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Abstract: Sequences of eye movements during performance of a reasoning task has provided insights
into the strategies individuals use to solve that specific task; however, prior studies have not examined
whether eye gaze metrics reflect cognitive abilities in a way that transcends a specific task. Thus,
our study aimed to explore the relationship between eye movement sequences and other behavioral
measures. Here, we present two studies that related different eye gaze metrics in a matrix reasoning
task with performance on a different test of fluid reasoning and tests of planning, working memory,
and cognitive flexibility. Additionally, we related gaze metrics to self-reported executive functioning
in daily life, as measured by BRIEF-A. To perform this, we classified the participants’ eye gaze in
each item of the matrices test using an algorithm and then used LASSO regression models with
the cognitive abilities as the dependent variable to select eye-tracking metrics to predict it. Overall,
specific and distinct eye gaze metrics predicted 57% variance in the fluid reasoning scores; 17%
variance in the planning scores; and 18% variance in the working memory scores. Taken together,
these results support the hypothesis that the selected eye-tracking metrics reflect cognitive abilities
that transcend specific tasks.

Keywords: working memory; planning; executive functions; fluid intelligence; eye tracking

1. Introduction

Fluid reasoning (Gf; Carroll 1993) refers to a set of abilities that helps us solve new
problems (Schneider and McGrew 2012). Gf supports relational and inferential reasoning,
classification of new situations and phenomena, formulation of hypothesis, generalization,
application of old schemas in new events and problems, and establishing similarities and
differences between concepts (McGrew 2009). Gf refers a cognitive aptitude that relies
heavily on working memory (WM), or the ability to keep relevant information in mind (e.g.,
Chuderski 2013; Conway et al. 2002, 2003; Dehn 2017; Engle et al. 1999; Kaufman 2014), as
well as executive functions (EFs), or the set of control processes that support goal-directed
behavior (Lehto 2004) and planning, or the ability to consider how to approach a complex
problem before getting started.

Tests designed to measure Gf typically present a pattern of simple shapes, and the
test taker must understand the rule that is guiding this pattern and then construct the
answer or choose the correct answer in the answer choices bank (Alves 2007; Flanagan and
Harrison 2012; Schlottfeldt and Malloy-Diniz 2018). One of the most common types of tests
used to measure Gf are matrix reasoning tests, such as those found in Cattell’s Culture
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Fair task (Cattell 1973), Raven’s Progressive Matrices (Raven et al. 1998), the Wechsler
Adult Intelligence Scale matrices (Wechsler 2004), and the Wiener Matrizen-Test-2 (WMT-2;
Schlottfeldt and Malloy-Diniz 2018). These tests commonly present a 3 × 3 matrix with
nine cells and a set of answer choices (see Figure 1 for a sample WMT-2 problem). All these
tests are non-verbal measures that require inferring abstract relations among simple shapes
and deducing the missing item in the array based on these relations. These types of tests
assess deductive and inductive reasoning (Drodick et al. 2012). Central to these tests is the
fact that they require that participants identify and integrate relations (across the problem
array), a cognitive process known as relational thinking (Alexander 2016) that was recently
conceptualized as an EF (Starr et al. 2022).
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Figure 1. (a) Sample problem based on the WMT-2 task overlaid with a schematic representing an
eye gaze pattern in red. Circles represent fixation locations, and lines represent eye movements, or
saccades, between fixations; (b) sample problem on the D.70 test with the missing domino piece
described as “?”.

When completing matrices problems, a test taker uses visual cognitive strategies.
Vigneau et al. (2006) described two strategies in matrix reasoning tasks based on the work
of Bethell-Fox et al. (1984), and Snow (1978, 1980) in analogical tasks with several response
alternatives. The strategies can be defined as constructive matching, an effective but costly
strategy whereby participants try to solve the problem by mentally constructing the missing
piece before going to the answer choices to look for it; and response elimination, a less precise
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strategy whereby participants alternate many times between the matrix and the answer
choices in an effort to eliminate wrong answer choices.

These two strategies, constructive matching and response elimination, can be identified
through the use of eye tracking (Laurence and Macedo 2022). For example, the number
of times a test taker’s eye gaze toggles between the matrix and the answer choices are
proposed to be indicative of the strategy they are using: many toggles between them is
theorize to reflect a response elimination strategy, while few toggles is thought to reflect
constructive matching. The same arguments have been made for how long it takes for
a participant to go to the answer choices for the first time after studying the matrix, or
how much more time the participant spent on the matrix instead of the answer choices.
Specifically, a long duration of focus on the matrix prior to transitioning to the answer
choices, and proportionally more time spent analyzing the matrix than the answer choices,
are thought to reflect use of the constructive matching strategy (see Laurence et al. 2018).

Further, algorithms have been developed to classify the scanpaths of different partici-
pants based on their similarities (Hayes et al. 2011; Kucharský et al. 2020). Through this
approach, it is possible to use transition matrices on the areas of interest (AOIs), i.e., the
matrix and the answer choices, and analyze this transition matrix to induce which strategy
a participant had adopted (Kucharský et al. 2020).

These strategy measures have been shown to relate to performance on a matrix rea-
soning task. Previous studies established that these measures can predict performance
on matrix reasoning tasks, demonstrating that participants with higher accuracy on the
task tend to exhibit eye movement patterns similar to the constructive matching strategies
(Laurence et al. 2018; Laurence and Macedo 2022; Vigneau et al. 2006). However, the eye
gaze metrics in these studies were related to performance on the same task; we know of no
studies analyzing the relation of the eye-tracking measures with a Gf score that was not
measured in the same test where the strategy was measured.

Because WM is hypothesized to support the ability to reason about the relations among
stimuli, several studies have investigated the relationship between self-reported strategy
use and visuospatial WM. The relationship between WM and fluid reasoning is not new:
several studies over the last 25 years have demonstrated that the capacity to solve new
problems is directly associated with the capacity to keep relevant information in mind and
manipulate it (e.g., Chuderski 2013; Conway et al. 2002, 2003; Dehn 2017; Engle et al. 1999;
Kaufman 2014). However, research regarding the relationship between WM and cognitive
abilities in the matrix reasoning task is much more recent (e.g., Gonthier and Roulin 2020;
Jarosz et al. 2019). To assess strategies, most studies have either used questionnaires (e.g.,
Gonthier and Roulin 2020) or verbal protocols (e.g., Jarosz et al. 2019). These studies have
demonstrated a relationship whereby higher visuospatial WM is related to the frequency
of constructive matching strategy. In this case, participants appeared to use constructive
matching for easy problems and resort to response elimination for hard ones. Further,
the visuospatial WM predicted strategy use, with participants with higher WM scores
maintaining the use of constructive matching strategy even for hard problems (Gonthier
and Roulin 2020). It is noteworthy that, although this relationship between the type of
strategy used and visuospatial WM has been reported in several studies, no study has
investigated this relationship using eye tracking to quantify strategy use objectively, and
on a trial-by-trial basis.

