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Abstract: Computer-based assessments provide the opportunity to collect a new source of behavioral
data related to the problem-solving process, known as log file data. To understand the behavioral
patterns that can be uncovered from these process data, many studies have employed clustering
methods. In contrast to one-mode clustering algorithms, this study utilized biclustering methods,
enabling simultaneous classification of test takers and features extracted from log files. By applying
the biclustering algorithms to the “Ticket” task in the PISA 2012 CPS assessment, we evaluated the
potential of biclustering algorithms in identifying and interpreting homogeneous biclusters from the
process data. Compared with one-mode clustering algorithms, the biclustering methods could un-
cover clusters of individuals who are homogeneous on a subset of feature variables, holding promise
for gaining fine-grained insights into students’ problem-solving behavior patterns. Empirical results
revealed that specific subsets of features played a crucial role in identifying biclusters. Additionally,
the study explored the utilization of biclustering on both the action sequence data and timing data,
and the inclusion of time-based features enhanced the understanding of students’ action sequences
and scores in the context of the analysis.

Keywords: log file data; biclustering; PISA; action sequence; process data; timing data

1. Introduction

Complex problem-solving (CPS) is a crucial skill in real-life settings that requires an
individual to complete dynamic tasks by exploring and integrating information (Buchner 1995)
and by using the obtained information to solve the task (Simon and Newell 1971). To assess
CPS skills, researchers have suggested using interactive tasks in simulated problem-solving
scenarios (Funke 2001). Some large-scale assessments, such as the Programme for the
International Assessment of Adult Competencies (PIAAC; OECD 2013) and the Programme
for International Student Assessment (PISA; OECD 2014), have utilized computer-based
interactive tasks that mimic real-life problem-solving scenarios (Goldhammer et al. 2013).
Computer-based assessments offer the opportunity to collect and log a new source of
behavioral data related to the process of problem-solving. Typically, this data includes
the time-stamped sequence of actions recorded by the computer system as the individual
pursues to solve the task (Bergner and von Davier 2019; OECD 2013). The new type of data
is commonly referred to as process data or log file data (Greiff et al. 2016; Tang et al. 2021).
Compared with the traditional correct/incorrect response data on final outcome, process
data can provide rich additional information that sheds light into the test takers’ problem-
solving process, informing both assessment design and education (He et al. 2021, 2019; He
and von Davier 2015, 2016).
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Despite the richness of information, process data come often in a non-standard format,
which can introduce complications to their analysis. Over the past decade, there has been a
high demand for more innovative tools to handle this type of data (von Davier et al. 2022).
Feature extraction plays an important role in analyzing the process data, and there are
two commonly used approaches. The first approach is theory-based feature extraction,
which involves obtaining behavioral indicators based on established substantive theories
(Harding et al. 2017; Yuan et al. 2019). These methods often define task-specific features and
require input and validation from domain experts. The second approach is data-driven feature
extraction, which involves extracting features directly from the data without relying on sub-
stantive theories (He et al. 2022; Qiao and Jiao 2018; Tang et al. 2020, 2021; Ulitzsch et al. 2022).
This approach utilizes statistical and machine learning techniques to identify patterns and
relevant features in the process data. This presents a data-driven way for the identification
of potentially meaningful sequential patterns that provide insights into strategies and
cognitive processes. In addition to feature extraction from action sequences, methods for in-
corporating additional timing information have also been proposed, providing a more com-
prehensive investigation of examinees’ interactions (Tang et al. 2021; Ulitzsch et al. 2021).

Process features extracted from log files are often high-dimensional and sometimes
lack direct interpretations. To uncover substantively meaningful latent structures that reflect
individual differences in problem-solving, a popular approach from unsupervised machine
learning is clustering algorithms. Clustering is commonly applied to the exploratory
analysis of process data, aiming to identify groups that exhibit distinct interactions with the
tasks (He et al. 2019; Qiao and Jiao 2018; Ren et al. 2019; Ulitzsch et al. 2021). For instance,
the widely used k-means method has been applied to analyze process data in PISA and
PIAAC assessments, respectively, based on actions, the length of action sequences, and
time spent on the item (He et al. 2019; Qiao and Jiao 2018). Furthermore, researchers
have also adopted more sophisticated or robust clustering methods. For example, the
partitioning around medoids (PAMs) algorithm (Reynolds et al. 2006) was employed to
explore the important role of multiple goals in the “Ticket” task in the PISA 2012 CPS test
(Ren et al. 2019), and the k-medoids algorithm (Kaufman 1990) was proposed for analyzing
item CR551Q11 in the reading Rapa Nui unit in the PISA 2018 test (He et al. 2022). These
more advanced clustering approaches aim to improve the accuracy and effectiveness of
extracting meaningful patterns and insights from the process data.

Clustering techniques like hierarchical clustering and k-means clustering algorithms
(Sokal and Michener 1958) are often rigid as they typically aim to find similarities con-
sidering all features of the subjects (Aluru 2005). The method of clustering data matrices
applied in one direction is commonly referred to as one-mode clustering (Shojima 2022).
However, when the number of features increases, the performance of these clustering
methods may be poor: Intuitively, in the process data, certain behavioral patterns are
commonly observed among a group of examinees under specific features. When the di-
mension of process features is high, different subsets of features may carry information on
different kinds of individual differences in problem-solving patterns. In addition, there
could be subsets of features that contain irrelevant information for clustering of examinees.
Clustering based on individual differences in the full feature space would potentially mask
these nuanced differences on specific dimensions. For instance, for the “Ticket” task in
the PISA 2012 CPS test, through k-medoids clustering on the response time features, Park
et al. (2023) found the significant role of time-based features in characterizing students’
learning styles. However, the time-related features did not demonstrate an advantage as
expected in the one-mode clustering method, k-means method when clustering the time-
based features and action sequences simultaneously (Qiao and Jiao 2018). In these cases,
variable selection on the process features used for clustering could potentially improve the
interpretability and within-cluster homogeneity in identified subgroups (Park et al. 2023).
To overcome the limitations of one-mode clustering, biclustering algorithms have been
introduced and widely studied over the last two decades (Cheng and Church 2000; Gan
et al. 2008; Gupta and Aggarwal 2010; Ihmels et al. 2002; Prelić et al. 2006; Tanay et al.
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2002; Zhang et al. 2010). Biclustering algorithms cluster the rows and columns of a data
matrix simultaneously, allowing for more flexible and meaningful groupings of the data
(Madeira and Oliveira 2004). Therefore, the biclustering algorithm is also referred to as
two-mode clustering, signifying the approach of clustering data matrices in two directions
(Shojima 2022). By considering both row and column clustering, biclustering methods can
capture more specific and context-dependent patterns in the data, making them particularly
useful for certain types of datasets and analysis tasks.

The aim of this study is to assess the performance of biclustering algorithms in an-
alyzing process data and to understand the local homogeneity in the biclusters consid-
ering the importance of time-based features and action sequences simultaneously. In
this paper, we conduct a comparative analysis of the capabilities of various bicluster-
ing algorithms in analyzing the process data. Specifically, we selected four popular
and commonly used biclustering algorithms, including the binary inclusion-maximal
biclustering algorithm (BIMAX; Prelić et al. 2006), factor analysis for bicluster acquisition
(FABIA; Girolami 2001; Hochreiter et al. 2010; Palmer et al. 2005) with Laplace prior, spec-
tral biclustering (Murali and Kasif 2002), and Cheng and Church’s (2000) biclustering
algorithm (referred to as BCCC). We applied these biclustering algorithms along with the
one-mode k-means algorithm to the “Ticket” task in the PISA 2012 CPS test. Through
various evaluations, we identified the best-fitting clustering algorithm. The clustering
results obtained from the best-fitting method were used to interpret timing and behavioral
sequence patterns. Through comparison with the scores and results from one-mode cluster-
ing algorithms, we examine the utility of biclustering algorithms in analyzing the log file
data. With these objectives, three specific research questions are as follows:

RQ1. What are the representative biclusters from simultaneously clustering based on the
time-based features and action sequence features? Which important features have
been utilized across different biclusters?

RQ2. Is there any association between the resulting biclusters and students’ CPS perfor-
mance?

RQ3. What are the similarities and differences in biclusters and clusters, using the selected
biclustering and clustering algorithms?

The remainder of this paper is organized as follows. In Section 2, we introduce the
“Ticket” task from the PISA 2012 CPS assessment under study, followed by a description
of the participants and data sets utilized in this study. Additionally, in this section, we
describe the biclustering algorithms and the evaluation metrics used for comparison. In
Section 4, we discuss the testing configurations and present the results of the comparative
analysis. Furthermore, we provide detailed interpretations of the biclustering patterns
observed considering the timing data and action sequences. Finally, we conclude with a
discussion that includes the implications and future directions.

