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Abstract: In cognitive diagnosis models, the condensation rule describes the logical relationship
between the required attributes and the item response, reflecting an explicit assumption about re-
spondents’ cognitive processes to solve problems. Multiple condensation rules may apply to an item
simultaneously, indicating that respondents should use multiple cognitive processes with different
weights to identify the correct response. Coexisting condensation rules reflect the complexity of
cognitive processes utilized in problem solving and the fact that respondents’ cognitive processes in
determining item responses may be inconsistent with the expert-designed condensation rule. This
study evaluated the proposed deterministic input with a noisy mixed (DINMix) model to identify
coexisting condensation rules and provide feedback for item revision to increase the validity of the
measurement of cognitive processes. Two simulation studies were conducted to evaluate the psycho-
metric properties of the proposed model. The simulation results indicate that the DINMix model can
adaptively and accurately identify coexisting condensation rules, existing either simultaneously in
an item or separately in multiple items. An empirical example was also analyzed to illustrate the
applicability and advantages of the proposed model.

Keywords: cognitive diagnosis; condensation rule; cognitive diagnosis models; DINMix model

1. Introduction

Existing cognitive diagnosis models (CDMs) and diagnostic classification models (e.g.,
Rupp et al. 2010; von Davier and Lee 2019) can be classified into three categories based
on the condensation rule of how latent attributes (e.g., skills, knowledge, and cognitive
processes) influence respondents’ observed item responses: conjunctive, disjunctive, and
compensatory (Maris 1995, 1999). Models with the conjunctive condensation rule, such
as the deterministic input, noisy ‘and’ gate (DINA) model (Junker and Sijtsma 2001),
assume that respondents must master all the required attributes of an item to provide the
correct response. In contrast, models with the disjunctive condensation rule, such as the
deterministic input, noisy ‘or’ gate (DINO) model (Templin and Henson 2006), assume that
respondents can provide the correct response to an item if they have mastered any of the
required attributes. Furthermore, models with the compensatory condensation rule, such
as the additive CDM (ACDM) model (de la Torre 2011), assume that for the correct response
probability, the mastery of a particular attribute may compensate for the non-mastery of
another attribute.

Applying a CDM should be based on a suitable condensation rule, usually designed by
experts during the test/item development phase. Condensation rules designed by experts
define the theoretical relationship between the measured attributes and the observed item
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responses, reflecting an explicit assumption about the cognitive processes engaged by re-
spondents during problem solving. However, in practice, respondents’ cognitive processes
in their item responses may be inconsistent with the expert-designed condensation rule.
This phenomenon indicates that the validity of the measurement of cognitive processes is
low and has been ignored by most previous studies.

In addition to reduced CDMs with a specific condensation rule, general CDMs involv-
ing saturated interaction terms have also been developed, such as the generalized DINA
model (GDINA; de la Torre 2011), log-linear CDM (LCDM; Henson et al. 2009), and general
diagnostic model (GDM; von Davier 2008a). General CDMs account for the complexity
of cognitive processes from the statistical analysis perspective.1 They are, therefore, not
limited to a specific condensation rule, which increases their theoretical application scope.
However, this ‘rough’ approach causes general CDMs to obscure the theoretical relationship
between the required attributes and the item response, as it sidesteps the validity of the
measurement of cognitive processes. When general CDMs are used, it is not easy to gain
a clear understanding of how the required attributes affect correct response probability,
which reduces the interpretability of diagnostic results, especially in relation to cognitive
processes.

Compared to general CDMs, reduced CDMs may be more appropriate in practice for
four reasons. First, reduced CDMs usually require smaller sample sizes for accurate and
robust parameter estimation (cf. Jiang and Ma 2018). Second, the simpler model is preferred
if its performance is not significantly worse than the more complex model, according to the
parsimony principle (e.g., Beck 1943). Third, item parameters in reduced CDMs typically
have more straightforward interpretations, which makes working with them attractive
to practitioners (Liu et al. 2009). Fourth, reduced models reflect the cognitive processes
engaged in solving problems more clearly, increasing diagnostic results’ interpretability.