Since WM is related to the retention and manipulation of information, it is a limiting
ability for most test takers (Gonthier and Roulin 2020). Besides visuospatial WM, which is
important for keeping relevant visual features in mind, multiple other cognitive processes
are thought to be required for performing the matrices test. For example, performing the
test requires shifting between focusing on different elements of the matrix item, which
can relate to the EF construct of cognitive flexibility (Birney and Beckmann 2022; Colzato
et al. 2006). Further, performance likely benefits from a systematic approach to the problem
(Cormier et al. 1990), i.e., planning. Strategy use on matrix reasoning can be related to these
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and other cognitive abilities; however, to the best of our knowledge, no study has tried to
study the relations between them, especially with the use of eye tracking.

Fixation durations are also an eye behavior that is related to different cognitive abilities.
First, individuals with high WM performance tend to exhibit longer fixations on the areas of
interest of a distraction task (Luke et al. 2018; Meghanathan et al. 2015). Second, Hodgson
et al. (2000) found that participants who performed well on a planning task called the Tower
of London test showed shorter fixation times. This result indicates that good planners
exhibit fast and efficient fixations. To the best of our knowledge, no studies have examined
the relationship between eye gaze metrics and performance on a matrix reasoning task in
relation to different cognitive abilities.

With these literature gaps in mind, our study aimed to explore the relationship between
cognitive abilities and eye-tracking measures related to strategy use in matrix reasoning
tasks. To perform this, we conducted two studies. In the first study, we measured reasoning
on a computerized matrix reasoning task (Figure 1a) and a paper-and-pencil non-verbal
inductive reasoning task (Figure 1b). In the matrix reasoning task, we recorded the eye
movements of the participant and calculated metrics regarding cognitive strategy use. In the
second study, we measured planning, visuospatial WM, cognitive flexibility, self-reported
EF, and reasoning task performance with a matrix reasoning task.

We set out to test specific hypotheses regarding the relation of the eye gaze metrics
on the WMT-2 reasoning task and individual differences in planning, WM, and cognitive
flexibility. These hypotheses were tested specifically in Study 2. Our three key hypotheses
and predictions, and our analytic approach, were pre-registered at AsPredicted (https:
//aspredicted.org/8sp6a.pdf, accessed on 14 April 2023).

First, we hypothesized that participants with better visuospatial WM would be able
to retain matrix items and relations in mind more readily than others. Therefore, we
predicted that visuospatial working memory would correlate with several gaze metrics.
In particular, we predicted that the distinguishing characteristic would be the number of
gaze transitions between the matrix and the answer choices. On this view, participants
with better spatial working memory would be better able to keep in mind the features
of a stimulus that would constitute the correct answer as they transition from the matrix
to the answer choices. Additionally, they would be better to keep in mind an answer
choice and check whether it fits, thereby making fewer transitions between the matrix and
answer choices.

Second, we hypothesized that participants with superior planning ability would be
more likely to adopt a constructive approach on the matrix reasoning eye-tracking task,
spending more time observing the matrix problem than the answer choices. Thus, we
predicted that planning ability would be associated with a higher proportion of time spent
on the matrix vs. the answer choices.

Third, we hypothesized that participants with greater cognitive flexibility would
perseverate less on the matrix reasoning task. Specifically, we predicted that the more
flexible individuals, the ones with a low number of perseverative errors on the test of
cognitive flexibility, would make fewer fixations to the incorrect answer choices on the
matrix reasoning task, that is, they would not revisit irrelevant options multiple times.

We also sought to run exploratory analyses. We computed several strategy use metrics
in the matrix test based on eye movements. Since we aimed to verify which of these
metrics are related to different cognitive abilities, we used a feature selection method. We
employed gold-standard methods of machine learning for small samples by using train/test
split (see Vabalas et al. 2019) in order to select eye-movement predictors for reasoning
task performance, planning, WM, cognitive flexibility, and self-reported EF in everyday
thinking and behavior. All measures, with exception of the self-reported EF, are lab-based
and objective measures, while the self-reported EF is a real-world, subjective measure.
Therefore, it is noteworthy that in this exploratory analysis we tested the possibility that
objective eye gaze metrics on an abstract reasoning task would be related to a subjective
measure of real-world self-regulation. Furthermore, although we used methods for small
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samples, the samples presented in Study 1 and 2 are bigger than most of studies that
investigated matrix reasoning strategies with eye tracking (see Laurence and Macedo 2022
for a list of sample sizes).

It should be emphasized that the feature selection method selected variables based
on an algorithm. This selection is conditioned on the data. Although this type of feature
selection can be used in databases with much more features than the size of the sample, the
results should be observed with caution because this can lead to bias (Heinze et al. 2018);
therefore, these exploratory analyzes should be analyzed with attention and criticism.

2. Study 1
2.1. Methods
2.1.1. Participants

A total of 62 university students (40 women (66.12%), Medianage = 21,
Rangeage = 18–29) were recruited for this experiment, as part of a larger project. Two
participants had an exceptionally low number of eye gaze fixations (two or fewer fixations
per trial), which is under the threshold of 50% valid fixation data, and therefore were
excluded from the study. The remaining 60 participants (39 women, 65%) ranged in age
from 18 to 29 years old (M = 21.48, SD = 2.50). Data collection took place over three time
periods: April to October of 2016; November of 2017 to April of 2018; and November to
December of 2019.

2.1.2. Instruments

Eye-tracking matrix reasoning task (Figure 1a). WMT-2 is a matrix reasoning test
similar to Raven’s Progressive Matrices. It has a total of 21 problems, with three being
examples that do not count to the final score (and were not analyzed) and 18 real problems.
Items become more difficult as the participant progresses through the test. Each problem
is composed of a 3 × 3 matrix, that is the problem, in the left and eight alternatives in a
2 × 4 matrix in the right of the screen. All items have two relations that participants must
identify in order to select the correct answer. A sample problem similar to one found on the
WMT-2 is presented in Figure 1. We used the computerized version of the test (Schlottfeldt
and Malloy-Diniz 2018) and presented all stimuli in the sequence that the test guideline
indicated. Between trials, a black fixation point was presented on a gray background for
2 s.

Inductive reasoning task: D.70 (Figure 1b). The D.70 test is a paper-and-pencil non-
verbal inductive reasoning test that taxes visual, numeric, and basic numerical abilities
(Chartier 2009). The test consists of 44 items that are a sequence of domino pieces with a
missing piece. The participant’s objective is to draw the correct number of dots in a domino
cell based on the pattern established by the sequence of numbers across the other pieces
(see Figure 1). Participants were provided 25 min to try to solve all the items. We used the
Brazilian version of D.70 (Alves 2007).

2.1.3. Apparatus

To record the eye gaze data we used RED500 eye tracking from SensoMotoric Instru-
ments, sampling at a temporal resolution of 500 Hz. We used iViewTM software (v. 3.7,
SensoMotoric Instruments, Inc, SensoMotoric Instruments, Teltow, Germany) to calibrate
the eye-tracking device and record the data, Experiment CenterTM (v. 3.7, SensoMotoric
Instruments, Inc.) to present the stimuli, and BeGazeTM software (v. 3.7, SensoMotoric
Instruments, Inc.) to extract the data. We used the default calibration procedure. The eye
data algorithm used was the default of BeGazeTM, with a minimum fixation duration of
100 milliseconds.