2. Materials and Methods
2.1. Instrumentation

The 2012 PISA public dataset consists of 48 problem-solving items divided into 16 units,
designed to assess participants’ cognitive skills in addressing real-world challenges through
computer-based simulated scenarios (OECD 2014). This study primarily focuses on the
TICKETS task2 (CP038Q01) problem-solving item. More detailed information on this item
can be found at the following site: https://www.oecd.org/pisa/test-2012/testquestions/
question5/ (accessed on 1 September 2023). Figure 1 displays the screenshot of the opening
page of this task, while Figure A1 provides screenshots of the pages illustrating the stages in
solving the problem, as described by Qiao and Jiao (2018). As depicted in Figure 1, this item
provides students with a simulated problem-solving scenario involving ticket purchase.
It requires them to determine the cheapest ticket option from the ticketing machine for a
four-trip journey on the city subway. Furthermore, students have the option to purchase a
concession fare as well. Therefore, this interactive question requires students to actively
explore and collect the required information to make an informed decision (OECD 2014).

https://www.oecd.org/pisa/test-2012/testquestions/question5/
https://www.oecd.org/pisa/test-2012/testquestions/question5/
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Therefore, the primary cognitive processes involved in this task are planning and execution
(Fu et al. 2023; Han et al. 2022; OECD 2014; Park et al. 2023; Qiao and Jiao 2018).

Figure 1. The screenshot of the opening page of PISA 2012 problem-solving question TICKETS task2
(CP038Q01).

To solve the problem, one possible solution is to select four individual concession
tickets for the city subway, which costs 8 zeds. Alternatively, students can choose a daily
concession ticket for the city subway, which costs 9 zeds. Both options are available as
Figure A1 shows. Specifically, students have the option to select the Cancel button before
making the final decision to BUY. By comparing the two alternative solutions, students
can select the one with the lower cost. Therefore, correctly completing this task requires
students to explore both paths and make a comparison. According to the scoring rubric,
the item was scored polytomously with three score categories: 0, 1, and 2. Examinees who
received a full score of 2 should purchase four individual city subway concession fares
and compare their prices with the daily concession fare. A respondent who only tried one
solution without comparison to the other option received a partial credit of 1. Students who
made any other purchases or bought the wrong ticket received a score of 0 on this item.

2.2. Participants and Data Description

Similarly to Zhan and Qiao (2022), the current study included respondents from the
United States, Singapore, Austria, and Turkey. The dataset for the PISA 2012 log files
related to the problem-solving item can be downloaded from the following website: http://
www.oecd.org/pisa/pisaproducts/database-cbapisa2012.htm (accessed 1 September 2023).
In the dataset, respondents with missing IDs and not-reached items were excluded from
the analysis, resulting in a sample size of 3760. The missing responses were imputed using
the full information maximum likelihood (FIML) estimation method (Zhan and Qiao 2022).
The raw process data comprised 43,338 rows and 11 variables as columns. An example log
file for one student is provided in Figure A2.

http://www.oecd.org/pisa/pisaproducts/database-cbapisa2012.htm
http://www.oecd.org/pisa/pisaproducts/database-cbapisa2012.htm


J. Intell. 2024, 12, 10 5 of 32

The current study analyzed features generated from the raw process data following
Qiao and Jiao (2018). Specifically, four types of features were included: (1) time-based
features, (2) single actions, (3) two actions coded together, and (4) four actions coded
together as Table 1 in Qiao and Jiao (2018) shows. According to the recommendations of
Sao Pedro et al. (2012) and Qiao and Jiao (2018), these features are considered theoretically
significant in representing students’ problem-solving abilities, following the established
scoring rules.

Furthermore, to provide a more precise interpretation of the clustering results, it
is important to establish the connections between the features and the solutions. Iden-
tifying key and efficient sequences of actions is essential for addressing the problem at
hand. Therefore, in this context, the most effective approach involves comparing the
following two action sequences: Start–city–subway–concession–individual–trip4 and Start–
city–subway–concession–daily. It is worth noting that the Cancel action plays a crucial
role. Therefore, features including city_subway, concession, individual, trip_4, cancel, daily,
S_city, city_concession, concession_daily, concession_individual, individual_trip4, daily_cancel,
trip4_cancel, trip4_buy, city_con_ind_4, city_con_daily_cancel are expected to appear fre-
quently as high-frequency features.

Figure 2 displays the heatmap illustrating the values of features in the log files, ar-
ranged in ascending order of the total time spent on this task (T_time). Noticeable individual
differences in the time features (T_time, A_time, S_time) can be observed. In terms of action-
based features, subsequences such as city_concession and city_subway occurred with higher
frequency compared to others. Certain features, such as S_city, were consistently used,
while others, like country_full and trip_1, were utilized more rarely. Some features, like
Cancel, exhibited variations among students similar to the trend of T_time. Moreover, the
relationship between pairs of sequence features differed across subgroups of students.
Specifically, only a subset of students simultaneously exhibited large T_time and E_time,
similarly for city_concession and Cancel. This suggests that a biclustering approach may
hold promise to identify features that move in unison among subgroups of students.

2.3. Methodology
2.3.1. Biclustering Method

Over the past two decades, many biclustering methods have been proposed (Shojima
2022; Xie et al. 2019). For our study, we have chosen four widely recognized and commonly
used biclustering algorithms: BIMAX, FABIA, Spectral, and BCCC, covering three search
algorithms (Padilha and Campello 2017). These algorithms were selected due to their
popularity and representation of diverse approaches in the field of biclustering methods
(Bozdağ et al. 2010; Eren et al. 2013; Henriques et al. 2015; Madeira and Oliveira 2004;
Padilha and Campello 2017; Prelić et al. 2006; Xie et al. 2019).

The first method we selected was the BIMAX method, which dichotomizes the input
data matrix and then recursively partitions it, searching for the submatrices consisting of
entries that are all equal to one. This method employs a divide-and-conquer algorithm,
making it a highly efficient method for detecting simple structures and combining their
solutions into the solution for the original problem (Leiserson et al. 2009; Prelić et al. 2006).

We then investigated two biclustering methods that utilize Distribution parameter
identification algorithms (Madeira and Oliveira 2004): FABIA and Spectral. These meth-
ods assume statistical models associated with the structure of the biclusters. FABIA is a
multiplicative model designed to extract linear dependencies between sample patterns and
feature patterns (Girolami 2001; Hochreiter et al. 2010; Palmer et al. 2005). The Spectral
Bicluster algorithm employs singular value decomposition to simultaneously cluster the
features and samples (Kluger et al. 2003). Additionally, the Spectral Bicluster algorithm
preprocess the data matrix based on normalization.
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Lastly, we selected the BCCC biclustering method, which utilizes the greedy ap-
proaches to find the best decision for a global optimal solution. It searches for sub-
matrices in a standardized data matrix with a score lower than a specific threshold
(Leiserson et al. 2009). The exhaustive advantages of the BCCC method enable efficient
identification of temporally contiguous biclusters (Cheng and Church 2000; Gonçalves et al.
2009; Madeira et al. 2008).

2.3.2. Types of Biclusters

Assume that a total of P features are observed for N examinees in the test. Considering
a data matrix A = (aip)1≤i≤N,1≤p≤P, where aip denotes the pth feature of examinee i.
The one-mode clustering algorithm can be applied separately to the rows (indexed as
examinees) or the columns (indexed as features) of the data matrix. On the other hand,
the biclustering algorithm clusters both the rows and columns simultaneously. Thus, the
objective of biclustering techniques is to identify subgroups of examinees and subgroups
of features by conducting concurrent clustering of both dimensions, rather than clustering
them independently.

The biclustering algorithm aims to find subsets Bs of the original data matrix A, for
s = 1, 2, . . . , S, where S denotes the number of subsets. Each subset Bs is called a bicluster
denoted as Bs = (bij)|Is |×|Js |, where Is ⊆ {1, 2, . . . , N}, Js ⊆ {1, 2, . . . , P}, and |D| denotes
the cardinality of set D. Here, both examinees and features are allowed to overlap across
biclusters. In other words, for s1 ̸= s2, the intersection of Is1 and Is2 can be nonempty,
similarly for Js.

Typically, the biclusters can be classified into three different types using various
methods: constant bicluster, shifting bicluster, and scaling bicluster (Madeira and Oliveira
2004; Prelić et al. 2006; Shojima 2022). Specifically, a constant bicluster is one where all
elements within the bicluster are equal to the same constant value, making it the simplest
structure. However, for real-valued matrices, it is appropriate to identify biclusters with
coherent values. Therefore, the coherent biclustering algorithms often utilize parameters
αi and β j to adjust the rows (indexed by i) and columns (indexed by j) of the matrix. If
bij = αi + β j, a perfect shifting bicluster is discovered. If bij = αi × β j, a scaling bicluster is
identified.

