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Abstract: Figural matrices tests are among the most popular and well-investigated tests used to assess
inductive reasoning abilities. Solving these tests requires the selection of a target that completes a figu-
ral matrix among distractors. Despite their generally good psychometric properties, previous matrices
tests have limitations associated with distractor construction that prevent them from realizing their
full potential. Most tests allow participants to identify the correct response by eliminating distractors
based on superficial features. The goal of this study was to develop a novel figural matrices test which
is less prone to the use of response elimination strategies, and to test its psychometric properties. The
new test consists of 48 items and was validated with N = 767 participants. Measurement models
implied that the test is Rasch scalable, inferring a uniform underlying ability. The test showed good
to very good reliability (retest-correlation: r = 0.88; Cronbach’s alpha: α = 0.93; split-half reliability:
r = 0.88) and good construct validity (r = 0.81 with the Raven Progressive Matrices Test, r = 0.73 with
global intelligence scores of the Intelligence Structure Test 2000R, and r = 0.58 with the global score
of the Berlin Intelligence Structure Test). It even superseded the Raven Progressive Matrices Tests
in criterion-related validity (correlation with final year high school grades (r = −0.49 p < .001)). We
conclude that this novel test has excellent psychometric properties and can be a valuable tool for
researchers interested in reasoning assessment.

Keywords: figural matrices test; intelligence; reasoning; Rasch analysis

1. Introduction

Fluid reasoning abilities, which are sometimes also called fluid intelligence, are one
of the best predictors of educational achievement (Deary et al. 2007), job performance
(Schmidt and Hunter 2004), health and longevity (Gottfredson and Deary 2004), and
complex problem solving (Danner et al. 2011). Within the Cattell–Horn–Caroll taxonomy
of cognitive abilities, fluid reasoning is defined as the ability to identify underlying rules
or patterns in novel situations (Cattell 1963; Horn 1968; Horn and Cattell 1967; McGrew
2009). Thus, people with good fluid reasoning abilities are good at solving inductive
reasoning problems without having the prior knowledge, scripts, habits, or schemata
to do so (Schneider and McGrew 2012). For this reason, fluid reasoning abilities are
typically assessed using figural reasoning tests, such as the prominent Raven matrices
test (Carpenter et al. 1990; Marshalek et al. 1983; Raven et al. 1994; Waschl et al. 2016).
Although several figural reasoning tests have been developed and their validity has been
established, we believe that there is room for improvement in the assessment of inductive
reasoning abilities. For this purpose, we developed a new test to overcome the psychometric
weaknesses of the currently available tests.

Items of figural reasoning tests typically consist of a matrix, each cell of which shows
a figure representing a combination of different elements. From cell to cell, the figures’
elements may vary in shape, texture, color, number, orientation, and/or arrangement
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(Formann 1973). The figures are assigned to matrix cells following certain operations,
which may be applied column-wise, row-wise, or both (Formann 1973). Critically, one
cell is always left empty, and the participants’ task is to identify the single figure that will
complete the matrix, the so-called attractor, in accordance with the underlying operations
among a set of candidate figures consisting of the attractor and several distractors. An
exemplary matrices test item is displayed in Figure 1.
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Figure 1. Illustration of a typical (easy) matrices test item. This test item is taken from the practice
item section of our newly developed figural matrices test. In this example item, response option a is
correct and options b to i are incorrect. Both operations used to construct the figures are vertically
applied. The two central elements of the two figures on the left and in the middle are combined to
form the third figure in each matrix row, while the black dot rotates clockwise in steps of 90 degrees
from left to right.

Items of earlier tests, such as the Raven Matrices Test (Raven 1976) or the Wiener
Matrices Test (Formann and Piswanger 1979) were developed in an intuitive fashion,
meaning that the items were created based on the personal intuition of the test constructors
and then tested on samples to decide which items to keep (Hornke et al. 2000; Klauer
1978; Mittring and Rost 2008; Schott and Wieberg 1984). Such intuitive approaches have
been criticized for being created by “testing specialists who based their advice on personal
experience, wisdom and limited empirical research” (Haladyna et al. 2002, p. 310). More
recently, item construction has been approached in a more rational manner, meaning that
test items are created by following explicit construction guidelines (Haladyna and Downing
1989; Heydasch 2014; Hornke et al. 2000; Hornke and Habon 1986). Typical examples for
matrices tests developed under a rational approach are the Hagen Matrices Test (Heydasch
2014) and the Bochumer Matrices Test (Hossiep et al. 1999). The Hagen Matrices Test
also uses a 3 × 3 matrix, whilst the Bochumer Matrices Test items are arranged in a 5
× 3 matrix. They are both based on a construction framework with pre-defined rules
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for item generation, which is also why they are also labelled ‘rule-based’. In the given
context, the term rule refers to the mental operations that participants need to detect and
solve. Therefore, in the remainder of this article, we will refer to these mental operations
simply as operations, in line with the nomenclature of Hornke and Habon (1986). Figural
reasoning test items can also be generated in an automated fashion by using computer
applications such as the MatrixDeveloper (Freund et al. 2008) or the International Cognitive
Ability Resource ICAR (The International Cognitive Ability Resource Team 2014). The
MatrixDeveloper features six different operations from which the user can choose for
generating items (Jendryczko et al. 2019). The tool then generates the item accordingly,
randomly selecting shapes, color (black or white), or symbols (Jendryczko et al. 2019).

Notably, even among the tests that used a rational approach, there is currently no royal
road to test the construction of figural reasoning tests items. The construction of distractors,
especially, has not received much attention to date. The few yet proposed design strategies
only relate to some rather specific construction aspects, and most of them have not been
validated (Becker et al. 2014). Even with the automated item generators, the distractors
are not constructed in a fully systematized fashion. For this reason, we established a new
rationale for a systematized distractor generation for our new test with the aim of achieving
optimal psychometric properties.

When solving matrices tests, participants regularly use a constructive matching strat-
egy, that is, they identify and apply the underlying operations, mentally construe the
answer, and then choose the response option that best reflects the imagined solution
(Gonthier and Roulin 2020). For the example in Figure 1, participants would look at the
upper 3 × 3 matrix, the item stem, and draw a mental picture of the solution. Hence, the
black dot needs to be on the right-hand side, and the inversed smaller triangle needs to
be within the bigger triangle with the proportions staying equal. With this mental picture,
they would look at the response options and choose the matching option, which is response
option a. Sometimes, however, participants can also rely on a bypassing strategy called
response elimination (Bethell-Fox et al. 1984; Hayes et al. 2011). Rather than identifying
the operations underlying an item, participants inspect the candidate figures to exclude
distractors (Arendasy and Sommer 2013; Becker et al. 2016). By doing so, implausible
distractors that do not follow any of the operations used to construct the item can be
easily eliminated (Case and Swanson 2002; Gierl et al. 2017; Haladyna and Downing 1989;
La Torre and Karelitz 2009). For example, if an additional figural element is added to every
cell in the third column from left to right, as it is the case in Figure 1, a distractor featuring
fewer elements than the cells in the middle column can easily be dismissed. In the same
vein, distractors that are visually dissimilar to all other response options can be eliminated
without applying any operation (Arendasy and Sommer 2013; Jarosz and Wiley 2012). For
instance, if only one distractor features a circle and all other response options solely feature
triangles and squares, participants are able to directly rule out this single distractor. For the
example in Figure 1, a distractor that would feature any shape other than a triangle for the
inner or outer figural element would easily be identified as such.

