance in the present study may also be regarded
as an indication for the subtest and index functioning varying across the ADHD and the
control group. Therefore, low test scores of children and adolescents with ADHD on the
corresponding WISC-V subtests and indexes might likely reflect symptomatic behavioral
problems rather than true cognitive deficits, as the affected children and adolescents might
perform below their cognitive capacity (Jepsen et al. 2009).

The findings of lower scores in the ADHD group on the subtest VC and the VCI are
also in line with previous findings (Pauls et al. 2018). Language disorders are known to be
more prevalent in children and adolescents with ADHD than in healthy ones (Sciberras
et al. 2014). However, studies assessing verbal skills like listening comprehension, story
retelling or semantic aspects of language, found that low performances on those verbal
tasks of children with ADHD might be explained by general executive dysfunctions rather
than an underlying deficit of linguistic functions in ADHD (McInnes et al. 2003; Purvis and
Tannock 1997). Conclusively, we assume that the lower score of the ADHD group on the
subtest VC is more likely due to common ADHD symptoms related to behavior, such as an
impulsive response style or inattentiveness, than a general deficit in verbal ability. Pineda
et al. (2007), for instance, assessed the verbal performance of ADHD and control children
between 6 and 11 years of age using a comprehensive neuropsychological test battery and
found that children with ADHD performed significantly worse in understanding verbal
information, while listening was worse compared to healthy controls, especially on the
verbal comprehension test measure.

4.1. Limitations

First, it should be noted that the total sample analyzed in the present study was rather
small (N = 182) and could have led to less accurate parameter estimates in the structural
equation models under investigation. Determining an adequate sample size for sufficient
statistical power to provide generalizable structural equation models should be based on
model-specific approaches, such as Monte Carlo data simulation techniques, rather than on
rules-of-thumb (Wolf et al. 2013). Conclusively, model-specific sample size requirements
might have resulted in a higher accuracy of parameter estimates and model fit statistics in
both single- and multigroup confirmatory factor analyses of the present study. Therefore,
future studies on measurement invariance should be based on large clinical sample sizes.
It should also be noted that ADHD and ADD were not analyzed separately within the
ADHD group. Moreover, about 69.2% of the ADHD group also had a comorbid learning
disorder. Prevalence rates for comorbid learning disorders in the presence of ADHD are
reported to range from 20 to 70% (Mattison and Mayes 2012; Mayes et al. 2000; Sexton
et al. 2012; Yoshimasu et al. 2010). In a recent study, children with ADHD and a comorbid
reading disorder and/or disorder of written expression showed even poorer performances
on tasks of working memory than children with ADHD alone (Parke et al. 2020). Another
study showed that children and adolescents with ADHD and a comorbid learning disorder
performed worse on subtests associated with WMI and PSI and achieved lower scores
on the FSIQ than children and adolescents with a learning disorder alone (Becker et al.
2021). It can thus be assumed that an ADHD-only sample might have shown fewer—or
less pronounced—deficits in the WISC-V compared to the rather mixed ADHD sample in
the present study.

Another issue relates to the hierarchical second-order five-factor model that was
used as the baseline model in the present measurement invariance analyses. The WISC-V
factor structure is still part of an ongoing debate (Dombrowski et al. 2022a) and numerous
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studies have already examined the factorial validity of the WISC-V, including not only the
American (Canivez et al. 2017) but also the British (Canivez et al. 2019), Canadian (Watkins
et al. 2018), French (Lecerf and Canivez 2018), Spanish (Fenollar-Cortés and Watkins 2019),
and German (Canivez et al. 2021; Pauls and Daseking 2021) versions. However, there is
still no agreement on whether the five-factor model or a four-factor model on the one hand,
or whether a hierarchical or a bifactor model on the other hand represents the WISC-V
best (see for example Canivez et al. 2017; Dombrowski et al. 2018). Canivez et al. (2020)
examined the factor structure of the WISC-V in a heterogeneous clinical sample including a
large proportion of children and adolescents with an ADHD diagnosis (Canivez et al. 2020).
Exploratory factor analysis (EFA) indicated that a four-factor model fitted the empirical
data best, and that confirmatory factor analysis (CFA) supported a bifactor model with
four group factors. Further studies have also examined the factor structure of the WISC-IV
when administered to children and adolescents with ADHD (Fenollar-Cortés et al. 2019;
Gomez et al. 2016; Styck and Watkins 2017; Thaler et al. 2015; Yang et al. 2013). The results
of these studies have supported the four-factor model structure; however, there is also
evidence for a five-factor model (Thaler et al. 2015) characterized by either a higher-order
(Styck and Watkins 2017) or a bifactorial structure (Gomez et al. 2016). Thus, an extensive
investigation of alternative model solutions (e.g., bifactor models) should be performed in
future studies on ADHD samples.