Figure 3 illustrates five examples of different types of biclusters, where rows represent
students within a bicluster, and columns represent features within a bicluster. Figure 3a–c
represent various constant biclusters. Figure 3a showcases a perfect constant bicluster where
all values are identical. It’s important to note that such ideal biclusters are often masked by
noise in real data (Madeira and Oliveira 2004). Figure 3b,c are also perfect biclusters, with
either a subset of columns or rows consistently share the same values. On the other hand,
Figure 3d depicts a shifting bicluster. In this type of bicluster, each row can be obtained by
adding a constant to every row, while each column can be similarly obtained by adding
a constant to each column. Similarly, Figure 3e illustrates a scaling bicluster. In a scaling
bicluster, each row can be obtained by multiplying a constant to each of the rows, and each
column can be obtained similarly by multiplying a constant to each of the columns.

Among the four selected biclustering algorithms, BIMAX aims to identify constant
biclusters. It’s worth noting that BIMAX would sometimes dichotomize the data matrix,
resulting in the constant biclusters that can also be considered as the scaling biclusters.
Additionally, both FABIA and Spectral methods are designed to detect shifting biclusters,
while the BCCC method focuses on constant biclusters. However, it’s important to know
that in the analysis of PISA tasks, the type of bicluster represented in Figure 3b is highly
unlikely to occur because an examinee’s behavior typically varies across different features.
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Figure 2. Heatmap of the log file for PISA 2012 problem-solving question TICKETS task2 (CP038Q01).
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Figure 3. Examples of different types of biclusters following Madeira and Oliveira (2004). (a) Constant
bicluster, (b) constant rows, (c) constant columns, (d) shifting bicluster, and (e) scaling bicluster.

2.3.3. Evaluation Metrics

To compare the performances of biclustering algorithms, several internal measures
can be employed to evaluate the identified biclusters (Castanho et al. 2022; Madeira and
Oliveira 2004). The first statistic is the within-bicluster variance (VAR; Hartigan 1972),

VAR(Bs) =
1

|Is| × |Js| ∑
i∈Is

∑
j∈Js

(bij − bIsJs)
2, (1)

where bij denotes the element (i, j) in the bicluster Bs for i ∈ Is, j ∈ Js, and bIsJs denotes
the mean of the elements in the bicluster Bs. Usually, the criterion VAR would be effective
in measuring within-bicluster homogeneity for constant biclusters but fail on more complex
patterns.

As an alternative method to evaluate within-bicluster similarity, the mean squared
residue (MSR; Cheng and Church 2000) is employed as a measure of the coherence over the
rows and columns within the bicluster. The specific expression of MSR is given as follows,

MSR(Bs) =
1

|Is| × |Js| ∑
i∈Is

∑
j∈Js

(bij − biJs − bIs j + bIsJs)
2, (2)

where biJs and bIs j denote the mean of the row i and the column j in bicluster s, repectively.
Another measure aims to find the coherence of the biclusters based on the normalized

pattern, called virtual error (VE; Aguilar-Ruiz 2005; Divina et al. 2012). The specific
expression is given as follows,

VE(Bs) =
1

|Is| × |Js| ∑
i∈Is

∑
j∈Js

|b̂ij − ρ̂j|, (3)

where the (i, j) normalized element in bicluster s is

b̂ij =
bij − µ

(s)
i

σ
(s)
i

,

µ
(s)
i represents the mean of row i in bicluster s, and σ

(s)
i denotes the standard deviation

of row i in bicluster s. Let ρ̂j = ∑i∈Is b̂ij/|Is| denote the normalized pattern over rows
in bicluster s. Pontes et al. (2015) pointed out that virtual error can effectively capture
both scaling and shifting patterns. Li et al. (2012) pointed out that VE is a suitable internal
measure to compare different biclustering results.
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The specific problem addressed by biclustering algorithms can now be defined. Given
a data matrix, our goal is to identify a set of biclusters Bs, in such a way that each bicluster Bs
exhibits certain defined characteristics of homogeneity. The exact criteria for homogeneity
may differ between different approaches (Madeira and Oliveira 2004). For instance, the
similarity score, referred to as MSR, is one such criterion.

3. Data Analysis

Here, we outline the procedures taken in the current study to apply biclustering to the
analysis of CPS log data. The procedures can be broken into 6 steps:

3.1. Procedure 1: Specification of Features

Before implementing biclustering, the first step is to specify the data matrix of features
in the CPS data. In this article, we employed the features defined in Qiao and Jiao (2018)
shown in Table 1 in Qiao and Jiao (2018) and Figure 2. These 36 features, consisting
of 32 action-based features and 4 time-based features, were derived in a theory-driven
manner, where actions and subsequences in the log data with potential relationship with
the measured construct of CPS were preserved. Such theory-driven feature engineering
aids the interpretability of in subsequent clustering.

3.2. Procedure 2: Pre-processing of Input

In our analysis, we chose not to standardize the features used in both clustering and
biclustering to preserve the original scale of the data. As depicted in Figure 2, the values of
time-based features are notably larger than those of the action sequences. Standardization,
in this case, would bring the action sequence and time-based features onto the same scale.
However, preserving the original scale of the data, which captured presence/absence/fre-
quency of actions and time spent, is crucial for meaningful interpretation within the context
of complex problem-solving assessment.

It’s worth noting that some biclustering algorithms perform feature preprocessing
within the algorithm. For instance, the BIMAX algorithm dichotomizes the input data
matrix and subsequently seeks submatrices, followed by a post-processing step to restore
the original data matrix. The Spectral and FABIA methods employ standardization based
on a standard normal distribution. Conversely, the BCCC method does not apply any
feature transformation during preprocessing.

3.3. Procedure 3: Configuration Testing and Selection of Biclustering Methods

In this procedure, the parameter settings for the BIMAX, FABIA, Spectral and BCCC
algorithms were optimally set to the default values based on the aforementioned internal
measures. For the BIMAX and FABIA algorithms, the number of possible biclusters varied
from 2 to 30, as presented in Tables A1 and A2. The aforementioned evaluation metrics
including VAR, MSR, and VE, were employed to select the optimal number of clusters for
BIMAX and FABIA algorithms. Further, evaluation metrics were employed to compare
BIMAX, FABIA, Spectral and BCCC algorithms as well as k-means clustering.

3.4. Procedure 4: Interpret the Homogeneous Biclusters and Contribution of Features

First, under biclustering, subsets of features were utilized in different biclusters resem-
bling sparsity. Therefore, the overall contribution of a feature was evaluated based on the
number of times the feature was included across all the biclusters. Furthermore, to explain
each bicluster, we examined the features included in the bicluster, as well as the magnitude
on these features for examinees within the bicluster. A homogeneous bicluster contains
examinees who are similarly high (or low) on the included features. In the analysis of the
PISA CPS data, we picked several representative biclusters that exhibited high homogeneity
on the selected features, to illustrate how the identified biclusters could be interpreted.
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3.5. Procedure 5: Track the Association between the Biclusters and Scores

Based on the selected optimal biclustering solution, the distribution of scores was
analyzed within each bicluster. Further, through the level of scores, biclusters were classified
into four different types, including clusters that corresponded to scores of 0, 1, 2, or a mix
of different scores.

3.6. Procedure 6: Comparison between the Biclustering and One-mode Clustering

Finally, to understand the similarity and differences in grouping of examinees based
on biclustering versus k-means clustering, we cross-tabulated the examinees’ memberships
in biclusters with their memberships in the clusters identified based on k-means clustering.

4. Results

This section discusses the findings from applying biclustering to the PISA CPS data.
BIMAX, FABIA, Spectral, and BCCC were applied using two R packages: biclust (Kaiser
et al. 2015), and fabia (Hochreiter and Hochreiter 2013). Additionally, we compared these
biclustering algorithms with clustering based on k-means. The k-means clustering was
carried out using the “k-means” function in the R package stats (R Core Team 2022).