In a worst-case scenario, participants can use a response elimination strategy to identify
the correct response without considering the matrix at all (Mittring and Rost 2008). Usually,
any single distractor will feature more figural elements that are also a part of the solution
than elements that are not a part of the solution; however, each distractor will feature a
different subset of elements from the solution. By mere inspection of all candidate figures,
participants can identify the one that shows the highest number of recurring elements and,
in doing so, identify the attractor without having any insight into the underlying operations.
This bypassing strategy has been referred to as counting (Mittring and Rost 2008). Mittring
and Rost (2008) showed that for approximately 50% of the items of the Raven Advanced
Progressive Matrices (RAPM) (Raven 1976), the attractor can be unanimously identified
by applying such a bypassing strategy without having seen the test matrices of these
items. More recently developed matrices tests, including those that employed a rational
item construction approach, do not perform much better in this regard: for the Bochum
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Matrices Test Advanced (Hossiep et al. 1999), 35% of items can be solved by bypassing
strategies; for the Naglieri Nonverbal Ability Test (Naglieri 2003) it is 70%; for the test for
intellectual giftedness (Preckel 2003) it is 60%; and for the Wiener Matrizen Test (Formann
and Piswanger 1979) it is 75% of the items.

These percentages are significant in that they reflect the proportion of items for which
the correct response was unequivocally identified. Therefore, even if an item cannot be
solved by using bypassing strategies, the likelihood of choosing the correct response option
increases when participants can dismiss certain distractors right away (Arendasy and
Sommer 2013; Becker et al. 2016; Tarrant et al. 2009). For the test for intellectual giftedness
(Preckel 2003), Mittring and Rost (2008) report that for an additional 15% of the test items,
the guessing probability can be increased to p = .50, if the bypassing strategy of counting
is used.

Participants tend to use bypassing strategies if possible because they are less cog-
nitively effortful than constructive matching strategies (Gonthier and Roulin 2020). The
downside of such bypassing attempts is that test performance typically suffers from them
(Arendasy and Sommer 2013; Bethell-Fox et al. 1984; Gonthier and Roulin 2020). Although
participants with better cognitive abilities are generally less likely to use bypassing strate-
gies than participants with lower abilities, the reliance on such strategies will influence test
performance beyond cognitive abilities (Gonthier and Roulin 2020). It has been shown, for
example, that a participant with a lower working memory capacity who uses a constructive
matching strategy can outperform a participant with a higher capacity who uses response
elimination as a bypassing strategy (Gonthier and Roulin 2020). The scores of participants
who used a bypassing strategy can be thus expected to be less indicative of their actual
ability than the scores of participants who did not. Taken together, when participants
extensively use bypassing strategies for solving a matrices test, the convergent validity
with other cognitive abilities tests is likely to be reduced (Arendasy and Sommer 2013;
Becker et al. 2016).

In light of these observations, we aimed to develop a novel matrices test that allows for
a more precise assessment of reasoning abilities and limits and prevents participants from
relying on response elimination strategies, especially counting. To our best knowledge,
there are no clear construction guidelines to prevent response elimination and counting
strategies. However, the work by Guttman and Schlesinger (1967) is useful in this regard,
as they proposed a general systematic distractor construction approach for ability and
achievement tests. According to this approach, if the test content is a priori explicated in
a facet design, distractors can be generated so that they systematically follow the same
design. Within the facet design framework, if a figural reasoning test features a finite
number of operations, each distractor needs to portray a different combination of correctly
and incorrectly applied operations, meaning distractors need to be collectively exhaustive
(Guttman and Schlesinger 1967). For example, if an item consists of two operations,
operations A and B, the same amount of distractors out of the total amount of distractors
must correctly (1) display operation A, but not operation B, (2) correctly display operation
B, but not operation A, and (3) incorrectly display operation A and operation B. Bypassing
strategies make use of the fact that certain or even all distractors can be dismissed based on
some visual and structural features (Arendasy and Sommer 2013). A direct consequence
of the systematic distractor generation approach, however, will be that distractors will be
structurally similar to the attractor, which will render them the most plausible.

Furthermore, if the operations used to construct an item are made explicit, the mental
operations a participant relies on to solve a particular item can be deduced. In as much
as these operations are reflective of the mental processes underlying the latent ability
assessed with the item, the analysis of operation detection can be indicative of the cognitive
processes at work during item solution (Hornke and Habon 1986; Undeutsch 2010). As
responses to items are typically simply scored as “correct versus incorrect”, information
about the participants’ reasoning that led to the selection of a particular distractor is lost
(Laurence and Macedo 2022). The importance of analyzing distractors for their informative
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content has come into focus in recent years (Forthmann et al. 2020; Storme et al. 2019).
While the focus of previous work was dedicated to analyzing single distractors for abil-
ity, our approach focuses on increasing distractor information by using the interplay of
distractors and their operations resulting from the facet design (Guttman and Schlesinger
1967). Under the systematic distractor generation approach, combinations of correctly and
incorrectly applied operations within each distractor can be used to infer which operations
were understood and applied correctly by a participant who chose a particular distractor
(Guttman and Schlesinger 1967). Simply put, distractor analysis can help us to better
understand the cognitive processes at work in a given person while solving a particular
item (Forthmann et al. 2020; Laurence and Macedo 2022).

Based on the considerations just outlined, for our novel matrices test we developed
and used a systematic distractor generation approach with the following features:

• Distractors and the attractor were generated so that the attractor cannot be identified
by using a counting strategy (Mittring and Rost 2008);

• Distractors and the attractor were generated so that they are of a similar visual appear-
ance (Arendasy and Sommer 2013);

• All distractors were generated so that they were plausible solutions to the item
(Gierl et al. 2017; Haladyna et al. 2002; Haladyna and Rodriguez 2013): plausibil-
ity was achieved by applying some, but not all of the item’s underlying operations
correctly when generating a distractor (Guttman and Schlesinger 1967) and by ap-
plying additional operation(s) in accordance with possible misconceptions about the
operations used in the respective item (Case and Swanson 2002);

• Each possible correct/incorrect combination of the item’s underlying operations was
reflected by one particular distractor, so that distractor selection would be informative
with regard to which operations were correctly applied and which were incorrectly
applied (Guttman and Schlesinger 1967).