2.1.4. Procedure

The study was approved by the University Ethics committee (CAAE:
75035917.5.0000.0084). Participants were taken to the experiment room and seated at
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a desk. The experiment was explained to them, and if they agreed with their collaboration,
they would provide their written consent. They first completed the paper-and-pencil D.70
test; next, they were placed in a chair ~70 cm away from a computer screen with a size
of 19 inches width by 11 inches height. The eye-tracking calibration procedure was con-
ducted. Participants were presented to the instruction screen of WMT-2, told how the test
works, and had an opportunity to ask questions about it before beginning the experiment.
Problems were presented in stimulus arrays spanning 23 × 13 cm. Participants were asked
to provide their answers verbally, stating the number corresponding to one of the answer
choices. The experimenter would write down their answer and proceed to the next trial.
Upon completion of the study, participants received course credit.

2.1.5. Eye-Tracking Measures

The average percentage of time that the eye tracker detected the eyes of the participant
was 95.3% (SD = 4.13), with the participant that had the lower tracking ratio having their
eyes detected 76.9% of the time in the task, while the participant with most tracking ratio
presenting a tracking ratio of 99.8%. We excluded the first fixation in each trial, as well
as all the fixations that were not in the matrix or answer choices. Additionally, we only
used fixations with a duration over 100 ms since we were interested in cognitive fixations
(Pieters and Wedel 2012). We calculated several eye-tracking metrics based on previous
matrix reasoning studies (e.g., Laurence et al. 2018; Vigneau et al. 2006); we also calculated
some common eye-tracking metrics and created new variables of interest (see Table 1 for
the complete list of each variable), totaling 14 variables that were inserted in a multiple
regression technique. Although 14 variables can be a lot for a standard regression model,
we used a multiple regression technique involving data reduction, which is appropriate to
avoid multiple comparisons.

Table 1. Eye gaze metrics used in this study.

Eye-Tracking Metrics

1 Average time in each test item

2 Number of matrix–matrix transitions (number of times that a participant gazed from
a matrix cell to another matrix cell)

3 Number of matrix–answer transitions (number of times that a participant gazed
from the matrix to the answer choices or vice versa)

4 Number of answer–answer transitions (number of times that a participant gazed
from an answer choice to another answer choice)

5 Latency to the first fixation on an answer choice (the time it took for a participant to
perform the first fixation on the answer choices)

6 Ratio of time spent on the matrix vs. answer choices (time spent on the matrix
divided by the time spent on the answer choices)

7 Average number of visits to a given matrix cell (the mean of the number of visits to
each cell in all test items)

8 Average number of visits to a given incorrect answer choice (the mean of the number
of visits to each answer choice, excluding the correct choice, in all test screens)

9 Total number of fixations on matrix cells
10 Average fixation duration for a matrix cell
11 Total number of fixations on answer choices
12 Average fixation duration for an answer choice

13 Percent of trials classified as cluster 2 scanpath (the percent of the items that the
participant had their eye gaze classified as the cluster 2 scanpath)

14

Rate of matrix–answer transitions (the number of matrix–answer transitions divided
by the average time in each test item; this conversion equalizes the number of
matrix–answer transitions by how much time each participant spent gazing at each
item. Higher rate indicates that participants gazed more times their eyes between
the matrix and answer choices per second)
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In addition to computing these individual metrics, we used Kucharský et al.’s (2020)
method to classify scanpaths, or the sequence of fixations over the course of a trial. This
unsupervised method calculates a transition matrix based on the Areas of Interest (AOIs)
for each scanpath on each trial. It uses standard k-means clustering, an algorithm based on
lowering the within-cluster sum of squared Euclidean distances, to classify each scanpath
into k clusters based on their Euclidian proximity. The k represents the number of centroids
used to classify each scanpath. Based on the literature (e.g., Kucharský et al. 2020; Vigneau
et al. 2006), we classified each scanpath using two centroids, following the idea of construc-
tive matching and response elimination strategies. In other words, the scanpaths were
classified into two possible unsupervised clusters. Following previous research (Hayes
et al. 2011; Kucharský et al. 2020), we opted to delete repeated fixations in the same AOI.
Further, we calculated the percentage of trials that a scanpath was classified into the second
cluster for each individual. Since the percentage of trials that a scanpath was classified into
the first cluster is a complementary measure of the percentage of scanpath classified into
the second cluster, both measures can be employed for the model. The decision of which
metric is used is purely arbitrary.

To compare the clusters and understand the differences between them, we calculated
the Bayes Factor for each eye-tracking measure presented in Table 1. The BF10 is the Bayes
Factor representing the strength of evidence for H1 over H0. By convention, values over 3
are considered moderate evidence in favor of the H1, values over 10 are considered strong
evidence, and values over 100 are considered extremely strong evidence. On the other
hand, values under 0.33, under 0.10, and under 0.01 are considered moderate, strong, and
extremely evidence in favor of H0, respectively (Jeffreys 1961). In our tests, we considered
H1 as a difference between the clusters for the gaze metrics, while H0 was considered as no
difference between the clusters.

2.1.6. Data Analysis

We used a Least Absolute Shrinkage and Selection Operator (LASSO) regression model
to identify the subset of eye-tracking metrics that best predicted the D.70 test score. LASSO
regression carries out the L1 regularization in the predictors by employing a penalty (λ) to
the coefficients. This relationship of the coefficients and the shrinking parameter can be
represented as:

‖y− xβ‖2
2 + λ‖β‖1 (1)

With this feature, all coefficients are penalized. However, coefficients that have low
predictive power are penalized until set to zero, while coefficients with high predictive
power are penalized (down-weighted) but are not set to zero. This approach eliminates the
variables with low predictive power and maintains the variables with higher predictive
power. In our study, this method removed the eye movement metrics that are weakly
associated with the cognitive measure. The shrinking parameter is user-selected, and
because of it, it is necessary to perform cross-validation with several values of λ. To this
end, we split our data into two parts: ~80% of the data (50 participants) were used to train
the model and select the best penalty value based on the root mean square error (RMSE)
with leave one out cross-validation; ~20% of the data (10 participants) were used to test
the best model selected in the training dataset. To evaluate the model in the test set, we
calculated performance estimates such as correlation coefficient (r); R2; mean absolute error
(MAE); and root mean squared error (RMSE). Since the measures of the model are z-scores,
the MAE and the RMSE present errors in standard deviations.

We also conducted a model using the same variables to predict the WMT-2 total
score. This analysis used replicability and was compared with the model presented in this
manuscript. The WMT-2 total score model is available in the supplementary file.
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2.2. Results
2.2.1. Descriptive

Regarding the behavioral tests, the participants presented a mean (SD) percentage of
correct answers of 63.41% (10.68) in the D.70 test (Skewness =−0.13, Kurtosis =−0.96). The
percentages of correct items ranged from 40.91% to 81.82%. In the WMT-2 (Skewness = 0.05,
Kurtosis = −0,94), the sample mean percentage of correct answer was 57.94 (16.78), ranging
from 27.78% to 94.44%. Scores on the D.70 and WMT-2 tests were correlated, r = 0.54,
p < 0.001. The descriptive of the behavioral variable used in this study can be found in
Figure 2. Descriptive plots of the eye-tracking metrics are presented in the supplemen-
tary file.
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Figure 2. Scatter plot with box plots on the margin for the behavioral variables used in Study 1. The
dots indicate the given test score of each participant, and the box plots present the data distribution
for each variable.