4.1. Biclusters Identified from PISA CPS Ticket Item
4.1.1. Testing Configurations

To facilitate the comparison among these algorithms, we commenced by selecting
the optimal number of clusters for each algorithm. As Tables A1 and A2 showed, the
criteria VAR, MSR, and VE consistently indicated the optimal solutions for the BIMAX
and FABIA algorithms. Specifically, the twelve-bicluster solution for BIMAX and the
ten-bicluster solution for FABIA demonstrated the lowest values across all three criteria.
These findings strongly suggest that participants should be clustered into twelve and ten
clusters, respectively, when utilizing the BIMAX and FABIA algorithms. For the Spectral
algorithm, we determined the number of eigenvalues considered to find biclusters based
on our internal measures and ultimately chose 2 as the optimal number. On the other
hand, for the BCCC algorithm, we set the target number of biclusters to be found as 100.
Figure 4 visually illustrates the results of our analysis, indicating that the Spectral algorithm
identified 12 clusters, while the BCCC algorithm detected a total of 22 clusters.

For the k-means method, we considered a maximum of 30 clusters to be found. We
employed two different criteria to determine the optimal number of clusters. The first
criterion was the average silhouette width, which is a commonly used measure. We
employed the NbClust method to determine the optimal number of clusters for the data set
using the “fviz_nbclust” function in the R package factoextra (Kassambara and Mundt 2017).
We calculated the average silhouette width for cluster numbers ranging from 1 to 30 and
depicted the relationship in Figure 5. Notably, the two-cluster solution exhibited the highest
silhouette width, indicating that two clusters would be the optimal choice. The second
criterion utilized was the evaluation of VAR, MSR, and VE. Table A3 presents the mean
values of VAR for different cluster numbers, which aligned with the results depicted in
Figure 5, suggesting that the optimal number of clusters was also two according to VAR.
However, when considering the criteria MSR and VE, different solutions emerged. MSR
identified a total of 20 clusters as the optimal configuration, while VE suggested a higher
number of clusters, specifically 29.

Based on the optimal clusters selected from the analysis, the comparison results
across different biclustering and clustering methods are presented in Table 1. Regarding
VAR, the BIMAX method was identified as the best-performing method. However, when
considering the criteria of MSR and VE, the BCCC method consistently outperformed the
other clustering methods. This suggests that the BIMAX method’s ability to discover high-
quality biclusters may be limited since it yielded the highest values for the more appropriate
measures MSR and VE. Additionally, both the Spectral and FABIA methods encountered
similar challenges when considering the MSR and VE criteria. Their factorization-based
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approach primarily focuses on detecting specific types of bicluster structures, which restricts
their ability to find diverse biclusters. Therefore, the BCCC method was suggested as the
optimal clustering method in this study.
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Figure 4. The number of biclusters for different biclustering methods.
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Figure 5. The optimal number of clusters by the average silhouette width for the k-means clustering.

Furthermore, Table 1 demonstrates that all the biclustering methods exhibited smaller
values of VAR within clusters compared to the k-means method. This observation suggests
that biclustering techniques tend to generate more homogeneous structures compared to
one-mode clustering approaches.
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Table 1. Comparison of means of different criteria across different methods.

KM2 KM29 KM20 BIMAX FABIA Spectral BCCC

VAR 201.316 454.621 498.897 86.832 93.002 149.118 146.941

MSR 26.961 18.173 16.266 11.195 23.977 25.337 10.502

VE 1.562 1.122 1.123 2.151 1.304 1.398 0.794
Notes: KM2 denotes k-means method given two clusters, and the same to KM29 and KM20. VAR denotes the
variance of the cluster, MSR denotes the mean squared residue, and VE denotes the virtual error.

4.1.2. Contribution of Features

The primary aim of biclustering is to cluster both rows and columns of a data matrix
simultaneously to discover homogeneous submatrices. With this approach, these tech-
niques can potentially identify overlapping submatrices (Padilha and Campello 2017).
Consistent with results of Padilha and Campello (2017), among the four selected methods,
varying degrees of overlap were observed in the features. However, the BCCC and FABIA
biclustering methods did not reveal any overlap among examinees, while the other two
methods identified a significant amount of overlap.

Figure 6 shows the frequency of features across clusters for different biclustering
methods. As for the Spectral method, each of the 36 features was used four times, hence the
results are not presented in Figure 6. The BIMAX method utilized only 11 out of 36 features
to identify biclusters, while the FABIA and BCCC methods employed 34 and 36 features,
respectively. Furthermore, in the case of the k-means method, all 36 features were utilized
to find each cluster. This indicates that the k-means method considered the entirety of the
available features without any feature selection or exclusion. Consequently, each feature
contributed to the clustering process, and no specific feature was deemed less important or
excluded from consideration.

From Figure 6, it could be concluded that the feature city_con_daily_cancel played a
significant role in the biclustering algorithms, which was consistent with the findings in
Qiao and Jiao (2018). Moreover, in line with the phantom items defined by experts in Zhan
and Qiao (2022), certain action sequences such as concession, Cancel, and city_concession
were also identified as important features for identifying coherent biclusters. Overall, these
results suggest that biclustering algorithms strive to strike a balance between interpretability
and data mining outcomes.

Note that these biclustering algorithms could select not only frequently used features
for students but also those features that students would not typically utilize. For instance,
in the case of the BCCC algorithm depicted in Figure 6, the feature full_fare was identified
as one of the top nine frequently occurring features. However, this item specifically
asked students to purchase a concession ticket, making it a distractor. Out of the total of
3760 students, 3192 students did not use this option at all, and only 11 students attempted to
use full_fare button more than five times. This finding aligns with the nature of biclustering
algorithms, which tend to prioritize the identification of coherent biclusters. The same
observation applies to the country_concession feature in the BIMAX algorithm and the
country_trains feature in the FABIA algorithm, respectively.

Furthermore, it is worth highlighting that the time-related features, including T_time,
A_time, S_time, and E_time, were consistently selected as important features for achieving
coherence among the biclusters in Figure 6. This suggests that there exists a similarity in
terms of time-based patterns within certain coherent clusters. The significance of time-
related features in classification is to be expected, since time intuitively plays a crucial
role in problem-solving and learning dynamics. This finding is also consistent with the
observations in Wu and Molnár (2022), where the presence of rapid learners in complex
problem-solving scenarios was identified. Therefore, the inclusion of time-related features
further enhances the understanding of students’ behaviors and performance in the context
of the analysis.
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Figure 6. The frequency of features across the clusters under different biclustering methods. Figures
(a–c) represent the results of the BIMAX, FABIA and BCCC methods, respectively. The frequency of
features across the clusters under different biclustering method.
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4.2. Explanation of Representative Biclusters

Based on the results presented in Section 4.1, the BCCC method was selected as the
optimal biclustering algorithm. Consequently, in the following subsections, we specifically
focus on conducting an in-depth analysis based on the clustering results obtained from the
BCCC method.

Figures 7 and 8 depict the specific performances of features for different clusters
based on the results of the BCCC method. Additionally, Tables A4 and A5 in the appendix
offer the feature averages for each bicluster based on the outcomes of the BCCC method.
Specifically, Figure 7 provides a summary of all the features, while Figure 8 presents the
summary of the selected features within a specific cluster in the BCCC method.

First, comparing Figures 7 and 8, we can observe that the features that were excluded
in each bicluster typically exhibited larger within-cluster heterogeneity. For example,
for time-based features, only A_time was preserved in Cluster 9, and other time-based
features presented a high variability, as indicated by bars of various colors in Figure 7. In
comparison, all the time-based features were preserved in Cluster 10, where individuals
within the cluster were highly similar on these features. Similar trends were observed for
Clusters 9 and 10 on action-based features. For example, daily and country_trains were
excluded in Cluster 9.

When a feature was included in a bicluster, the average within-cluster magnitude
on the feature could either be high or low. For example, in Clusters 9 and 10, features
city_subway and concession exhibited homogeneity with high average values, while features
trip_1 and country_full exhibited homogeneity with low values, suggesting that individuals
within these biclusters seldom performed these two subsequences.

Comparing Clusters 9 and 10, it can be observed that on the included features, the
magnitudes across these two clusters were relatively similar. In particular, examinees in
both biclusters showed homogeneity on performing subsequences necessary for full credit,
i.e., Start–city–subway–concession–individual–trip4, Start–city–subway–concession–daily, and
Cancel. The difference between the two biclusters primarily lied in the included feature
set. For Cluster 10, all action and time features were included, while Cluster 9 excluded
three time features as well as action features that pertained to subsequences less relevant
to the correct response (e.g., ones involving clicking daily and country). Individuals in
Cluster 9 demonstrated greater heterogeneity on these less relevant actions, despite that
they performed the necessary steps for completing the task after all.
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Figure 7. Heatmap of all the features within the clusters in the BCCC method.
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Figure 8. Heatmap of the selected features within clusters in the BCCC method. Features in white were
not selected in a bicluster. Features in light yellow were selected with within-cluster mean around 0.
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4.3. Relationship between Biclusters and Performances

Figure 9 presents the number of examinees in each cluster under the BCCC method.
Firstly, we ranked the clusters based on the number of examinees in each cluster in decreas-
ing order. As depicted in Figure 9, Cluster 1 contains the highest number of examinees,
with a total of 1021 individuals, whereas Cluster 22 consists of only 2 examinees, which is
the lowest among all clusters.
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Figure 9. The number of examinees in each cluster considering BCCC method.