For the novel matrices test, we intended to generate items that cover a wide range
of abilities and would thus allow us to measure and compare reasoning abilities across
different populations. For this purpose, we intended to generate items which were more
and items which were less easy to solve. We further intended to apply Rasch model
scaling to the data so that item difficulties and a person’s abilities could be estimated
independently. The Rasch model implies that all items load equally strongly on the latent
ability they are assumed to assess, thus allowing the use of a sum score and supporting the
unidimensionality of the underlying ability (Rasch 1960). In order to generate the required
number of distractors per item under our approach, every item must feature at least two
operations. For our test, we decided to come up with items consisting of two as well as
items consisting of three operations. Items usually become more difficult when the number
and complexity of their underlying operations increase (Carpenter et al. 1990; Gonthier
and Roulin 2020). This is because before participants can apply the specific operations they
have to distinguish the figural elements within a matrix that reflect the different operations
and correspond to each other in order to identify them (Carpenter et al. 1990). Furthermore,
if participants succeed in detecting and solving one operation underlying an item that
features two or more operations, they have to hold this information in their memory, while
trying to identify and solve the other operations (Carpenter et al. 1990). Because either two
or three operations from the same finite set of operations underlie all the items of our new
test, we are better able to determine item difficulties (Freund et al. 2008). Items with three
underlying operations should be more difficult than items with two. Additionally, because
distractors partially follow the same operations as the attractors, we should be able to more
precisely determine the difficulties of distractors based on their similarity with the attractor
(Guttman and Schlesinger 1967).
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2. Materials and Methods
2.1. Participants

For the present study, data from 5 different sub-samples, all collected between March
2020 and December 2021, were pooled. In total, 3 sub-samples consisted of student partici-
pants; the other 2 consisted of participants from the general population. Participants were
recruited in lectures, from the university participant pool, through a newspaper article,
by e-mail, and through posts to Facebook groups. Data were collected partly online and
partly in the laboratory. All participants filled in the HeiQ and a subset of other tests
and questionnaires depending on the sub-sample they belonged to (see below). A total of
N = 733 participants completed the study.

Participants who reported that they did not follow the instructions by confirming item
“I often clicked something just to finish the study quickly” presented at the very end of the
study were excluded (N = 13). Sub-samples 2 to 5 were presented with a catch item that
was easily solvable but looked like a regular item on first sight. Participants who did not
solve this item were excluded from further analysis (N = 6). Online participants (from sub-
samples 1, 2, and 3) were not given a time limit, but had been instructed to perform the test
without interruptions. Participants who took more than 4 h to answer all test items were
excluded (N = 13) after an outlier analysis. Given the median test duration of 57.52 min for
the remaining participants of the 3 sub-samples (N = 388), such long test-taking time was
considered an indication of a longer interruption during test completion. Some participants
completed the matrices test in less than 2 min, which indicates that they did not try to solve
it properly. To exclude items that were not seriously attended to, item solution attempts
that took less than 5 s were considered as overly fast and coded as missing values. A 5 s
cut-off was chosen because, in our sample, the single fastest correct solution, which was
provided by 1 participant who solved all of the items correctly, took 6 s. Furthermore, in the
previous research on fast responses it has been argued that participants require at least 5 s
to examine, understand, and answer an item (Wise 2017). Participants who showed overly
fast responses on 50% of all test items in the HeiQ were completely excluded because they
likely did not take the test seriously (N = 18).

The final sample consisted of N = 683 participants. These participants’ mean age
was M = 25.88 (SD = 9.04); 66.2% were female, 32.7% were male, and 0.3% identified
as non-binary or preferred not to say. A total of 98.4% resided in Germany, with the
remainder residing in Europe. Further, N = 590 (86.4%) participants’ first language was
German, N = 20 (2.9%) reported they were raised bilingual with German being 1 of the
2 mother languages, and the remaining participants reported their first language was not
German or preferred not to say. Most participants were university students (84.3%). Further,
N = 467 participants and performed the study online; N = 216 participants performed it
in the laboratory. Demographic information for each sub-sample and an overview of the
constructs assessed within each sub-sample are provided in Table 1.

2.2. Materials
2.2.1. Construction of the Heidelberg Figural Matrices Test (HeiQ)

The new test introduced in this study was the figural matrices test HeiQ (pronounced
“high-q”). The test consisted of 48 items plus one catch item administered for four of the
five sub-samples. Each item consisted of a 3 × 3 matrix, of which the very right field
in the lowest row is empty. Participants had to identify the correct response option (the
attractor) which completes the pattern within the matrix. The attractor was presented
together with seven distractors for items with two operations or eight distractors for items
with three operations below the matrix on the screen. The position of the attractor among
the distractors varied randomly from item to item but was fixed across participants.

Operations

Each cell of the 3× 3 matrix contains several geometric shapes (e.g., squares; triangles),
lines, and/or patterns, which change from cell to cell following certain regularities. For



J. Intell. 2023, 11, 73 7 of 22

each item, we used two or three out of eight possible operations (Hornke et al. 2000; Hornke
and Habon 1986). Figure 2 illustrates the different operations we used. The operations are:

• Identity (ID): The same figure is repeatedly displayed in each cell of a row/column,
(Figure 2a);

• Addition (AD): The figures of the first two cells (row-/column-wise) are added to-
gether to form the third figure (Figure 2b);

• Subtraction (SU): The figure of the second cells (row-/column-wise) is deducted from
the figure in the first cell of the same row/column to form the figure in the third cell
(Figure 2c);

• Intersection (IN): The third figure consists of only those elements of the figures that
are displayed in both the first and the second cell (Figure 2d);

• Unique addition (UA): The third figure is made up only of those elements of the figures
that are displayed in either the first or the second cell. Elements that are found in both
figures are omitted (Figure 2e);

• Seriation (SE): The rule of change from the first to the second cell (e.g., movement,
rotation, change in size, or addition of elements) is applied to the figure in the second
cell to generate the figure for the third cell (Figure 2f);

• Variation of open Gestalts (VO): In each row/column, three one-dimensional figures
(e.g., a line, curve, or arrow) are presented. These figures are then repeated in the other
rows/columns, although not necessarily in the same order (Figure 2g). Open Gestalts
in this case refers to the “one-dimensional” appearance (Hornke et al. 2000);

• Variation of closed Gestalts (VC): In each column/row, three different figures are
presented (for instance, one square, one circle, and one pentagon; see Figure 2h). The
order with which the three figures appear within their respective column or row is
randomly determined. Closed Gestalts refer to figures of two-dimensional nature
(Hornke et al. 2000), such as squares, rectangles, or other visually “closed” figures.

Table 1. Sub-sample specific demographics and assessed measures.

Sub-
Sample N Age

Gender
(Female

(%))
Population Location Cognitive

Measures

Additional
Question-

naires
Academic

M SD

1 155 23.81 5.49 112 (72.3) University Online

2 107 24.18 3.42 72 (67.3) University of
Applied Sciences Online NFC GPA

3 126 24.66 4.47 92 (73.0) University of
Applied Sciences Online NFC GPA

4 216 26.02 11.18 136 (63.0) University and
general population In person BIS-S NFC GPA

5 79 33.81 13.54 40 (50.6) General population Online I-S-T 2000R
RAPM NFC GPA

Note: NFC: Need for Cognition. GPA: Grade point average for high school and university degree (if appli-
cable). BIS-S = Berlin Intelligence Structure Test Short Form. I-S-T 2000R = Intelligence Structure Test 2000R.
RAPM = Raven Advanced Progressive Matrices.

Item Construction

Items were generated using different operations and combining either 2 or 3 of those
operations. We applied each of the 8 operations equally, often across the test, so that
participants who were able to detect 1 specific operation particularly well would not
disproportionally profit from this skill. Additionally, we applied each possible operation
combination equally often for the same reason. Overall, 48 items were created. Each
operation was included 15 times. As all items are balanced (i.e., each operation is included
the same number of times) and we wanted to keep the combinations of operations equal,
24 items with 2 operations and 24 items with 3 operations were considered the best solutions
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to achieve balance within a mathematical (combinatoric) framework. The 24 two operation
items were assigned to the first test half, and the 24 three operation items were assigned to
the second test half.
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Figure 2. Overview of the eight operations that are used to construct the items. See (Hornke and
Habon 1986) for a similar example.