The scanpaths for each trial for each participant were submitted to a classification
analysis to identify different clusters of eye-movement strategies. In this analysis, two
similar but separable strategies can be identified. The first cluster represents a strategy
whereby participants explored the matrix row-by-row. The second cluster represents a
strategy whereby participants explored the matrix row-by-row, but also in a column-by-
column pattern (see Table 2). The transition matrix plots, the distribution of eye-movement
metrics plots, and the description of the eye-tracking metrics for each cluster and for the
eye-tracking metrics can be found in the Supplementary Material.
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Table 2. Comparison of the model-based clusters of eye movements. The comparison was conducted
based on the transition matrices or the Bayes Factor for each cluster.

Metric Cluster 1 Cluster 2 Analysis

Gaze direction Row-wise Row-wise and Column-wise Transition matrices (see
supplementary file)

Probability of transition to answer
choices from top or middle row Low Low to moderate

Transition matrices
probabilities (see

supplementary file)
Average time in each test item - - BF10 = 0.07 (±<0.00) oo

# Matrix–matrix transitions - - BF10 = 0.21 (±<0.00) o

# Matrix–answer transitions - - BF10 = 0.08 (±<0.00) oo

# Answer–answer transitions More transitions Fewer transitions BF10 = 10.19 (±<0.00) **
Latency to the first fixation on an
answer choice - - BF10 = 1.09 (±<0.00)

Ratio of time spent on the matrix
vs. answer choices - - BF10 = 0.07 (±<0.00) oo

# Visits to a given matrix cell - - BF10 = 0.17 (±<0.00) o

# Visits to a given incorrect
answer choice - - BF10 = 0.46 (±<0.00)

# Fixations on matrix cells - - BF10 = 0.07 (±<0.00) oo

Average fixation duration for a
matrix cell Longer fixations Shorter fixations BF10 > 1000 (±<0.00) ***

# Fixations on answer choices - - BF10 = 0.38 (±<0.00)
Average fixation duration for an
answer choice Longer fixations Shorter fixations BF10 > 1000 (±<0.00) ***

Rate of matrix–answer transitions More transitions per second Less transitions per second BF10 = 8.13 (±<0.00) *

Note: H1: difference between the clusters; H0: no difference between the clusters. * Moderate evidence for H1;
** strong evidence for H1; *** extreme evidence for H1; o moderate evidence for H0; oo strong evidence for H0.

2.2.2. LASSO Regression Model

Our LASSO regression model predicting D.70 performance from the eye-tracking
metrics (shown in Table 1) performed well in the predicted direction, as judged by the
performance estimates of the model (Table 3). A total of 12 variables were selected as
contributing significantly to model prediction. Together, these variables predicted 57% of
the variance in performance on the D.70 non-verbal inductive reasoning test.

Table 3. Coefficients and measures of the LASSO regression model predicting the D.70 total score.

Measures Standardized Coefficients

Predictors 1

Average time in each test item −1.68
Matrix–answer transitions 1.40
Answer–answer transitions 1.80
Latency to first fixation in answer choices −0.09
Ratio of time spent on matrix vs. answers −0.25
Visits in wrong answer choices −2.61
Total number of fixations on matrix cells 0.84
Average fixation duration for a matrix cell −0.07
Total number of fixations on answer choices −0.01
Average fixation duration for an answer choice 0.39
Percent of trials classified as cluster 2 scanpath 0.15
Rate of matrix–answer transitions −1.10

Performance estimates
Correlation coefficient 0.77
MAE 0.52
RMSE 0.61
R2 0.57

1 Showing the predictors selected by the LASSO model; see full set of eye gaze metrics in Table 1; The R2 presents
the explained variance by the model, while MAE and RMSE represent a measure of the error of the model.
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3. Study 2

After noticing that the eye-tracking metrics derived from the WMT-2 were strongly
related to performance on another visuospatial reasoning task, the D.70, we sought to test
whether they would be related with other cognitive measures. We understand that WMT-2
and D.70 are different because they require a different set of abilities. For example, the WMT-
2 provides answer choices, while the D.70 test requires you to create the missing answer.
These differences may require different cognitive abilities, such as planning and visuospatial
WM. Therefore, we were interested in understanding which eye gaze metrics were related
to different cognitive measures. We conducted a second study with a new sample of
participants to test for a relation between eye-tracking metrics on the matrix reasoning
task and cognitive measures of planning, working memory, and cognitive flexibility, as
well as self-reported EF. This study was pre-registered in the AsPredicted website (https:
//aspredicted.org/8sp6a.pdf, accessed on 14 April 2023). In this pre-registration, we wrote
our intuitions regarding which cognitive measure would be related to the eye-tracking
metrics. The rationale behind each hypothesis is: (1) Visuospatial WM positively correlates
with the number of gaze transitions between the matrix and the answer choice since
participants with higher WM can retain the matrix items in mind, which leads to fewer
transitions. (2) Planning ability positively correlates with a higher proportion of time spent
on the matrix vs. the answer choices since participants with higher planning abilities spend
more time analyzing the matrix, trying to find patterns, and creating the missing piece.
(3) The number of perseverative errors positively correlates with the number of fixations
to the incorrect answer choices since participants that present higher perseverative errors
are more susceptible to re-engaging in the same incorrect answer choice because of low
cognitive flexibility.

3.1. Methods
3.1.1. Participants

We recruited 73 participants (47 women, 64.38%, Medianage = 21, Rangeage = 18–33)
for this study. However, following our exclusion criteria mentioned in the pre-registration
(i.e., <50% of eye-tracking data available, and/or 3 standard deviations from the mean
score in the tower of London, Corsi block-tapping, Wisconsin Card-Sorting tests and the
BRIEF-A global executive composite), 4 participants were excluded from the sample: three
for poor eye-tracking data quality and one for a low score in the Tower of London test.
Therefore, our final sample included 69 participants (45 women; 65.2%). Our sample had
a mean age of 22.46 years (SD = 3.49), ranging from 18 to 33 years. All participants were
university students. Most of them were students in law school (N = 31, 44.9%), followed
by students in psychology (N = 23, 33.3%). Other students (N = 15, 21.7%) were majoring
in engineering, physical therapy, pharmacy, architecture, economy, journalism, or neuro-
science. Data collection occurred between February and November of 2017. Participants
were recruited through social networks linked to the university and through the snowball
sampling method.

3.1.2. Instruments

Eye-tracking matrix reasoning task: WMT-2 (Figure 3a). This is the same test de-
scribed in Study 1.