Figure 10 depicts a visual representation of the distribution for scores across vari-
ous levels within each cluster, based on the BCCC method. Specifically, one observes
distinct patterns in the score distribution across clusters. In particular, all the examinees
in Clusters 10 and 12 answered the question correctly and achieved the full score of 2.
Additionally, almost all examinees in Cluster 9 obtained the full score of 2. On the other
hand, Clusters 2, 6, and 19 contained examinees who received partial credit with a score
of 1, suggesting these examinees were able to purchase the correct type of ticket, without
implementing the price comparison. In contrast, all the examinees in Clusters 21 and 22
and a high proportion of examinees in Cluster 3 displayed the lowest scores 0, which may
indicate failure to execute the task based on the explicit requirements.
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Figure 10. The proportion of different scores in each cluster considering BCCC method.
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The remaining clusters (such as Clusters 1, 4, 5, and 20) exhibited a mixture of scores
among the students as Figure 10 shows. This suggests some degree of homogeneity in
the actions or timing patterns among the students within these clusters, despite receiving
different scores. This observation can be attributed to the biclustering algorithm, which pri-
marily focuses on students’ problem-solving strategies from a behavioral perspective. This
PISA ticket item was designed to assess exploring and understanding, requiring students
to adopt a targeted exploration strategy and to synthesize the information about prices of
different alternatives (OECD 2014). Thus, students with different levels of proficiency on
exploring and understanding may produce diverse results, even if they employ similar
actions (Wu and Molnár 2022).

4.3.1. Biclusters with Full Score

Clusters with a higher proportion of perfect scores, a full score of 2, demonstrated
mostly homogeneous structures in their action sequences. As Figure 8 showed, in Clusters
9, 10, and 12, the essential actions in Start–city–subway–concession–individual–trip4, Start–city–
subway–concession–daily, and Cancel were frequently utilized, while the irrelevant buttons
were seldom chosen. From a behavioral perspective, this indicates that these students did
compare the prices of individual tickets for four trips and a daily ticket, then finally made a
correct decision to buy the cheaper one. Furthermore, examinees in Cluster 9 made more
attempts to use the Cancel button compared to the other two clusters. Examinees in Cluster
12 used feature city_concession more frequently compared to the other two clusters.

4.3.2. Biclusters with Partial Score

Furthermore, clusters with a higher proportion of partial scores also exhibited homo-
geneous strategies. For instance, examinees in Cluster 2 utilized the key action sequence
Start–city–subway–concession–daily, while rarely used other buttons. This indicates that
these students purchased a daily ticket with minimum additional explorations, including
comparing it to the prices of individual tickets. Similarly, examinees in Clusters 6 and 19
frequently employed the key action sequence Start–city–subway–concession–individual–trip4,
while rarely using other buttons. This implies that these students bought individual tickets
for four trips but did not compare them to the prices of a daily ticket. However, examinees
in Cluster 19 used the Cancel button more frequently, whereas examinees in Cluster 6 rarely
used it.

4.3.3. Biclusters with a Score of 0

Examinees in Cluster 3 exhibited relatively homogeneous structures in the action
sequence, Start–city–subway–concession, but then became divided on the subsequent choices
of daily or individual. They additionally lacked consecutive actions, where key subsequences
including city_con_ind_4 and city_con_daily_cancel were rarely chosen. As a result, the
majority of examinees in Cluster 3 obtained a score of 0. Furthermore, examinees in Cluster
22 demonstrated homogeneous structures by repeatedly attempting the features full_fare,
trip_5, and full_individual for a long time, which also resulted in all of them obtaining a
score of 0. In summary, examinees who scored 0 displayed more diversified strategies in
the problem-solving process compared to individuals who answered correctly.

4.3.4. Biclusters with a Mixture of Scores

Interestingly, we have also observed some similarities in clusters that include a mix-
ture of scores. For instance, in Cluster 4, examinees made multiple attempts on the
action sequence city_con_daily_cancel, particularly focusing on the features city_subway,
city_concession, and Cancel. Remarkably, many of these students still managed to provide
correct responses despite their numerous attempts. Similar findings can be observed in
Cluster 5, where students made multiple attempts to compare the action sequences Start–
city–subway–concession–individual–trip4 and Start–city–subway–concession–daily for a longer
action time.
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4.4. Comparison of the Biclustering and Clustering Solutions
4.4.1. Homogeneity in Time-Based Features

Compared to one-mode k-means clustering, in addition to its effectiveness in clustering
examinees, biclustering did indeed highlight the significant role of time-related features,
as expected. Specifically, it is evident that time-based features, including features T_time,
A_time, S_time, E_time, did play a crucial role in the BCCC method, as colors have segregated
into distinct layers among different clusters, particularly concerning the total time of action.
The results presented in Figure 8 offer a clearer visualization of this.

Despite the fact that examinees in Cluster 9, 10 and 12, achieved perfect scores, their
usage of time varied. Examinees in Cluster 10 showed homogeneity in terms of total time,
action time, and relatively low start and end times. However, examinees in Cluster 12
exhibited similarity in time features except for the end time, while examinees in Cluster 9
displayed similarity only in the action time. This suggests the presence of homogeneity in
time-based features within different clusters.

Additionally, there were differences in the time utilization between Cluster 6 and 19,
with examinees in Cluster 19 taking longer total and action times to solve the problem
compared to those in Cluster 6. To some extent, this suggests that examinees in Cluster 6
made decisions more decisively than those in Cluster 19.

4.4.2. Degree of Similarity of Biclustering and Clustering

In Table 2, cross-tabulations are presented between student memberships derived
from biclusters and categories generated by the k-means method given two clusters. For
instance, among the 134 students in Bicluster 9, 74 were assigned to the first k-means
cluster, while 60 were assigned to the second k-means cluster. Therefore, Table 2 presents
the relationship between two groups of biclusters and k-means solution under two clusters.
For clusters with a higher proportion of perfect scores, Clusters 9, 10 and 12 were nearly
equally represented in both categories KM2-Cluster1 and KM2-Cluster2. However, for
clusters with a higher proportion of partial scores, all the students in Clusters 2 and 6
presented in the second category KM2-Cluster2 and Cluster 19 were mostly present in the
second category KM2-Cluster2.

Figure 11 provided the feature heatmap of biclusters 9, 10 and 12, crossed with the
results from k-means given two clusters. Cluster 10 showed homogeneity considering all
the features as k-means method did. However, within Cluster 10, the sequence patterns of
KM2-Cluster1 and KM2-Cluster2 were very similar, although slight differences were found
on selecting timing features. The same trend showed up in Clusters 9 and 12. Further, the
biclustering algorithm differentiated the three clusters considering the subset of features.
Cluster 9 removed several features from action sequences for biclustering, and Cluster 12
excluded a time feature.

Table 2. Relationship between two groups of biclusters and k-means method given two clusters.

Bicluster KM2-Cluster1 KM2-Cluster2 Bicluster KM2-Cluster1 KM2-Cluster2

9 74 60 2 0 409
10 31 90 6 0 277
12 40 48 19 2 6

Notes: KM2 denotes k-means method given two clusters, KM2-Cluster1 denotes the first k-means clusters and the
same to KM2-Cluster2.
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Figure 11. Heatmap of Cluster 9, 10 and 12 cross the results from k-means given two clusters. From
top to bottom, the black rectangles represent biclusters 9, 10 and 12 respectively. Within each black
rectangle, the purple rectangle represents individuals classified based on k-means into KM2-Cluster1,
while the green rectangle represents those in KM2-Cluster2.

Based on results in Table 2, there were very few data points in Clusters 2, 6 and 19
belong to KM2-Cluster1. Thus, Figure 12 only provides the heatmap of Cluster 2, 6 and 19
which can nearly denote the comparison with k-means given two clusters. For Clusters
2 and 6, all the features have been employed in classification. There are clear differences
between the two biclusters, especially in action features. However, KM2-Cluster2 classified
them into one category.
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Figure 12. Heatmap of Cluster 2, 6 and 19 cross the results from k-means given two clusters. From
top to bottom, the black rectangle represents bicluster 2, 6 and 19.