Distractor Generation

Distractors were generated following the guidelines described in the introduction
to make sure that participants could not dismiss certain distractors based on superficial
features. All distractors were created so that they provided plausible solutions to the empty
matrix cell. Plausibility was achieved on a structural level in that all but one distractor
correctly featured at least one of the operations that define the attractor. Further, incorrect
solutions to an operation were kept as closely related to the existing operations as possible.
For example: In the example item in Figure 1, operation Seriation is represented by the
black dot that rotates 90 degrees clockwise. The incorrect display of Seriation is depicted
by either a black dot that is rotated 180 degrees or a black dot that is rotated 90 degrees
counterclockwise. Visual similarity was achieved by using figural elements for the incorrect
solutions that are the same or similar to the correct solution. For example: As shown above,
Seriation is always featured by a black dot that is either at the correct position or at an
incorrect position. The visual element, however, stays the same. In the same vein, the
incorrect application of Addition is displayed by the correct figural element—a triangle—
but either varied in size or orientation (see Figure 1). We further prevented counting as a
means of achieving a correct response. In a final step, we constructed distractors so they
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could be evaluated to infer which operations participants applied/missed. To achieve these
requisites, certain factors had to be considered:

Balanced Occurrence of Figural Elements

In our test, all figural elements (e.g., arrows) appear equally, often across response
options. As a result, participants could not estimate the likelihood of response options
based on their appearance. For example, four response options might include an arrow
pointing upwards, whereas the remaining four response options display an arrow pointing
downwards. No response option could be ruled out heuristically. The same principle
applies to the joint occurrence of figural elements (e.g., an arrow and the shape of the outer
element). Some responses might show a circle with the arrow pointing upward, other
responses a hexagon with the arrow pointing downward and vice versa. Thus, counting
was not possible. An example is shown in Figure 3.
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The item in Figure 3 features three operations: Identification, Addition, and Seriation.
In this example, Identification refers to the outer shape of the figure: either a circle (false
application of the operation) or a hexagon (correct application). Examining the eight
response options, four options include a circle (b, d, e, and h), and four options include a
hexagon (a, c, f, and g). Because both shapes occur equally often, they should be equally
likely to be considered the correct shape for people who did not identify the Identification
operation. The second operation in the example item is Addition. Addition in this item
is displayed by the pattern inside the shapes. Again, four patterns resemble the correct
application of this operation (b, d, f, and g), and four patterns represent a false application
(a, c, e, and h). The last operation, Seriation, regards the direction of the arrows. There are
four arrows pointing in the upper left-hand direction (a, d, e, and f; the correct display of
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the underlying operation) and four arrows pointing to the left-hand side (b, c, g, and h
distractor elements of this operation). Again, each element is displayed the same number
of times, and no element can be regarded as more or less likely. To conclude, it was not
possible to rule out one of the elements by looking at the number of times each element
appears. Furthermore, the combination these elements appear in also had to be considered.

Each combination of any two of the three figural elements was presented the same
number of times. As can be seen in Figure 3, the two different shapes are both presented
twice with the arrow pointing to the left and twice with the arrow pointing diagonally
upwards, respectively, creating four different possible combinations that are all heuristically
equally likely. This was to ensure that participants who correctly applied one operation
were still left with response options that featured the same elements the same number of
times. If this was not the case, counting would still be possible after successfully applying
one operation. The technique of presenting each element and each combination of elements
equally was often applied for every operation, resulting in eight unique response options.
The combinations and thus the pattern of correctly applied operations can be presented in
a table, as shown in Table 2.

Table 2. Distractors and their correct/incorrect setup of underlying operations for the example item.

Response
Option Addition Identification Seriation Operations

Correct

A 0 1 1 2
B 1 0 0 1
C 0 1 0 1
D 1 0 1 2
E 0 0 1 1
F 1 1 1 3
G 1 1 0 2
H 0 0 0 0

Note: Response option labels refer to the letter assigned in Figure 3. The number 1 is used to specify that the
operation is correctly displayed in the response option, the number 0 when the operation is incorrectly displayed.
Response option f is the correct response; hence, all three operations are correctly displayed.

Informative Content of Distractors

Several distractors were created so that they would serve as lures. In other words,
they followed one of the operations necessary to solve the item, but not the other(s). The
idea is that participants who selected these lures did so because they understood some
part of the construction underlying the item, but not all of it. To be able to subsequently
estimate which operations were correctly applied by a participant, a distractor for every
possible combination of correctly/incorrectly applied operations was created. For example,
distractors that displayed either the correct solution of operation A but not operation B, or
operation B but not operation A, were included as well as distractors that did not display
any correct features. For the three-operation items, this approach continued onto each
possible two-way combination. For an item with operations ABC, apart from the attractor,
there were three distractors where either one of the operations was correct (either A, B,
or C), three distractors where any two-operation combination was correct (AB, AC, and
BC, respectively), and one where none of the operations were correct. Figure 3 and Table 1
can also be used to exemplify this setup. The item in Figure 3 features three operations:
Addition, Identification, and Seriation. The correct response is response option f.

Each distractor represents a different combination of a true/false depiction of the
underlying operations. This is shown in Table 2. A participant selecting response option a
could thus be assumed to have correctly detected and solved the operations Identification
and Seriation, but not Addition. A participant selecting response option h, however, can be
assumed to not have detected or solved any of the three operations. The emerging eight
response options cover every combination of correct and incorrect application for each
operation. Together with the guidelines presented above to include each element the same
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number of times, this distractor setup made it possible to identify operation knowledge for
all operations while still preventing counting as an exclusion strategy.

2.2.2. Berlin Intelligence Structure Test Short Form (BIS-S)

The short form of the Berlin Intelligence Structure Test (BIS-S) was used in sub-sample 4
(Beauducel and Kersting 2002; Jäger et al. 1997). The BIS-S consists of 15 tasks that capture
the mental operations reasoning, creativity, memory, and speed in verbal, numerical,
and figural contents. Overall, the BIS-S is a valid indicator for general intelligence (e.g.,
Beauducel and Kersting 2002). The BIS-S takes approximately 45–60 min to complete,
depending on the time spent on the instructions and trial items for each task. An example
task is the Charkow task: Participants of this task need to complete line drawings in
accordance with certain rules. The first four drawings are given, and participants have to
draw the remaining two. This task can be categorized into a figural reasoning facet of the
BIS model (Jäger et al. 1997).

2.2.3. Intelligence Structure Test 2000R (I-S-T 2000R)

The Intelligence Structure Test 2000R (I-S-T 2000R) was used as an additional measure
of general intelligence in sub-sample 5 (Liepmann et al. 2001). With the I-S-T 2000R, three
domains of cognitive abilities are tested: reasoning, knowledge, and memory. Reasoning
and knowledge can each be divided into three subcategories: numeric, verbal, and figural.
Furthermore, fluid intelligence (gf) and crystal intelligence (gc) are extracted from the
reasoning and knowledge part of the test.