Visuospatial WM: Corsi block-tapping test (Figure 3c). The Corsi block-tapping test
is composed of a board with multiple blocks (Figure 3). It consists of two parts: in the
first, the researcher touches the blocks in a sequence and the participant must repeat the
same movements in that sequence; in the second part, the evaluator touches the blocks in
a sequence and the participant must repeat the sequence inversely. The difficulty of the
sequence increases with every two sequences made, with one more touch being added
to the sequence. The test ends when the participant misses two sequences with the same
number of touches. The total number of sequences is 14. The total test score varies between
0 and 28 (Corsi 1972; Santos et al. 2005), and higher scores indicate a better performance;

https://aspredicted.org/8sp6a.pdf
https://aspredicted.org/8sp6a.pdf
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we converted participants’ scores into percent accuracy. The Corsi block-tapping test was
used successfully in the Brazilian context (Santos et al. 2005).
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Planning task: Tower of London (Figure 3b). The Tower of London test assesses
planning ability and logical reasoning. Participants must move balls in order to reach a
target figure (Figure 3). The test has 12 target figures that participants should try to reach.
At each level, the difficulty to reach the target figure increases. For each target figure, three
attempts are allowed, and the answer is only considered correct if the solution is reached
in the correct number of allowed moves. Thus, the score for each level ranges from 0 to 3,
depending on how many times the participant has tried, and the total score ranges from 0 to
36 (Shallice 1982; Krikorian et al. 1994), with higher scores indicating a better performance.
We transformed participants’ score into percentage accuracy. We also used the time score
in the Tower of London as a cognitive measure.

Cognitive flexibility: Wisconsin Card-Sorting test (WCST). The Wisconsin Card-
Sorting Test is an EF test in which the participant is presented with a sequence of 128 cards
and must speak to which categorization criteria they are grouped. Criteria can be color,
shape, or number of stimuli (see Figure 3). Criteria change after 10 hits in a row. This
test can be evaluated by different types of measures, but we used perseverative errors, a
measure of inhibitory control, and cognitive flexibility. In this case, higher scores in the
perseverative errors indicate that they performed poorly. The test was adapted to the
Brazilian context and can be used in this population (Heaton et al. 2004).

Self-reported EF: Behavior Rating Inventory of Executive Function for Adults
(BRIEF-A). The BRIEF-A is a questionnaire that assesses self-regulation in daily life on
adults aged 18 and older. It is 75 Likert-type items with three levels: “never”; “sometimes”;
“often”. The items present statements such as “I have trouble with jobs or tasks that have
more than one step” or “I make mistakes carelessly” and were created based on executive
function concepts. The test has five questions for data validity that does not account for the
final score. Therefore, the total BRIEF-A global executive composite (GEC) ranges from 0 to
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210 and is provided by the sum of the behavioral regulation index (BRI) and metacognition
index (MCI). The BRI is a composite score of inhibit, shift, and emotional control scale
score, and ranges from 0 to 90, while the MCI is the sum of the initiate, working memory,
plan/organize, organization of materials, and monitor scale scores, ranging from 0 to 120.
A higher score on the BRIEF-A GEC and indexes indicates executive dysfunction (Roth et al.
2005; Roth et al. 2013). For the present study, we used the Brazilian version of BRIEF-A
(Jana 2018).

3.1.3. Apparatus

This is the same test used in Study 1. The data were recorded at a temporal resolution
of 500 Hz.

3.1.4. Procedure

The project was submitted to the Ethics and Research Committee and approved under
CAAE number 63883016.0.0000.5487. Data collection was performed in a single session in
the laboratory. Upon arriving at the laboratory, participants received explanations about
the study and, if they wanted to continue with the participation, signed two copies of the
Consent Form and Free Clarification. After that, the participants were taken to the room
containing the eye-tracking equipment and were positioned approximately 70 cm away
from a 19 inches width by 11 inches height monitor with the equipment for recording eye
movements. The WMT-2 test was explained to the participant and then they answered
the test. At the end of WMT-2, the BRIEF-A, Corsi block-tapping test, Tower of London
Test, and WCST were applied. At the end of the procedure, the participant received course
credit, a credit necessary for students to graduate, as a contribution to their participation.

3.1.5. Eye-Tracking Measures

The average eye-tracking ratio was 95.7% (SD = 4.40). The participant with the lowest
tracking ratio had 77.0% of the eyes detect in the task while the participant with the most
tracking ratio presenting a tracking ratio of 99.7%. We used the same metrics used in
Study 1. The full list of the metrics can be found in Table 1.

3.1.6. Data Analysis

To test our hypothesis, we conducted several Steiger’s tests to compare the correlations
of each predictor with the three cognitive test measures (Tower of London, Corsi block-
tapping, and WCST perseverative errors). We opted to use Steiger’s test because we wanted
to compare the correlations and see if one is more significant than the other regarding with
each cognitive measure the eye-tracking metrics would correlate. Based on our hypothesis,
we wanted to compare each of our hypothesized eye-tracking metrics with the cognitive
tests. To calculate the Steiger’s test, it is necessary beforehand to calculate the correlation
coefficients (r). Accordingly, we calculated the Pearson correlation coefficients between
the three hypothesized eye-tracking metrics (i.e., ratio of time spent on the matrix vs.
answer choices, number of matrix–answer transitions, and the average number of visits
to a given incorrect answer choice) and the three cognitive tests. Steiger’s test statistically
compares different correlations coefficients, without regard of the sign, in the same sample
by calculating a z-value from the r, evaluating each difference with an asymptotic z-test,
and then inferring the p-values. By convention, a significant difference between correlations
coefficients w found when the test reveals a z-value greater than 1.96 in two-tailed tests,
and therefore a p-value under 0.05 (Steiger 1980).

We also conducted seven LASSO regressions to select from all eye-tracking metrics,
those, if any, that predicted the cognitive test measures and self-reported EF global score
and indexes. We performed a data split on our sample. A total of ~80% of the data
(57 participants) was used to train the model, and find the best value of the penalty, with a
leave one out cross-validation, and ~20% of the data (12 participants) was used to validate
the model. We evaluated our model in the test set and calculated the correlation coefficient,
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R2, the MAE, and the RMSE. As in Study 1, we also conducted a model with the same
variables predicting the WMT-2 total score. The model is available in the supplementary file.

3.2. Results
3.2.1. Descriptive

Regarding the behavioral data in Study 2, the participants in our sample had a mean
(SD) percentage score of 45.61% (10.50), ranging from 28.57% to 71.42%, in the Corsi
block-tapping test (Skewness = 0.52, Kurtosis = −0.49). In the Tower of London test
(Skewness = −0.71, Kurtosis = 0.39), the sample’s percentage mean was 90.50% (6.89), with
participants having a correct answer percentage between 69.44% and 100%. Their mean
total time in the Tower of London test (Skewness = 1.50, Kurtosis = 3.21) was 444.03 s
(155.28), ranging from 200 to 1078 s. Participants had, on average, 6.99 (6.63) perseverative
errors in the WCST (Skewness = 1.58, Kurtosis = 1.87). The perseverative errors ranged from
0 to 26. Furthermore, our sample scored 47.26 (19.82) in the BRIEF-A general executive
composite (Skewness = 0.54, Kurtosis = −0.14). The minimum score was 11 and the
maximum score was 104. Regarding the BRIEF-A indexes, our sample had a mean of 28.19
(13.42) in the metacognitive index (Skewness = 0.71, Kurtosis = 0.17), and a mean of 19.07
(9.30) in the behavior regulation index (Skewness = 0.37, Kurtosis = −0.80). The indexes
scores ranged from 3 to 68 and from 2 to 39, respectively. In the WMT-2 (Skewness = −0.07,
Kurtosis = −0.63), the participants presented a percentage of items answered correctly
mean of 61.44% (20.06). The percentages ranged between 11.11% and 100%. The descriptive
of the cognitive tasks variables used in this study are presented in Figure 4. Descriptive
plots of the eye-tracking metrics are presented in the supplementary file.
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raw number, the Tower of London Time, which is in seconds, and the BRIEF scores, which are in raw
score. BRI: behavior regulation index; GEC: general executive composite; MCI: metacognitive index.