5. Discussion

This study investigated the utilization of biclustering algorithms in the context of
process data. Four different well-established biclustering algorithms were considered, along
with the one-mode clustering algorithm based on k-means. To evaluate their capabilities of
identifying the homogeneous groups, we analyzed a dataset consisting of 3760 students
who participated in the “Ticket” task of the PISA 2012 CPS test. Then we applied the four
biclustering algorithms using a set of well-defined features. To comprehensively evaluate
the four biclustering and compare with the one-mode k-means clustering method, we
consider three different evaluation metrics: variance, mean squared residue, and virtual
error metrics. The results indicated that all the biclustering methods clearly outperformed
the one-mode clustering approach when using the variance metric. This suggests that
biclustering techniques tend to produce more homogeneous structures. Furthermore,
the BCCC biclustering algorithm consistently outperformed the other methods when
considering the mean squared residue and virtual error metrics. From the perspective of
evaluation metrics, we find that biclustering algorithms are useful in achieving homogeneity
on subsets of features.

Further, focusing on the individual performances of the four biclustering algorithms,
the BCCC method exhibited high homogeneity levels in generating some small biclusters.
To comprehensively understand respondents’ problem-solving competence and leverage
the rich information contained in the process data, we examined the achievement data and
process data simultaneously under the BCCC method. Specifically, for examinees who
obtained a full score, their action sequence patterns revealed a high level of homogeneity
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in the biclustering results. For examinees who obtained partial credit, their action sequence
patterns depicted a moderate level of homogeneity. However, for examinees who had
incorrect responses, the biclusters demonstrated diverse action sequence patterns, such
as frequent attempts on the wrong buttons or being stuck at certain steps. Moreover, we
have also observed that students may produce diverse results even though they employed
similar exploration strategies (Wu and Molnár 2022). That is because the BCCC biclustering
algorithm identified some homogenous structures across different scores, suggesting that
similar problem-solving strategies were employed by students despite variations in their
overall performance.

In conclusion, the biclustering technique is a powerful tool for discovering local pat-
terns in process data analysis. By using features extracted from the process data established
in prior literature, we demonstrated how to utilize biclustering algorithms to recognize
and interpret homogeneous biclusters in the PISA 2012 CPS test. Our study highlights
the promising potential of biclustering algorithms in analyzing process data to identify
prototypical problem-solving patterns.

5.1. Biclustering and Clustering Methods

The key distinction of the biclustering algorithms from one-mode clustering is that
they utilize only a subset of features instead of all features for clustering each observation,
striking a balance between interpretability and capturing the individual differences across
all features in the observed data. Our findings indicated that certain features played a
crucial role.

First, through extraction of relevant features from the selected biclustering approaches,
the study gave a broader understanding of contributions of features. On one hand, features
like city_con_daily_cancel were consistently included in multiple biclusters, aligning with
previous findings from data mining techniques (Qiao and Jiao 2018). On the other hand,
certain action sequences such as concession, Cancel, and city_concession were frequently
employed, in agreement with results obtained from phantom items defined by experts
(Zhan and Qiao 2022). Additionally, the biclustering algorithms successfully identified
homogeneous patterns in some less frequently used features.

In addition, as expected, the biclustering algorithms succeeded to capture the individ-
ual differences on time-based features, which outperformed the one-mode k-means method
(Qiao and Jiao 2018). Specifically, the time-related features in classification were found to
be more relevant in certain clusters rather than being coherent across all biclusters.

For classification of examinees, the biclusters refined the categorization of the clusters
under the k-means method. On one hand, the study identified cross-similarities between
biclusters and clusters. On the other hand, the study differentiated biclusters from the
categorization by k-means.

5.2. Implications

Our study has several implications for measurement. First, the information stored
in the log files largely depends on the design of the user interface. Our results revealed
that contribution differed across features with high homogeneity and some buttons did not
differentiate examinees. Such evaluation will provide a deeper insight into the design of
simulation tasks. For example, how challenging or difficult these irrelevant buttons should
be set. Second, previous researches found the crucial role of time-based features. However,
time-based features were not successfully identified in k-means clustering. The current
study provided a more comprehensive view of the time-based feature and action sequences.
Homogeneity could only be found in certain groups of students implying a universal
skill among all examinees. Such information might support modeling and explanation of
response time in evaluating students’ proficiency.
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5.3. Considerations in Interpreting Biclusters

In one-mode clustering, like hierarchical clustering and k-means clustering algo-
rithms, all features are considered when evaluating the dissimilarity of observations (e.g.,
examinees) within a cluster. Therefore, in the selection of the number of clusters, using
within-cluster variability (e.g., sum of squares) as the selection criteria tends to favor so-
lutions with a large number of clusters. However, in biclustering, the number of features
included in each (bi)cluster of examinees is different—depending on the subset of exam-
inees in a given bicluster. The biclustering algorithms also identify subsets of features
that act in unison for that subset of examinees. As a consequence, breaking examinees
into a larger number of smaller biclusters, which may increase the number of nuisance
features included in each bicluster, will not necessarily lead to a decrease in within-bicluster
variability across the included features. As the feature set changes in biclustering, we note
that the meaning of within-cluster variability in biclustering inherently differs from that of
one-mode clustering, which readers might be more familiar with. At the same time, the
concept of between-cluster variability, which evaluates how dissimilar are observations
from different clusters, is no longer straightforward in the biclustering case, because the
biclusters can overlap in examinees, and the selected features differ across different bi-
clusters. In interpreting biclustering solutions that are selected based on within-bicluster
variability measures, rather than focusing on the partitioning of the examinees as in one-
mode clustering, researchers should treat it as an algorithm that provides information on
(potentially overlapping) subsets of examinees, who share similarities on certain features.
The biclustering solutions selected based on measures such as MSR and VE are intended
to identify subsets that are homogeneous, therefore facilitating the interpretation of each
bicluster by making it more “pure” on the included dimensions. At the same time, we note
that there are limitations to evaluation indices based on within-bicluster variability, as it
does not consider solution parsimony: For instance, in the empirical example, the optimal
solution based on VE and MSR contains 22 biclusters, which might be far more than needed
for capturing cognitively meaningful individual differences on the ticket item. We leave
it to future research to develop evaluation indices or methods for selecting the optimal
number of biclusters that build in parsimony. In the meantime, rather than interpreting
all identified biclusters which can be very taxing, substantive researchers interpreting the
biclustering solutions may prioritize the interpretation of biclusters that either (1) contain a
sufficient number of examinees of interest or (2) are linked to key variables of interest, e.g.,
task outcome, proficiency, or demographic background.

It is also worth mentioning how biclustering connects to other types of clustering-
related methods. The first is soft clustering. Methods such as k-means and hierarchical
clustering are hard clustering algorithms, in that each examinee gets deterministically as-
signed to one class. Soft clustering, for instance via a probabilistic mixture model (e.g.,
McLachlan et al. 2019), still assumes that each examinee comes from a single class but
characterizes class membership as the probability that an examinee stems from each class,
rather than a single class label. In this sense, biclustering could also be seen as a hard
two-mode clustering algorithm, in that for each bicluster, binary decisions are made for
whether each examinee and feature is included. Another related type of probabilistic model
is mixed-membership models (e.g., Airoldi et al. 2014), which, similar to biclustering, relaxes
the assumption that each examinee originates from a single class. When repeated measures
are available for an examinee (e.g., multiple items or features), these models assume that
the observations for the same examinee can stem from different latent classes, with the class
probabilities characterized by an examinee-specific class proportion vector. Well-known ex-
amples include the grade of membership model (Woodbury et al. 1978) and latent Dirichlet
allocation (Blei et al. 2003). Different from biclustering, most mixed-membership models
do not simultaneously group features into latent classes. However, recent extensions, such
as the dimension-grouped mixed-membership model (Gu et al. 2023), additionally allow
the grouping of feature dimensions, where the features from the same group act in unison
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in the latent class they originate from for a given examinee. Future research may consider
the application of these models to the analysis of log data and compare it to biclustering.

5.4. Limitations and Future Directions

The current study has limitations and can be extended in several ways. Firstly, time-
based features in process data are not limited to total time, action time, and end time. Some
researchers have discovered there are other important time-based features in the process
data. For example, Park et al. (2023) established item-level response time data, while Fu
et al. (2023) discovered the elapsed time of completing a state transition. Future studies
can further consider incorporating more precise time-based features in the biclustering
algorithms to effectively identify homogeneous structures. Additionally, in this paper, we
only employed four commonly used biclustering algorithms, but many other interesting
biclustering algorithms have been developed. In the future, we could explore and compare
more biclustering algorithms to gain deeper insights into their performances. Third, the
validation of biclustering algorithms is also one of the most important issues that need to
be addressed.