2.2.4. Raven Advanced Progressive Matrices (RAPM)

The Raven Advanced Progressive Matrices (Raven et al. 1994) is a frequently used
figural matrices test and was used as a benchmark for the newly developed test in one
sub-sample. Each item presents a 3 × 3 matrix with one (the bottom right) empty field.
Participants need to detect the underlying structure and decide which out of the eight given
response options correctly continues the given matrix. Components can differ by form,
color, size, or orientation and be applied horizontally or vertically. The RAPM consists
of 48 items, with 12 items (Set I) being practice items. The actual test consists of 36 items
(Set II).

2.2.5. Need for Cognition (NFC) Scale

A German 4-item short form (Beißert et al. 2015) of the original NFC scale (Cacioppo
and Petty 1982) was used in all sub-samples. The short version was used as it has been
shown to have good psychometric properties and does not consume too much assessment
session time (Beißert et al. 2015; Rammstedt et al. 2012). All 4 items (e.g., “I prefer my life
to be filled with puzzles that I must solve”) of the scale employed a 7-point Likert scale
that ranged from 1 (strongly disagree) to 7 (strongly agree).

2.3. Procedure

The test was always administered either in the laboratory or online via the online
survey platform SoSci Survey (Leiner 2019). For participants who completed the test online
from home, an online introduction was provided outlining the general aim of the study
and testing procedure. Participants of sub-sample 4 who completed an additional battery
of tests in the laboratory were introduced by an examiner. Examiners received training and
clearly written instructions beforehand to guarantee objectivity in both test administration
and test scoring when applicable. The introduction to the HeiQ (i.e., layout and number
of items and response options, or introduction to the task) was embedded in the survey
platform to ensure objectivity across all samples. Participants then had to complete two
exemplary items (see Figure 1 for an example). The 5 sub-samples differed in the additional
tests and surveys they had to complete. Samples 1–3 only completed the figural matrices
test, the need for cognition questionnaire, and some basic demographic questions. No
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time limit was imposed. Participants took an average of M = 63.27 (SD = 36.44) minutes
to complete the HeiQ. Sub-sample 4 additionally completed the BIS-S, and sub-sample 5
additionally completed the IST-2000-R and the RAPM. For these samples, participants
first worked on the respective performance tests before receiving the HeiQ. They were
then given a time limit of 60 min to complete the HeiQ. Participants took an average of
M = 51.73 (SD = 10.00) minutes to complete the HeiQ.

3. Results
3.1. Percentage of Items Solved

Participants solved an average of M = 26.87 (SD = 10.70; Range = 3–47) out of the
48 items. Of the 24 2-operation items, M = 15.16 (63.17%); (SD = 5.26 (21.92%); and Range
3–24 (12.5–100%)) were solved. Of the 24 3-operation items, M = 11.74 (48.92%) and
(SD = 6.10 (25.42%); Range 0–24 (0–100%)) were solved. Due to technical errors, 1 item was
not correctly displayed for the first sub-sample, resulting in a possible maximum score of
47 for 155 people. Participants scored higher in the 2-operation condition (the first test half)
than in the 3-operation condition (the second test half) t (681) = 22.38, p < .001, d = 0.86. The
correlation between the 2 test-halves was r = 0.76 (p < .001). The correlation between the
2 test-halves corrected for attenuation was r = 0.87.

3.2. Missing Responses

The overall mean number of missing values was M = 2.53 (SD = 4.80) of 48 items.
This included skipped responses (M = 0.36; SD = 1.33), overly fast responses (less than 5s
per item; M = 1.03; SD = 3.17), and—for sub-sample 4—responses that could not be given
because the time limit had been reached (N = 216; M = 2.83; and SD = 4.97). The correlation
between the number of missing values and relative score (the percentage of correctly solved
items out of the items that were not treated as missing) was r =−0.10 (p = .008). Taking only
skipped and fast responses into account, participants missed M = 0.17 (SD = 0.70; range:
0–6) of 24 items in the first test half (2-operation items) and M = 1.23 (SD = 2.97; range:
0–22) of 24 items in the second test half (3-operation items). This difference was significant
t (682) = −10.24, p < 0.001, d = −0.39. The number of skipped and fast responses correlated
with a lower score on the remaining items at r = −0.26 (p < .001). Over all the sub-samples
without a time limit (N = 388), performance on the first test half predicted the number
of missing values in the second test half, R2 = 0.06 (adjusted R2 = 0.06), F (1, 386) = 25.89,
p < .001. The correlation of the number of items that were not reached due to the time limit
and the relative score on the valid items was r = 0.11 (p = .004). Percentages of participants
who correctly solved the item as well as the number of valid responses are presented in
Table 3.

3.3. Measurement Models

We used a Rasch model (Rasch 1960) to analyze the data. A Rasch dichotomous model
is the most parsimonious model within probabilistic test theory and is sometimes also
called a 1PL model. The Rasch model specifies that the probability of a person (v) for
solving item (i) is a function of the ability of this person (theta θv) and the difficulty of
this item σi. The higher the ability θv and/or the lower the difficulty σi, the higher the
probability of solving the item correctly P(χνi = 1). In mathematical terms, the equation is
rendered as follows:

P(χνi = 1) =
e(θυ−σi)

1 + e(θυ−σi)
(1)

As there are only two parameters in a Rasch model, item discrimination is uniform.
This means that every item loads equally on the same latent construct. Although item
responses are not missing at random (MAR), item and person parameter estimates of an
IRT measurement model are robust and can be incorporated as such (Pohl et al. 2013).
Measurement models were estimated using the means and variance adjusted weighted
least square estimator (WLSMV) implemented in Mplus 8.6 (Muthén and Muthén 2017).
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Model fit indices are reported in Table 4. We further report outfit, infit, differential item
functioning, and item difficulties for all items in Table A1 in the Appendix A.

Table 3. Percentage correctly solved and missing responses per item.

Item Correctly Solved
(in %)

Valid Responses
(N)

1 50.66 677
2 60.59 680
3 51.19 670
4 66.03 680
5 43.91 681
6 93.27 683
7 41.38 679
8 48.32 683
9 70.90 677
10 89.00 682
11 27.71 682
12 34.85 680
13 69.96 679
14 81.11 683
15 60.35 681
16 60.03 683
17 71.98 678
18 79.18 682
19 80.32 681
20 81.47 680
21 71.76 680
22 55.67 670
23 86.78 681
24 48.07 672
25 58,49 677
26 73.63 675
27 66.17 677
28 36.61 672
29 71.58 665
30 23.72 662
31 51.51 662
32 36.67 660
33 76.28 666
34 62.11 665
35 60.76 660
36 59.51 657
37 44.73 626
38 46.63 489
39 51.81 635
40 49.03 620
41 38.21 602
42 40.27 596
43 66.39 607
44 42.37 557
45 55.06 563
46 55.50 564
47 55.12 557
48 55.29 539

Note: Percentage correctly solved refers to the people who attempted the item (excluding missing responses).

All models were accepted according to the standardly used fit indices: With a RMSEA
of ≤0.06, the Rasch model showed a good model fit (Hu and Bentler 1999; Yu 2002). An
χ2/df ratio ≤ 5 also suggests an acceptable model fit (Wheaton et al. 1977).
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Table 4. Model fit indices for Rasch measurement model.

Model χ2 df p CFI RMSEA χ2/df

3542.68 1127 <.001 0.88 0.056 3.14
Note: CFI = comparative fit index; RMSEA = root mean square error of approximation; N = 683.