In the clustering analysis, both strategies were similar. The first strategy presented a
pattern of following each row cell until going to the answers. The second strategy had a
similar pattern; however, participants that used this strategy also had a pattern to follow
the columns of the matrix. Participants who tended to adopt the second strategy had a
higher probability to go to the answer choices from the end of each row, a pattern not
found in the first strategy. The similarities and differences of both clusters are shown in
Table 4. Plots of the transition matrix and of the distribution of different eye-movement
metrics, and the descriptive of the eye-tracking metrics for each cluster can be found in the
supplementary file.

Table 4. Comparison of the model-based clusters of eye movements. The comparison was conducted
based on the transition matrices or the Bayes Factor for each cluster.

Metric Cluster 1 Cluster 2 Analysis

Gaze direction Row-wise Row-wise and Column-wise Transition matrices (see
supplementary file)

Probability of transition to answer choices
from top or middle row Low Low to moderate

Transition matrices
probabilities (see

supplementary file)
Average time in each test item - - BF10 = 0.07 (±<0.00) oo

# Matrix–matrix transitions - - BF10 = 0.40 (±<0.00)
# Matrix–answer transitions - - BF10 = 0.06 (±<0.00) oo

# Answer–answer transitions Fewer transitions More transitions BF10 = 72.79 (±<0.00) **
Latency to the first fixation on an answer
choice - - BF10 = 0.06 (±<0.00) oo

Ratio of time spent on the matrix vs.
answer choices - - BF10 = 0.08 (±<0.00) oo

# Visits to a given matrix cell - - BF10 = 0.32 (±<0.00) o

# Visits to a given incorrect answer choice - - BF10 = 0.83 (±<0.00)
# Fixations on matrix cells - - BF10 = 0.08 (±<0.00) oo

Average fixation duration for a matrix cell Shorter fixations Longer fixations BF10 > 1000 (±<0.00) ***
# Fixations on answer choices - - BF10 = 1.91 (±<0.00)
Average fixation duration for an answer
choice Shorter fixations Longer fixations BF10 > 1000 (±<0.00) ***

Rate of matrix–answer transitions - - BF10 < 0.16 (±<0.00) o

Note: H1: difference between the clusters; H0: no difference between the clusters. ** Strong evidence for H1;
*** extreme evidence for H1; o moderate evidence for H0; oo strong evidence for H0.

3.2.2. Comparing the Correlations

To investigate our hypothesis, we conducted a Steiger test between each of the pre-
dicting variables that we hypothesized and the three cognitive tests: Tower of London,
Corsi tapping-block test, and WSCT perseverative error. To perform this, it is necessary to
calculate the correlation coefficients beforehand (see in Table 5). It is noteworthy that no
eye-tracking metric correlated with all three cognitive measures. However, the Tower of
London score presented positive correlations with latency to the first fixation on an answer
item (p = 0.002) and the ratio of time spent on the matrix vs. answer choices (p = 0.029) and
was negatively correlated with average fixation duration for an answer choice (p = 0.036).
The Corsi block-tapping test score was negatively correlated with the average time in
each test item (p = 0.027), number of matrix–matrix transitions (p = 0.020), number of
matrix–answer transitions (p = 0.002), number of answer–answer transitions (p < 0.001),
number of visits to a given matrix cell (p = 0.011), number of visits to a given incorrect
answer choice (p < 0.001), number of fixations on matrix cells (p = 0.011), and number of
fixations on answer choices (p < 0.001). The WSCT perseverative error number correlated
with the rate of matrix–answer transitions (p = 0.022).
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Table 5. Correlation matrix of the cognitive measures and eye-tracking metrics in Study 2.

Variables 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.

1.TowerofLondonscore 1.00
2.Corsiscore 0.16 1.00
3.WSCTPerseverativeerrors −0.01 −0.04 1.00
4.BRIEF−ABRI −0.18 0.12 0.11 1.00
5.BRIEF−AMCI −0.07 0.15 0.11 0.51 *** 1.00
6.BRIEF−AGEC −0.13 0.16 0.13 0.81 *** 0.91 *** 1.00
7.WMT−2totalscore 0.50 *** 0.31 ** −0.28 * −0.23 −0.11 −0.18 1.00
8.Averagetimeineachtestitem 0.19 −0.27 * −0.00 −0.30 * −0.09 −0.21 0.31 * 1.00
9.#Matrix−matrixtransitions 0.16 −0.28 * 0.13 −0.30 * −0.17 −0.26 * 0.35 ** 0.75 *** 1.00
10.#Matrix−answertransitions 0.03 −0.37 ** 0.21 −0.20 −0.12 −0.17 −0.10 0.62 *** 0.58 *** 1.00
11.#Answer−answertransitions −0.02 −0.41 *** 0.19 −0.19 −0.13 −0.18 −0.02 0.66 *** 0.74 *** 0.85 *** 1.00
12.Latencytothefirstfixationonananswerchoice 0.37 ** 0.10 −0.20 −0.14 −0.05 −0.10 0.32 ** 0.29 * −0.01 −0.27 * −0.28 * 1.00
13.Ratiooftimespentonthematrixvsanswerchoices 0.26 * 0.11 −0.15 −0.26 * −0.15 −0.22 0.36 ** 0.05 0.07 −0.26 * −0.38 ** 0.53 *** 1.00
14.#Visitstoagivenmatrixcell 0.15 −0.30 * 0.15 −0.30 * −0.17 −0.26 * 0.31 ** 0.77 *** 1.00 *** 0.66 *** 0.79 *** −0.04 0.03 1.00
15.#Visitstoagivenincorrectanswerchoice −0.03 −0.43 *** 0.21 −0.19 −0.12 −0.17 −0.11 0.67 *** 0.67 *** 0.94 *** 0.97 *** −0.27 * −0.36 ** 0.73 *** 1.00
16.#Fixationsonmatrixcells 0.17 −0.30 * 0.11 −0.32 ** −0.18 −0.27 * 0.34 ** 0.84 *** 0.98 *** 0.63 *** 0.74 *** 0.08 0.09 0.98 *** 0.70 *** 1.00
17.Averagefixationdurationforamatrixcell −0.25 * −0.07 0.07 0.09 0.04 0.07 −0.21 −0.19 −0.16 −0.11 0.00 −0.12 −0.18 −0.16 −0.04 −0.22 1.00
18.#Fixationsonanswerchoices 0.01 −0.40 *** 0.17 −0.20 −0.11 −0.17 −0.02 0.72 *** 0.74 *** 0.92 *** 0.98 *** −0.24 * −0.33 ** 0.80 *** 0.99 *** 0.77 *** −0.08 1.00
19.Averagefixationdurationforananswerchoice −0.20 −0.11 0.19 0.16 0.16 0.19 −0.18 −0.10 −0.03 0.06 0.17 −0.26 * −0.37 ** −0.02 0.13 −0.11 0.86 *** 0.08 1.00
20.Percentoftrialsclassifiedascluster2scanpath −0.03 −0.16 0.18 0.10 0.13 0.14 −0.02 −0.07 0.17 0.07 0.24 * −0.09 −0.12 0.16 0.17 0.08 0.41 *** 0.17 0.41 *** 1.00
21.Rateofmatrix−answertransitions −0.21 −0.23 0.28 * 0.11 0.01 0.06 −0.50 *** −0.26 * −0.11 0.51 *** 0.29 * −0.69 *** −0.46 *** −0.04 0.39 *** −0.15 0.04 0.31 ** 0.16 0.08 1.00