It is also worth emphasizing the limited scope of substantive conclusions that can
be drawn from the current exploratory study. The current study aims to introduce an
exploratory process data analysis approach based on biclustering, for uncovering types
of problem-solving patterns. Although the exploratory findings could serve as a data-
driven guide to uncover meaning individual differences in problem-solving processes
and proficiency, interpretations on the cognitive processes or strategies underlying ob-
served patterns are speculative. For instance, some buttons that were frequently used
within certain clusters, e.g., clicking cancel, could be attributed to a multitude of reasons,
ranging from familiarizing oneself with the task’s structure via exploring various routes,
to an interrupted problem-solving process featured by frequent restarts. Therefore, the
exploratory findings and speculations based on observed sequential/time patterns should
not be construed as establishing theoretical models for cognitive processes, which require
follow-up confirmatory analyses and formal scientific inferences.
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Appendix A

Figure A1. The screenshots of all pages of PISA 2012 problem-solving question TICKETS task2
(CP038Q01).

Figure A2. The screenshot of the process data for one student.
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Appendix B

Table A1. Mean values of different criteria for BIMAX method.

n VAR MSR VE n VAR MSR VE
2 194.594 34.424 2.517 17 413.312 37.462 3.493
3 343.855 44.348 6.606 18 422.697 38.934 3.573
4 258.069 33.279 5.095 19 431.742 40.140 3.634
5 206.601 26.629 4.203 20 434.274 40.695 3.643
6 172.475 22.229 3.637 21 441.102 41.674 3.691
7 148.060 19.085 3.221 22 443.035 42.193 3.697
8 129.633 16.707 2.895 23 444.970 42.560 3.696
9 115.292 14.860 2.636 24 443.426 42.590 3.673

10 103.928 13.394 2.447 25 442.090 42.576 3.647
11 94.610 12.195 2.288 26 438.560 42.346 3.610
12 86.832 11.195 2.151 27 482.911 45.178 3.786
13 212.893 21.037 2.635 28 508.121 46.513 3.804
14 302.185 28.272 2.858 29 539.568 48.572 3.873
15 326.834 31.114 3.138 30 561.058 49.905 3.893
16 395.919 35.365 3.290

Notes: n denotes the number of latent classes, VAR denotes the variance of the cluster, MSR denotes the mean
squared residue, and VE denotes the virtual error.

Table A2. Mean values of different criteria for FABIA method.

n VAR MSR VE n VAR MSR VE
2 167.040 46.225 2.183 17 370.426 49.903 3.545
3 117.682 37.441 1.364 18 428.822 56.118 3.608
4 628.178 199.544 4.942 19 401.276 51.464 3.412
5 632.228 107.273 4.867 20 432.436 54.827 3.605
6 107.972 24.620 1.450 21 390.897 49.648 3.400
7 165.123 47.371 2.003 22 414.595 56.990 3.666
8 554.400 118.428 3.226 23 348.131 49.855 3.382
9 111.731 32.745 1.439 24 382.681 50.513 3.353

10 93.002 23.977 1.304 25 386.924 51.722 3.384
11 292.688 34.095 1.494 26 358.326 46.438 3.268
12 277.454 35.285 1.575 27 405.770 51.703 3.621
13 554.152 77.452 4.718 28 347.745 44.153 3.170
14 504.846 66.222 4.085 29 350.827 45.713 3.350
15 509.253 69.389 4.066 30 381.862 50.318 3.430
16 422.669 52.766 3.590

Notes: n denotes the number of latent classes, VAR denotes the variance of the cluster, MSR denotes the mean
squared residue, and VE denotes the virtual error.

Table A3. Mean values of different criteria for k-means method.

n VAR MSR VE n VAR MSR VE
2 201.316 26.961 1.562 17 397.382 24.625 1.292
3 258.107 31.022 1.594 18 393.060 24 1.298
4 402.239 53.207 1.898 19 433.723 26.773 1.299
5 535.761 64.664 2.022 20 498.897 16.266 1.123
6 507.994 56.613 1.879 21 506.216 16.794 1.124
7 478.970 50.319 1.750 22 451.554 25.416 1.301
8 482.183 48.614 1.702 23 532.079 22.676 1.279
9 490.526 39.994 1.619 24 511.472 22.024 1.238

10 470.358 37.287 1.544 25 413.559 22.523 1.213
11 467.458 34.716 1.508 26 487.998 20.461 1.194
12 466.745 33.926 1.516 27 466.354 19.606 1.152
13 444.180 31.431 1.453 28 494.597 19.294 1.194
14 426.592 29.252 1.399 29 454.621 18.173 1.122
15 416.076 27.633 1.364 30 460.309 17.635 1.123
16 411.152 26.085 1.335

Notes: n denotes the number of latent classes, VAR denotes the variance of the cluster, MSR denotes the mean
squared residue, and VE denotes the virtual error.
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Appendix C

Table A4. The average values of the first 18 features of the bicluster under the BCCC method.

Feature
Bicluster T_time A_time S_time E_time city_subway concession individual trip_4 trip_1

1 54.8 27.4 23.3 6.5 1.3 1.3 0.6 0.6 0.0
2 37.4 15.6 18.4 3.3 1.0 1.0 0.0 0.0 0.0
3 51.5 21.2 25.0 6.1 0.6 1.0 0.8 0.2 0.5
4 65.2 41.6 19.6 3.9 2.8 2.9 1.4 1.0 0.3
5 60.0 35.2 19.3 5.5 3.2 2.7 1.8 2.0 0.2
6 39.2 18.6 17.3 3.2 1.0 1.0 1.0 1.0 0.0
7 52.8 25.4 20.7 6.7 0.8 0.6 1.0 1.1 0.8
8 64.7 39.3 20.4 5.0 1.9 2.4 2.0 1.6 0.7
9 68.2 43.7 20.5 4.0 3.7 3.7 2.2 2.2 0.0

10 57.6 35.7 18.9 3.1 3.0 3.0 2.0 2.1 0.0
11 62.8 36.3 20.9 5.7 2.2 2.0 0.4 0.1 0.1
12 64.5 43.0 18.1 3.3 4.1 4.1 2.0 2.1 0.0
13 76.8 50.9 21.3 4.7 4.0 2.9 2.6 2.0 0.9
14 90.4 64.3 21.0 5.0 4.9 4.8 2.5 1.5 1.2
15 69.6 39.8 22.4 7.4 1.2 2.5 1.8 0.4 1.2
16 73.3 42.1 25.7 5.5 1.5 1.2 0.3 0.1 0.1
17 65.9 40.4 21.1 4.6 1.9 2.3 1.0 0.7 0.7
18 59.9 37.4 15.3 6.9 2.7 3.6 1.9 1.8 0.4
19 69.5 43.9 21.4 4.1 2.2 1.5 1.2 1.1 0.0
20 89.6 67.1 17.4 5.0 4.2 4.0 3.5 2.9 0.4
21 48.4 22.6 21.9 4.1 1.4 0.6 1.8 1.5 0.8
22 147.0 94.0 48.0 5.0 3.0 2.0 2.5 1.5 0.0

Feature
Bicluster Cancel daily trip_3 trip_2 full_fare country_trains trip_5 S_city S_country

1 0.4 0.7 0.0 0.0 0.0 0.0 0.0 0.9 0.0
2 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
3 0.1 0.2 0.1 0.2 0.0 0.4 0.1 0.6 0.4
4 2.4 1.5 0.0 0.0 0.1 0.5 0.0 1.0 0.0
5 3.3 1.7 0.1 0.1 1.0 0.8 0.1 0.8 0.2
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
7 0.1 0.0 0.6 0.7 0.4 0.3 0.4 0.7 0.3
8 1.7 0.4 0.2 0.3 0.0 0.7 0.2 0.8 0.2
9 3.6 1.4 0.0 0.0 0.0 0.6 0.0 1.0 0.0

10 2.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
11 1.8 1.8 0.0 0.0 0.5 0.5 0.0 0.8 0.2
12 3.1 2.1 0.0 0.0 0.0 0.0 0.0 1.0 0.0
13 4.0 1.3 0.3 0.4 1.3 0.5 0.3 1.0 0.0
14 5.7 2.9 0.4 0.8 0.8 1.1 0.6 0.9 0.1
15 3.0 1.4 0.5 0.7 0.8 2.1 0.7 0.4 0.6
16 2.2 2.1 0.0 0.0 1.4 1.3 0.0 0.6 0.4
17 2.5 2.1 0.6 0.5 0.9 1.5 0.5 0.7 0.3
18 4.7 2.1 0.6 0.4 0.9 2.0 0.2 0.9 0.1
19 1.6 0.8 0.0 0.0 0.6 0.2 0.0 1.0 0.0
20 6.8 2.0 0.5 0.9 2.0 2.1 0.0 0.8 0.2
21 1.4 0.5 0.5 0.5 1.6 1.0 0.2 0.6 0.4
22 3.5 1.0 0.0 1.0 2.0 1.5 0.0 0.5 0.5

Notes: Cell in gray color represents that the feature was selected under the bicluster.
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Table A5. The average values of the last 18 features of the bicluster under the BCCC method.