3.4. Reliability

The split-half reliability coefficient, computed as an odd–even split, was r = 0.88
p < .001 (Spearman–Brown corrected). As a measure of internal consistency, Cronbach’s
α and Revelle’s omega total (see McNeish 2018) were computed for the overall test and
for the operation indicators. As there were many participants with missing data and data
are assumed not to be missing at random (NMAR) (Pohl et al. 2013), listwise deletion
would lead to an overestimation of alpha. As a result, pairwise deletion was imposed.
With a Cronbach’s α = 0.93 and a Revelle’s omega total ωRT = 0.94, the overall test had
excellent internal consistency according to the common conventions. We further computed
the marginal empirical reliability based on the squared standard errors of the sample scores
using the expected a posteriori (EAP) estimator as suggested by Brown and Croudace (2015).
Marginal empirical reliability was ρ = 0.91. A subsample of N = 204 took the test twice.
On average, the test–retest interval for this sub-sample was M = 87 days (SD = 19). The
retest-correlation was r = 0.88 p < .001 (Spearman–Brown corrected).

3.5. Validity

The HeiQ’s validity was assessed by investigating its correlation with a variety of
other intelligence measures, academic performance indicators, and other related constructs.
In sub-sample 5 (N = 76), the HeiQ scores were highly correlated with the RAPM r = 0.81
p < .001. The correlation corrected for attenuation was r = 0.90. In the same sub-sample,
the correlation of the HeiQ with the I-S-T 2000R’s general intelligence scale was r = 0.73
p < .001, and its correlation with the I-S-T 2000R’s general knowledge scale was r = 0.42
p < .001, speaking to the test’s convergent and discriminant construct-related validity. The
correlational pattern of the HeiQ with the IST’s sub-scales is displayed in Table 5. In
sub-sample 4 with N = 215 valid BIS-s scores, the correlation between the BIS-s and the
HeiQ was found to be r = 0.58 p < .001. An overview of the association of the HeiQ with
other intelligence test measures can be found in Table 5. We further report the descriptive
statistics and correlations of all measures in Table A2 in the Appendix A. All measures were
scored according to the advised scoring procedure in the respective test manuals. Namely,
every correct response was scored as one, whilst every incorrect response was scored with
zero. Sum scores for the scales of the BIS-S and the I-S-T 2000R were then calculated. The
IQ score of the BIS-S was drawn from the tables included in the manuals. For the other
measures, the respective sum scores were used.

Table 6 shows the correlations of the HeiQ with academic achievement indicators. Only
participants with a German high-school qualification (Abitur) noted as GPA were included
to guarantee comparability. In the German school system, a lower grade indicates better
performance; thus, grades are expected to be negatively correlated with reasoning abilities.
HeiQ scores and GPA were indeed negatively correlated; r = −0.38 p < .001. Similarly
to Heydasch (2014), we also calculated correlations between GPA and HeiQ scores for
participants under 24 only. Inclusion of a large age range can skew GPA measures, as the
school and grading system underlies changes over time.

For participants under the age of 24, the HeiQ and GPA were strongly correlated;
r = −0.48 p < .001. Furthermore, grades for the 5 different academic subjects were provided
by the participants of sub-sample 4 (i.e., Mathematics, German, English, Biology, and Arts).
As these grades are provided in terms of achievement points (ranging from the worst of 0
to the best of 15 points), grades should be positively correlated with the HeiQ. The HeiQ
scores correlated highest with grades in mathematics r = 0.48 p < .001 (r = 0.48 p < .001 for
participants under 24) and biology r = 0.32 p < .001 (r = 0.44 p < .001 for participants under
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24). Lower correlations with German, r = 0.20 p < .01 (r = 0.22 p < .05 for participants under
24) and English, r = 0.17 p < .05 (r = 0.20 p < .05 for participants under 24) were found.
The grade in Arts was not significantly associated with the HeiQ; r = 0.08, p = .43 (r = 0.17
p = .18 for participants under 24).

Table 5. Correlations between the HeiQ and intelligence measures.

Variable Sample Size (N) Correlation

RAPM 76 0.81 *** (0.90)
BIS-S 215 0.58 *** (0.70)

I-S-T 2000R 76
Reasoning

Overall 0.73 *** (0.79)
Verbal 0.42 *** (0.49)

Numeric 0.66 *** (0.71)
Figural 0.63 *** (0.79)

Knowledge
Overall 0.43 ** (0.47)
Verbal 0.23 (0.27)

Numeric 0.51 *** (0.61)
Figural 0.39 *** (0.48)

Note: RAPM = Raven Advanced Progressive Matrices; BIS-S = Berlin Intelligence Structure Test Short Form;
I-S-T 200R = Intelligence Structure Test 2000R. The numbers in parentheses refer to the correlations corrected for
attenuation. ** p < .01, *** p < .001.

Table 6. Correlations between HeiQ scores and academic achievement indicators.

Variable Sample Size Correlation

High School
GPA 472 (264) −0.38 *** (−0.48 ***)
Mathematics 194 (126) 0.48 *** (48 ***)
German 192 (125) 0.20 ** (0.22 *)
English 186 (118) 0.17 * (0.20 *)
Biology 142 (91) 0.32 ***(0.44 ***)
Arts 107 (64) 0.08 (0.17)

Note: Numbers in parentheses refer to participants under the age of 24. * p < .05, ** p < .01, *** p < .001.

As sub-sample 5 completed both the RAPM and the HeiQ, separate correlations
for GPA were computed. The correlation between GPA and the HeiQ score for those
participants of sub-sample 5 that held a high school diploma (N = 72) was r =−0.49 p < .001.
The correlation between GPA and the RAPM was r = −0.38 p = .001. The difference of
r = −0.11 was significant (Fisher’s z = 1.67, p = 0.048) (Meng et al. 1992).

3.6. Operation-Specific Indicators

Additional scores for each cognitive operation for every participant were computed.
Hereby, each response given by a participant was analyzed for the operations that were
included to construct the item. For each correctly identified operation, participants received
a point on that operation’s scale. For example, if a respondent completed the item shown
in Figure 3 and chose response option b, d, f, or g, they correctly applied the operation
Addition and, accordingly, would receive one point on the Addition scale. This was done
for each participant and operation across all items. As each operation occurred on 15 test
items, the resulting sum scores could vary between 0 and 15. The mean percentages of
correctly identified operations are presented in Table 7.

A linear regression analysis was run to test if the HeiQ scores predicted GPA. Similarly
to the analyses above, 2 separate regressions were run for the whole sample and for
participants under the age of 24. The HeiQ total score significantly predicted high school
GPA F (1, 470) = 78.94, p < .001. Further, R2 for the overall model was R2 = 0.14 (adjusted
R2 = 0.14). For people under 24, R2 for the overall model was R2 = .23 (adjusted R2 = 0.23).
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This prediction was also significant F (1, 262) = 78.45, p < .001. A multiple regression was
computed to test whether the operation-specific indicators led to an increase in an explained
variance of GPA compared to the regression analysis for the overall test score. For people
under 24, R2 increased from R2 = .23 to R2 = 0.29 (adjusted R2 = 0.27) (F (9, 254) = 11.67,
p < .001). For the whole sample, R2 increased from R2 = 0.14 to R2 = 0.18 (adjusted R2 = 0.17)
(F (9, 462) = 11.44, p < .001).