Note: Bold values indicate significant correlations. * p < 0.05; ** p < 0.01; *** p < 0.001.
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To analyze the relation of the eye-tracking metrics with each cognitive test and evaluate
whether there was a statistical difference between them, we performed a Steiger test for each
eye-tracking metric (see Figure 5). On one hand, the correlations of the ratio of time spent
on the matrix vs. answer metric and the three cognitive tests presented a non-significant
p-value, z = 1.74, p < 0.08. On the other hand, the correlations of matrix–answer Transitions
metric with the three cognitive tests presented significant differences between them, z = 2.2,
p < 0.03. Lastly, the correlations of the wrong answer visits metric with the three cognitive
tests presented no significant difference, z = 0.32, p < 0.75.
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Figure 5. Forest plot presenting the correlation estimates and their 95% confidence interval for the
correlation between the select eye gaze metrics and performance on cognitive tasks. The colors of
the lines and dots are related to each cognitive test. Note: ratio of time: ratio of time spent on the
matrix vs. answer; M-A Transitions: matrix–answer transitions; ToL: Tower of London test; Corsi:
Corsi block-tapping test; WCST PE: Wisconsin Card-Sorting Test Perseverative Errors.

3.2.3. LASSO Regression Models

From the seven proposed LASSO regression models, four were able to find predictors
for the dependent variable. The coefficients of each selected variable and the model
measures are displayed in Table 6. The Visits in the wrong answer choices and the percent
of trials classified as cluster 2 scanpath were able to predict 18% of the variation in the Corsi
test. Latency of the first fixation in answer choices, the ratio of time spent on the matrix
vs. answer, and mean fixation duration in the matrix predicted 16% of the variation in
the Tower of London score. Although Tower of London time score had several predictors,
its R2 was negative, indicating that the model was not reliable. The model with WCST
perseverative errors as the dependent variable did not identify any predictors. Lastly,
a combination of four eye-tracking metrics were selected in the training model for the
BRIEF-A BRI. However, the test model presented a negative R2 (−5%), meaning that it was
not a reliable model. No predictors were identified for the BRIEF-A MCI or GEC.
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Table 6. Standardized coefficients and performance estimates of the LASSO regression model
predicting cognitive test performance and self-reported EF.

Measures Corsi TOL
Score

TOL
Time

WSCT Perse-
verative
Errors

BRIEF-
A

BRI

BRIEF-
A

MCI

BRIEF-
A

GEC

Predictor’s standardized coefficients 1

Average time in each test item - - −0.65 - −0.09 - -
Matrix–answer transitions - - −2.00 - - - -
Answer-answer transitions - - −3.66 - - - -
Latency to first fixation in answer choices - 0.14 −0.22 - - - -
Ratio of time spent on matrix vs. answers - 0.02 −0.16 - −0.10 - -
Visits to a given matrix cell - - −0.96 - - - -
Visits in wrong answer choices −0.27 - 3.38 - - - -
Total number of fixations on matrix cells - - 1.83 - - - -
Average fixation duration for a matrix cell - −0.13 0.02 - −0.14 - -
Total number of fixations on answer choices - - 2.13 - - - -
Average fixation duration for an answer

choice - - 0.30 - 0.03 - -

Percent of trials classified as cluster 2
scanpath −0.03 - −0.40 - - - -

Rate of matrix–answer transitions - - −0.18 - - - -
Performance estimates

Correlation coefficient 0.48 0.59 0.14 - 0.09 - -
MAE 0.58 0.69 0.94 - 0.73 - -
RMSE 0.68 0.92 1.11 - 0.95 - -
R2 0.18 0.16 −2.13 - −0.03 - -

1 Showing the predictors selected by the LASSO model; see full set of eye gaze metrics in Table 1; The R2 presents
the explained variance by the model, while MAE and RMSE represent measures of the error of the model;
BRI = behavior regulation Index; MCI = Metacognition Index; GEC = Global Executive Composite.

4. General Discussion

Our study aimed to explore the relationship between cognitive abilities and eye-
tracking metrics related to strategy use in matrix reasoning tasks. Our preregistered
analyses revealed relationships between several eye-tracking metrics with different cogni-
tive abilities. We predicted that the ratio of time spent on the matrix vs. the answer choices
would be more related to planning than the other cognitive measures (Hy1). Indeed, we
found a p-value lower than 0.1 in this hypothesis, pointing to the possibility that planning
is reflected in more time spent gazing on the matrix, but it was not significant. We also
predicted that fewer gaze transitions between the matrix and the answer choices would be
related to higher visuospatial WM scores (Hy2); this prediction was confirmed. Lastly, we
predicted that fewer perseverative errors on WCST would be more related to less revisit in
incorrect answer choices; however, this hypothesis was not confirmed. Based on Steiger’s
test, no statistical significance was found pointing to difference between correlations of the
cognitive measures. In summary, we were able to confirm our hypothesis that fewer gaze
transitions between the matrix and the answer choices were related to higher visuospatial
WM scores and found a low, yet not-significant, p-value indicating that planning can be
related to more time spent gazing on the matrix. However, we also predicted that fewer
perseverative errors on WCST were related to less revisits in incorrect answer choices, but
this was proven not to be true.

We also conducted exploratory analyses to investigate the relationship of the eye gaze
metrics with the cognitive tests. The test that was most similar to the eye-tracking task
(another visuospatial reasoning task) was the one well-predicted by eye gaze metrics. The
results in Study 1 showed a strong relationship between several eye gaze metrics and the
D.70 score. These variables predicted 57% of the variation in the D.70 test. These results are
consistent with previous literature (e.g., Hayes et al. 2011; Laurence et al. 2018; Vigneau et al.
2006), in which the eye gaze metrics predicted the participant score in the same reasoning



J. Intell. 2023, 11, 75 18 of 22

task. With our results, it seems that the eye gaze metrics in a reasoning task can also predict
the participant score in another reasoning task. Therefore, it is possible that the eye gaze
metrics have a relationship with the reasoning ability of a participant.