Feature

Bicluster
city city country country concession concession full full individual
_full _concession _full _concession _daily _individual _daily _individual _trip4

1 0.0 1.3 0.0 0.0 0.7 0.6 0.0 0.0 0.6
2 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
3 0.0 0.6 0.0 0.4 0.2 0.8 0.0 0.0 0.0
4 0.1 2.7 0.0 0.2 1.5 1.4 0.0 0.0 0.8
5 0.8 2.4 0.2 0.3 1.1 1.6 0.7 0.2 1.6
6 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0
7 0.3 0.5 0.1 0.2 0.0 0.6 0.0 0.4 0.4
8 0.0 1.9 0.0 0.6 0.4 2.0 0.0 0.0 1.1
9 0.0 3.6 0.0 0.1 1.4 2.2 0.0 0.0 2.1

10 0.0 3.0 0.0 0.0 1.0 2.0 0.0 0.0 2.0
11 0.5 1.6 0.0 0.4 1.4 0.4 0.4 0.0 0.0
12 0.0 4.1 0.0 0.0 2.1 2.0 0.0 0.0 2.0
13 1.3 2.6 0.0 0.3 0.6 2.2 0.6 0.4 1.6
14 0.7 4.2 0.2 0.6 2.5 2.2 0.4 0.2 0.6
15 0.3 0.9 0.5 1.5 1.0 1.5 0.4 0.3 0.0
16 0.6 0.8 0.8 0.4 0.9 0.2 1.1 0.1 0.1
17 0.4 1.5 0.5 0.8 1.5 0.7 0.5 0.3 0.2
18 0.6 2.0 0.3 1.6 1.8 1.6 0.3 0.3 1.1
19 0.6 1.5 0.0 0.0 0.5 1.0 0.2 0.2 1.1
20 1.5 2.5 0.5 1.5 1.0 2.8 1.0 0.8 2.9
21 0.9 0.4 0.8 0.2 0.1 0.5 0.4 1.2 1.0
22 1.5 1.5 0.5 0.5 0.5 1.5 0.5 1.0 1.5

Feature

Bicluster
other daily trip4 daily trip4 individual other city_con city_con
_cancel _cancel _cancel _buy _buy _other _buy _ind_4 _daily_cancel

1 0.0 0.4 0.0 0.3 0.5 0.0 0.0 0.6 0.4
2 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
3 0.1 0.0 0.0 0.2 0.1 0.8 0.6 0.0 0.0
4 0.8 1.2 0.4 0.3 0.6 0.6 0.2 0.7 1.2
5 0.8 1.3 1.2 0.4 0.6 0.2 0.0 1.2 1.0
6 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0
7 0.1 0.0 0.0 0.0 0.4 0.6 0.5 0.3 0.0
8 0.7 0.4 0.6 0.0 0.7 0.8 0.3 0.8 0.3
9 1.0 1.4 1.1 0.0 0.9 0.1 0.0 2.1 1.4

10 0.0 1.0 1.0 0.0 1.0 0.0 0.0 2.0 1.0
11 0.9 0.8 0.0 0.9 0.0 0.3 0.0 0.0 0.3
12 0.0 2.1 1.0 0.0 1.0 0.0 0.0 2.0 2.1
13 1.8 1.2 0.9 0.0 0.6 1.0 0.2 1.2 0.6
14 2.8 2.5 0.4 0.3 0.5 1.9 0.2 0.6 1.9
15 2.0 1.1 0.0 0.3 0.0 1.8 0.6 0.0 0.3
16 0.8 1.3 0.1 0.7 0.0 0.3 0.2 0.0 0.4
17 1.0 1.1 0.5 0.9 0.0 0.8 0.0 0.0 0.5
18 2.2 1.4 1.0 0.6 0.2 0.8 0.0 0.6 0.7
19 0.8 0.2 0.6 0.5 0.5 0.1 0.0 1.0 0.0
20 3.4 1.8 1.6 0.2 0.6 0.6 0.0 1.4 0.8
21 0.4 0.5 0.5 0.0 0.6 0.8 0.2 0.0 0.1
22 1.5 1.0 1.0 0.0 0.5 1.0 0.5 0.5 0.5

Notes: Cell in gray color represents that the feature was selected under the bicluster.
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Appendix D. R Script for Biclustering Techniques

1 rm(list=ls())
2 gc()
3 #######Working Directory######
4 setwd(~)
5 #setwd("D:/011 b ic lus ter ing for log−data/data ")
6 #######Prepare Package######
7 library(biclust)
8 library(fabia)
9 clustertrain <- data.frame(read.csv("clustertrain.csv")[,-1])

10 ####method <- "Bimax"####
11 res.bimax <- NULL
12 mydata <- apply(data.matrix(clustertrain),2,FUN = function(x){
13 temp <- mean(x)
14 x[x<temp] <- 0
15 x[x>=temp] <- 1
16 return(x)})
17 for (number in 2:30){
18 res.bimax[[number]]<-biclust(mydata3,method=BCBimax(),number = number)
19 }
20 ## se l e c t ed ##
21 bic.num <- 12
22 index_temp <- order(colSums(res.bimax[[bic.num]]@RowxNumber),decreasing=T)
23 examinee.cluster <- res.bimax[[bic.num]]@RowxNumber[,index_temp]
24 cluster.feature <- res.bimax[[bic.num]]@NumberxCol[index_temp,]
25 ####method <- " fab ia "####
26 res.fabia <- NULL
27 normalize <- T
28 if (normalize) {
29 mydata <- scale(clustertrain)
30 } else {
31 mydata <- clustertrain
32 }
33 for(number in 2:30){
34 res.fabia[[number]]<- fabia(mydata,p=number,center = 0,nL = 1)
35 }
36 ## se l e c t ed ##
37 bic.num <- 10
38 cluster.num <- matrix(0,bic.num,3)
39 rb <-extractBic(res.fabia[[bic.num]])
40 rowlist <-collist <-rowlist_temp<-collist_temp <- NULL
41 for(cluster in 1:bic.num){
42 temp <- table(score[as.numeric(rb$bic[cluster,]$bixn)])
43 cluster.num[cluster,as.numeric(names(temp))+1] <- as.numeric(temp)
44 rowlist = c(rowlist,(rb$bic[cluster,]$bixn)[order(rowSums(clustertrain[rb$

bic[cluster,]$bixn,rb$bic[cluster,]$biypn]))])
45 collist = c(collist,rb$bic[cluster,]$biypn)
46 rowlist_temp[[cluster]] <- (rb$bic[cluster,]$bixn)[order(rowSums(

clustertrain[rb$bic[cluster,]$bixn,rb$bic[cluster,]$biypn]))]
47 collist_temp[[cluster]] <-rb$bic[cluster,]$biypn
48 }
49 cluster.feature <- matrix(F,nrow=bic.num,ncol=36)
50 for(mm in 1:bic.num){
51 cluster.feature[mm,match(rb$bic[mm,]$biypn,colnames(clustertrain))] <-T
52 }
53 ####method <- " spec t ra l "####
54 res.spectral <- spectral(clustertrain,numberOfEigenvalues=2)
55 index_temp <- order(colSums(res.spectral@RowxNumber),decreasing=T)
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56 examinee.cluster <- res.spectral@RowxNumber[,index_temp]
57 cluster.feature <- res.spectral@NumberxCol[index_temp,]
58 ####method <- "bccc"####
59 res.bccc <- biclust(clustertrain,method=BCCC(),number=100)
60 bic.num <- res.bccc@Number
61 cluster.num <- matrix(0,bic.num,3)
62 for(cluster in 1:bic.num){
63 temp <- table(score[(res.bccc@RowxNumber)[,cluster]])
64 cluster.num[cluster,as.numeric(names(temp))+1] <- as.numeric(temp)
65 }
66 cluster.num <- cbind(1:nrow(cluster.num),cluster.num)
67 cluster.num <- as.data.frame(cluster.num)
68 colnames(cluster.num) <- c("Cluster","0","1","2")
69 index_temp <- order(colSums(res.bccc@RowxNumber),decreasing=T)
70 cluster.num <- cluster.num[index_temp,]
71 cluster.num$Cluster <- 1:bic.num
72 cluster.num.prop <- cluster.num
73 cluster.num.prop[,2:4] <- t(apply(cluster.num.prop[,2:4],1,FUN = function(x){

return(x/sum(x))}))
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