The present analyses of model-based reliability supported the previously suggested
dominance of g and the limited unique measurement of the group factors of the WISC-
V (Canivez et al. 2020). In particular, model-based reliability and construct replicability
coefficients for g turned out to be satisfactory, thus justifying a meaningful interpretation
of an overall measure such as the FSIQ. However, this is only true if the calculation of the
FSIQ is based on all ten WISC-V primary subtests and not on seven out of ten primary
subtest scores, as described in all versions of the WISC-V. Thus, interpretability of g cannot
be equally guaranteed for the FSIQ, as this measure might under- or over-estimate true
levels of General Intelligence. Regarding the WISC-V primary indexes, reliability and
replicability coefficients for the group factors appeared to be too low to warrant reliable
measures for specific cognitive dimensions. Therefore, researchers and clinicians should
be cautious when interpreting the WISC-V primary index scores individually. Diagnostic
decision-making should be predominantly based upon the FSIQ.

4.2. Conclusions and Implications for Practice

The factor structure of the WISC-V proposed by the test publishers (Wechsler 2014a,
2017a) was found to sufficiently fit the data of both the ADHD and the control group in
the present study. Five out of ten WISC-V primary subtests were observed to be fully
invariant across these groups. However, since five subtest intercepts appeared to be non-
invariant, the corresponding index scores for VCI, WMI, and PSI cannot be suggested to
be comparable across children and adolescents with ADHD and healthy ones. This may
then diminish the usefulness of the associated primary subtests VC (VCI), DS (WMI) as
well as CD and SS (PSI) in measuring the underlying latent abilities. Since children and
adolescents with ADHD not only achieved significantly lower scores on VC, DS, CD, and
SS than healthy controls, and intercepts for two of the corresponding first-order factors
were also found to be non-invariant across both groups, these primary subtests appeared
to be harder for individuals with ADHD than would be expected for the corresponding
scores on the underlying latent factor. It could thus be assumed that such group differences
can be a result of the critical subtests measuring slightly different cognitive subdimensions
for the compared groups.

As described previously, the behavioral problems and cognitive deficits of children
and adolescents with ADHD may likely manifest themselves in performances primarily
associated with working memory and processing speed (Gau and Huang 2014; Kasper et al.
2012; Martinussen et al. 2005; Salum et al. 2014; Shanahan et al. 2006). Even though the
according WISC-V primary indexes WMI und PSI should only be interpreted with caution



J. Intell. 2024, 12, 6 19 of 24

and a reliable profile analysis is not fully warranted (as has already been shown by previous
research), an analysis of the underlying cognitive profiles may be used as an orientation for
identifying individual strengths and weaknesses of those affected. Although differential
diagnostic decision-making cannot, and should not, be based upon those cognitive profiles
(Dombrowski et al. 2022b; McGill et al. 2018), profile analyses may provide additional
anamnestic information about the cause of possible cognitive deficits, depending on the
diagnostic question. Assuming that symptomatic behavioral problems in ADHD may
substantially affect performances on the WISC-V subtests, future studies should clarify
whether measurement invariance of the WISC-V can still be established when investigating
different ADHD subpopulations with varying levels of symptom severity (e.g., after partial
symptom remission).

Since the present study could, at least to some extent, demonstrate sufficient levels
of measurement invariance of the German WISC-V across the ADHD and control group,
it may be considered a partially suitable test battery for measuring specific intellectual
abilities in children and adolescents with ADHD. Yet, there are some substantial limitations
regarding the interpretation of single non-invariant subtest and index scores that need to
be considered cautiously in future research and clinical practice. Most importantly, clinical
interpretations based on the WISC-V primary indexes and the according cognitive profiles
are only admissible to a limited extent. When interpreting WISC-V test scores, especially
those derived from non-invariant subtests and indexes, practitioners should always keep in
mind that children and adolescents with ADHD are likely to perform below their cognitive
capacity in the WISC-V and may thus fall short of their potential due to their specific
symptomatology.
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