Eye gaze metrics were also a moderate predictor of planning scores (16%). Higher
scores on the Tower of London, a cognitive measure of planning, were related to higher
Latency to the first fixation in answer choices, a higher ratio of time spent on the matrix vs.
answer, and a smaller mean fixation duration in the matrix. We reasoned that participants
that show better planning abilities are the ones that would first try to solve the problem
on the matrix and then go to the answer choices, suggestive of a constructive matching
strategy (Hy1). With this in mind, the eye gaze metrics selected were all related with the
constructive matching: a high latency to the first fixation in answer choices points out that
participants were scanning the matrix before going to the answer; a higher ratio of time
demonstrates that participants spent more time fixating in the matrix than in the answer
choices. Shorter fixations were also related to planning. Hodgson et al. (2000) demonstrated
that participants who showed better performance in the Tower of London test were the
ones with lower fixation times, suggesting that good planning is linked to fast and efficient
fixations. However, the eye-tracking metrics were not good predictors for planning time,
indicating that their time and efficiency are mediated by other variables.

Further, higher scores on the visuospatial WM task (Corsi block-tapping) were related
to fewer visits to wrong answer choices and the percent of trials classified as cluster 2
scanpath (18%). While not predicted a priori, this result suggests that participants with
higher WM are better able to remember elements of the problem, and therefore visit
the wrong answer choices fewer times. We predicted higher WM scores to be related to
fewer matrix–answer transitions (Hy2), based on previous work that demonstrated that
individuals with higher WM used the constructive matching strategy more times (Gonthier
and Roulin 2020). However, the percent of trials classified as cluster 2 scanpath was a
negative predictor, indicating that participants that relied more on an eye gaze strategy
that is very similar to constructive matching were able also more probable to present high
visuospatial WM scores. Additionally, we predicted that visits in wrong answers would be
related to perseverative errors in the WSCT (Hy3); however, this hypothesis was not borne
out either. A possible explanation for this is that our sample had relatively small variation
in the WCST perseverative error measure (Figure 4). Perhaps in a more diverse sample
than university students, variation in perseverative errors would be higher and it would be
possible to observe a relationship.

It is interesting to note that the rate of matrix–answer transitions was the best predictor
for several studies predicting the score in the same matrix reasoning task that the eye gaze
was recorded (e.g., Hayes et al. 2011; Laurence et al. 2018; Vigneau et al. 2006). We found
similar results when predicting the score of another reasoning task, the D.70 test. However,
this variable was not selected in any model predicting the score of the other cognitive tests
related to visuospatial working memory, planning, and cognitive flexibility. The lack of
relationship between the rate of matrix–answer transitions with other cognitive measures
besides reasoning indicates that this metric is extremely related to reasoning, but not to
other cognitive abilities. It is hard to understand precisely why this metric is related to
reasoning ability, but it seems to be a reliable predictor of reasoning, even when predicting
reasoning in a different task.

No predictor was found for the BRIEF-A general executive composite and metacogni-
tive index. However, we were able to find predictors for the BRIEF-A behavior regulation
index. In this case, ratio of time spent on matrix vs. answer choices, number of fixations
in the matrix, mean fixation duration in answer choices, and average time in each test
item were selected as predictors. However, in the test split, we found a negative R2 (−3%),
indicating that these measures are not reliable to predict BRIEF-A BRI. These results indi-
cate that self-reported daily EFs are not related to the eye gaze metrics in the reasoning
task. Therefore, these real-world, subjective measures are not predicted by the lab-based,
objective measures.
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Regarding the clusterization of the eye gaze in the matrix reasoning task, we chose,
based on previous literature (e.g., Kucharský et al. 2020; Vigneau et al. 2006), to use two
centroids. This number of centroids was selected based on the idea of constructive matching
and response elimination strategies. In both studies, we found a cluster that is very similar
to the constructive matching pattern and another cluster that had a row-and-column-
wise scan, with more transitions to the answer choices. This pattern was also verified by
Kucharský et al. (2020), indicating that this pattern can be seen in different studies with the
clusterization with two centroids. Indeed, we expected to find a second pattern that was
more similar to the response elimination strategy but found an eye gaze pattern that is not
a pure response elimination, but is also not a constructive matching pattern, although it has
some similarities to it. Previous studies demonstrated that the pure response elimination
strategy is very rare, with participants performing it in less than 3% of the trials (Jarosz
et al. 2019). It was more common for test takers to execute a hybrid strategy. Therefore, our
second cluster may reflect this: a strategy that has elements of the response elimination
strategy (i.e., more transitions to the answer choices), but that also follows elements of the
constructive matching strategy (i.e., the row-and-column-wise scan).

Differences found in the Bayesian post-hoc comparisons of the clusters indicated that,
in Study 1, the constructive matching (cluster 1) scanpath had longer fixations than cluster
2, while the inverse was true in the Study 2. However, it is noteworthy that the biggest
difference between the studies were in the second cluster. This indicates that the first
cluster had a small variation while the second cluster presented a higher heterogeneity.
These result patterns indicate that the second cluster can present distinct patterns since
it is a more chaotic strategy, similar to the strategy described by Jarosz et al. (2019). It is
noteworthy that differences in the clusters post-hoc analysis can be due to the clusterization
itself. This means that since the clusters are generated by different features in eye gaze,
these differences can also be related to the fixations and the other eye gaze metrics. Taking
this into account, these results are very provisional.

The present study has broader implications for understanding the relationship between
eye movements in matrix reasoning tasks and cognitive abilities. It demonstrates that the
cognitive strategies in matrix reasoning tasks, measured by eye tracking, have a moderate
relation with cognitive abilities of planning and WM. In this case, it is possible to think
of how cognitive abilities intervention for WM or planning can affect the eye gaze on the
matrix test. Additionally, studies teaching participants how to process the matrix in an
efficient way may produce cognitive gains. New studies seeking to answer these questions
are needed.

There are several limitations of this study to consider. First, we had two different
samples with different cognitive measures instead of one with all the cognitive measures.
Second, both samples consisted of university students, which limits the generalizability of
the results. Future studies should focus on diverse samples. Furthermore, our sample size
was relatively small, and our results should be interpreted with caution. Due to the sample
size, both of our studies are underpowered (67% in Study 1 and 74% in Study 2), although
both studies present bigger samples than most eye-tracking studies in this type of research
(see Laurence and Macedo 2022). New studies should focus on larger samples.

5. Conclusions

To conclude, we aimed to explore the relationship between cognitive abilities and eye-
tracking metrics related to strategy use in matrix reasoning tasks. The Gf test was the one
better predicted by the eye-tracking metrics. After the Gf test, the WM and planning tasks
were also the ones that the eye-tracking metrics predicted higher variance. This pattern of
results supports the claim that the cognitive visual strategies used in the matrix reasoning
task are influenced by cognitive abilities such as fluid reasoning, WM, and planning.
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