Table 7. Mean, standard deviation, Cronbach’s alpha, and correlations among operation indicators.

Operation M SD Alpha 1 2 3 4 5 6 7 HeiQ BIS

Addition 81.69 15.23 0.68 0.74 *** (0.93) 0.38 *** (0.51)
Subtraction 77.86 19.51 0.77 0.67 0.83 *** (0.98) 0.55 *** (0.70)
Identification 91.93 11.08 0.66 0.61 0.62 0.55 *** (0.70) 0.32 *** (0.44)
Variation of
Open Gestalts 77.95 16.38 0.64 0.63 0.64 0.61 0.72 *** (0.93) 0.42 *** (0.58)

Variation of
Closed Gestalts 78.05 15.98 0.62 0.62 0.63 0.56 0.65 0.72 *** (0.95) 0.40 *** (0.56)

Intersection 63.44 20.21 0.69 0.58 0.65 0.47 0.56 0.54 0.81 *** (0.99) 0.42 *** (0.56)
Unique
Addition 61.79 24.44 0.80 0.61 0.72 0.50 0.59 0.56 0.72 0.84 *** (0.97) 0.51 *** (0.63)

Seriation 76.60 19.16 0.73 0.65 0.72 0.57 0.64 0.62 0.66 0.69 0.80 *** (0.97) 0.53 *** (0.69)

Note: Variation of Closed Gestalts, Unique Addition, and Seriation only consist of 14 items for N = 155 people,
since 1 item was erroneous and had been excluded from analysis. The numbers in parentheses refer to the
correlations corrected for attenuation. *** p < .001.

4. Discussion

In this study, we introduced a novel figural matrices test, the HeiQ. The test was
developed to overcome construction-related shortcomings in previous matrices tests, or
more specifically, to reduce the use of bypassing strategies to increase control of item
difficulties, and by effect, to improve reliability and validity. These aims were achieved by
adopting a systematic distractor construction approach (see Guttman and Schlesinger 1967).
Because distractors were generated in accordance with a facet design, items of the HeiQ
cannot be solved by counting the properties of response options. Because every correct
or incorrect feature of an operation is presented equally often, none of the distractors can
be eliminated without correctly applying at least one of the item’s underlying operations.
Additionally, distractors were kept as visually similar to the attractor as possible, meaning
that distractors and the attractor featured similar figural elements (if the correct application
of an operation consisted of a circle, the incorrect responses also featured a circle, but
differed, for example, in size or position). Finally, distractors were constructed so that they
appeared to be plausible solutions to the item. All but one distractor features a correct
application of at least one of the operations, thus guaranteeing structural similarity between
distractors and the attractor. Taken together, these measures were designed to minimize
the use of response elimination strategies.

The application of a systematic distractor construction approach was successful, as
the HeiQ showed very good psychometric properties. The test proved to be Rasch scalable,
which supports the unidimensionality of the test. This is in line with the previous research
on the dimensionality of figural matrices tests (Arthur and Woehr 1993; Waschl et al. 2016).
In the measurement model, factor loadings of all items could be fixed to one, meaning that
all items weighed the same and suggesting that no corrections are necessary when items are
combined. Consequently, the test enables the calculation of a sum score of the solved items
and use of these sum scores to compare participants regarding their reasoning abilities. We
have further tested a Birnbaum (2PL) model, where the probability for a person to solve an
item is dependent on the ability of the person, the difficulty of the item, and an additional
discrimination parameter of the item. This model fit the data better than the Rasch model.
However, as the Rasch model still achieved an acceptable fit, according to conventional
cut-off criteria, we preferred the more parsimonious model for our study. Furthermore,
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there was considerable test score variance in all sub-samples, and items of varying difficulty
discriminated well between participants within all sub-samples. Both the two-operation
as well as the three-operation items performed well in our test, and manipulating the
number as well as the kind of operations used to construct an item seemed successful in
creating items of varying difficulty. Controlling for bypassing strategies might have further
enhanced the difficulty distribution of the generally easier two-operation items. Despite
the fact that we collected general population and student-only sub-samples, there was no
evidence of floor or ceiling effects in any sub-sample. We therefore concluded that HeiQ is
a suitable tool for the assessment of reasoning abilities across different academic levels.

A high Cronbach’s alpha, Revelle’s omega total, marginal empirical reliability, and a
high split-half reliability coefficient were observed for the HeiQ. The high retest-correlation
speaks to the test scores’ stability over time. In sum, there is good evidence that the test
scores obtained with the HeiQ are very reliable.

The HeiQ test scores correlated strongly with other intelligence measures, such as the
RAPM, the BIS-S, and the I-S-T 2000R. The correlations in the different sub-samples were
all between 0.58 and 0.81 in size, which is comparable with the results obtained in similar
validation studies of previous figural matrices tests, for example, the HMT by Heydasch
(2014). The correlations after correcting for attenuation were even higher, indicating that
the HeiQ’s construct validity is excellent.

HeiQ test scores were strongly correlated with the GPA of all participants (r = −0.38)
and even stronger with those of participants under the age of 24 (r = −0.48). These correla-
tions were substantially higher than those observed with the HTM, for example (r = 0.19
and r = 0.34; see Heydasch (2014)). Furthermore, for sub-sample five that completed both
the RAPM and the HeiQ, the correlation between the HeiQ and GPA was significantly
higher than the correlation between the RAPM and GPA. These findings suggest that the
HeiQ’s criterion-related validity is also exceptionally high.

A further advantage of our new test is that incorrect solutions can be used to assess
which operations were correctly applied during the attempt to solve the item. When using
operation-level scoring, the criterion-related validity of the HeiQ could be improved even
further. An investigation of reasoning abilities may also be useful in order to gain better
insight into the processes underlying reasoning abilities. We will elaborate on this point
below as an avenue for future research.

4.1. Considerations on Bypassing Strategies Other Than Response Elimination

Although we tried to account for guessing-without-attempting-to-solve by treating
overly fast responses as missing, it is not clear whether participants diligently worked
on each item. This has been shown to threaten the validity of performance tests (Wise
and DeMars 2010). If participants are not motivated to perform well on a test, they will
either randomly choose one response option without applying any solution strategy or
correctly apply one operation and then choose between the response options which feature
this operation. In the latter case, participants would switch to simpler decision heuristics
that they might still consider to be “good-enough”. In line with this strategy, Gonthier
and Roulin (2020) pointed out that when solving matrices tests, participants apply a cost–
benefit trade-off similar to satisficing in complex problem-solving heuristics (Gonthier and
Roulin 2020). These authors further showed that, independent of their abilities, motivated
participants will try to actively solve the matrices for a longer period than unmotivated
participants, resulting in a higher test score than their peers of similar or even higher ability.
The consequence of the simpler decision heuristic is that participants might sometimes
attain a correct response even though they have only solved two out of three operations.
This is due to the smaller number of distractors, that—in that case—include the correct
features of the two operations that were solved. We are aware that this is in some way
problematic, but believe there is no way to inhibit points achieved by guessing altogether.
The only test type which is able to counter any kind of heuristic solution strategy is a
distractor-free version of a figural matrices test introduced by Becker et al. (2014). In this
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computerized test, participants generate their own response by selecting figural elements
from pre-existing lines and shapes and dragging them into the response field. However,
distractor-free matrices tests also have their downsides. The most serious problems with
these tests compared to standard multiple-choice tests are as follows: They are more
difficult to implement as they require additional instructions and practice, they take more
time to be solved, and there is a high variability among participants regarding how much
time it takes them to solve the test, and they are more difficult to score (automatic scoring
is not possible). For these reasons, we believe that the use of distractors is preferable.
Further, we see that our distractor design keeps points achieved by guessing over 48 items
to a minimum.

4.2. Future Applications and Opportunities of the Operation-Level Test Scoring

It has been argued that response tendencies in matrices tests can be used to identify
thought processes (Laurence and Macedo 2022). In the results section, we made use of
the HeiQ’s systematic distractor design to calculate test scores that supposedly reflect
operation-level knowledge. These scores reflect the proportion of correctly detected and
applied operations, namely, how many times a participant applied a particular operation
correctly out of the total number of items that included this operation. Furthermore, an
overall operation score could be computed, where every correctly identified operation is
awarded one point, instead of merely scoring the complete item as being either correct or
incorrect. Such a scoring procedure also takes into account how many operations were
identified correctly when attending an item (i.e., zero, one, two, or three). Test scores
achieved with this scoring procedure correlated more strongly with GPA than scores
obtained with the simple correct/incorrect scoring. This finding suggests that these scores
contain information over and above the average solution scores. The operations used in
the HeiQ have shown to be of varying difficulty for the participants, which can be inferred
from the large standard deviations.

One possible route for future research could be to investigate cognitive training effects
in competence testing. Research has shown that, through repeated test taking, the total
score of the test increases (Bors and Vigneau 2003). Bors and Vigneau (2003) have pointed
out that this improvement was highly variable and not just due to participants answering
more items compared to the first testing session. They further found that improvement was
not due to memory effects of specific items, as participants frequently switched from the
correct to incorrect response choice and vice versa. They concluded that learning relates
to how items are solved and to not remembering certain items. All of this information
cannot be captured by a total sum score that merely shows the number of correctly solved
items. Thus, to identify determinants of cognitive performance, one needs to shift from an
aggregate score to a more detailed analysis of individual differences (Bors and Vigneau
2003), and our newly developed test with the possibility of focusing on operation level
changes may be a good tool for doing so.

With the HeiQ, both a change to the aggregate score and a breakdown of training
effects to the individual operation level were observed and may thus be attributed to
individual ability, strategies, or handling of certain operations. Researchers can also use
this knowledge to analyze whether specific operations show higher learning curves than
others. As all operations are included equally often, in-test training effects are assumed to
be constant for each operation. Because the figural matrices test does not use verbal tasks,
it may be useful for assessing reasoning within participants with restricted verbal abilities
(Carpenter et al. 1990).

5. Conclusions

The HeiQ demonstrated excellent reliability as well as construct- and criterion-related
validity estimates. The test successfully limits counting, and no distractor can be excluded
without at least one operation being applied correctly. The underlying distractor design
further encourages participants to use constructive matching as compared to bypassing
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strategies that are correlated with lower validity. Another excellent advantage of the
current test is the possibility of forming operation-specific indicators based on a rule-based
distractor analysis. Attaining a more detailed score than a sum score can aid in a more
precise ability to estimate participants and diagnose their differences. The operation-specific
indicators retrieved from the HeiQ showed good psychometric properties and explained
more variance in external criteria than the sum scores.
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Appendix A

Table A1. Outfit, infit, differential item functioning, and item difficulties for all items.

Item Outfit
Mean-Square

Infit
Mean-Square

Differential Item
Functioning Item Difficulty

1 1.513 1.367 1.976 * −0.027
2 0.989 1.014 1.554 −0.430
3 1.020 0.985 −1.068 −0.048
4 0.695 0.841 −0.305 −0.662
5 1.521 1.316 0.373 0.246
6 0.737 0.859 0.384 −2.395
7 1.176 1.117 0.755 0.349
8 1.167 1.148 0.602 0.068
9 1.361 1.193 0.397 −0.882
10 0.949 0.959 1.000 −1.964
11 0.960 0.913 −1.458 0.947
12 1.065 1.050 −1.663 0.623
13 0.802 0.856 −0.939 −0.838
14 1.062 1.068 −0.935 −1.413
15 0.914 0.903 −2.190 * −0.420
16 0.839 0.924 −0.701 −0.407
17 0.749 0.807 −0.344 −0.932
18 1.227 1.194 0.432 −1.301
19 1.311 1.019 0.455 −1.366
20 0.590 0.796 −0.464 −1.434
21 1.034 0.934 −1.796 −0.922
22 0.815 0.855 −0.821 −0.228
23 0.821 0.882 −1.105 −1.788
24 0.672 0.752 −2.559 * 0.078
25 1.117 1.094 2.307 * −0.344
26 0.983 0.932 −1.878 −1.012
27 0.851 0.930 −1.360 −0.668
28 0.895 0.937 −0.848 0.548
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Table A1. Cont.

Item Outfit
Mean-Square

Infit
Mean-Square

Differential Item
Functioning Item Difficulty

29 0.868 0.895 −0.673 −0.913
30 1.437 1.215 0.122 1.146
31 1.235 1.141 −0.239 −0.061
32 0.885 0.895 −1.836 0.546
33 0.978 1.005 1.361 −1.145
34 1.058 1.007 −1.102 −0.494
35 1.666 1.396 6.102 * −0.437
36 0.809 0.877 −0.881 −0.386
37 0.846 0.890 −0.335 0.212
38 1.435 1.330 −0.118 0.136
39 0.783 0.837 −1.425 −0.073
40 0.780 0.815 −0.137 0.039
41 0.697 0.765 −0.968 0.481
42 1.109 0.998 0.967 0.395
43 0.977 1.037 1.196 −0.678
44 0.765 0.802 0.826 0.308
45 0.936 0.986 2.588 * −0.204
46 0.856 0.896 2.396 * −0.221
47 0.970 0.975 1.006 −0.206
48 0.957 0.966 2.155 * −0.213

Note: * = p < .05.

Table A2. Descriptive statistics and correlations of all measures.

Measure M SD Range Skewness Curtosis 1 2 3.1 3.2

HeiQ 26.87 10.68 3–47 0.04 −1.03
BIS-S 97.63 18.23 55–145 −0.27 −0.30 0.58 *** (0.70)
I-S-T 2000R

Reasoning 113.53 21.89 62–153 −0.18 −0.64 0.73 *** (0.79) -
Knowledge 54.72 11.76 21–78 −0.42 −0.09 0.43 ** (0.47) - 0.53 *** (0.58)

RAPM 23.64 6.58 9–35 −0.34 −0.90 0.81 *** (0.90) - 0.73 *** (0.81) 0.36 ** (0.41)

Note: The correlations with the HeiQ differ in sample size, as they refer to different sub-samples. They are as
follows: HeiQ and BIS-S N = 215; HeiQ and I-S-T 2000R and RAPM N = 76. Descriptions of the HeiQ are given
based on the whole sample. As no participant took the I-S-T 2000R and the BIS/RAPM, there are no correlations
for this field. The numbers in brackets refer to the correlations corrected for attenuation. ** p < 0.01, *** p < 0.001
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