To balance the general and reduced models, de la Torre and Lee (2013) and Ma et al.
(2016) proposed the Wald test approach for selecting a suitable reduced model from the
GDINA model for each item. This approach assumes that each item belongs to only one
appropriate condensation rule, for example, the conjunctive or the disjunctive. However,
after using this method in practice, one might realize that its results may indicate that
the required attributes in an item may satisfy multiple condensation rules simultaneously
(i.e., coexisting condensation rules in an item). Specifically, this can be observed in two
phenomena. No reduced model applies to some items except the general model, which
indicates that a specific condensation rule cannot simply describe the relationship between
the required attributes and the item response. For some other items, there is more than
one reduced model with insignificant differences from the general model. Such results
indicate that multiple condensation rules may be simultaneously applied to the same item
and only differ in degree. These two phenomena can be found when using the Wald test
to the data contained in some previous studies (e.g., Ma et al. 2016; Jang 2009; Ravand
et al. 2013), and they indicate that the correct response to an item may have uncertainty
regarding the requirement of cognitive processes. From the statistical analysis perspective,
if such uncertainty can be considered in modeling, it may increase the degree of model-data
fitting, thus improving diagnostic accuracy. From the measurement perspective, if we can
identify such uncertainty and feed it back into item revision to ensure that the cognitive
process used by respondents matches the expert-designed cognitive process, it would help
improve the validity of the measurement of cognitive processes.

Unlike general CDMs, which ‘roughly’ introduce saturated interaction terms to con-
sider the potential for coexisting condensation rules, the current study aims to identify
coexisting condensation rules to provide feedback for item revision. Inspired by but dif-
ferent from mixture/hybrid item response models (e.g., Man and Harring 2022; Mislevy
and Verhelst 1990; von Davier 2008b; Yamamoto 1989) and multi-strategy CDMs (e.g.,
de la Torre and Douglas 2008; Ma and Guo 2019), a new model called the deterministic
inputs, noisy mixed (DINMix) model is proposed. The proposed model allows each item
to simultaneously contain multiple condensation rules, thus realizing the identification of
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different ones. Furthermore, the item response function of the proposed model is more
concise than that of the general CDMs, which also increases the interpretability of item
parameters to some extent, making it more attractive to practitioners.

The remaining sections of this paper are constructed as follows. First, deterministic
input, noisy models with three different condensation rules, and mixture item response
models are briefly reviewed. Next, the proposed DINMix model is presented, followed by
two simulation studies that evaluate the psychometric properties of the proposed model.
An empirical example is then analyzed to illustrate the applicability and advantages of the
proposed model. Finally, the paper concludes with a discussion of the limitations of the
proposed model and suggestions for further research.

2. Background
2.1. Deterministic Input, Noisy Models with Typical Condensation Rules

In psychometric models, a commonly used item response function of the relationship
between observed and latent responses can be expressed as follows:

P(yni = 1|gi, si, ωni) = gi + (1− si − gi)ωni (1)

where yni is the observed (dichotomous) response of person n (n = 1, . . . , N) to item i
(i = 1, .., I); ωni is the latent response of person n to item i; gi and si are the guessing
and slip parameters of item i, respectively. Typically, a monotonicity restriction, gi < 1 −
si, can be imposed (Junker and Sijtsma 2001; Culpepper 2015). With various choices of
ωni, Equation (1) can describe many psychometric models, such as the four-parameter
logistic unidimensional or multidimensional item response models (Reckase 2009) and the
multicomponent latent trait model (Embretson 1984).

In CDMs, the latent response, ωni, is the concrete expression of the condensation
rule. When assuming that attributes follow the conjunctive condensation rule, the latent
response has

ωni = ∏k
k=1 α

qik
nk (2)

where αnk is the mastery status of person n of attribute k (k = 1, . . . , K), αnk = 1 means
mastery, and αnk = 0, otherwise. The Q-matrix (Tatsuoka 1983) is an I-by-K matrix with
element qik indicating whether attribute k is required to answer item i correctly; qik = 1 if
the attribute is required, and qik = 0 otherwise. With the conjunctive condensation rule,
Equation (1) becomes the DINA model.

In contrast, when assuming that the attributes follow the disjunctive condensation
rule, the latent response has

ωni = 1−∏k
k=1(1− αnk)

qik (3)

and Equation (1) becomes the DINO model.
Conjunction and disjunction are two extreme condensation rules, and both divide

individuals into two groups: full (non)mastery and partial mastery. These rules do not
further differentiate individuals in the partial mastery group. To mitigate this issue, the
ratio condensation rule can be adopted, where

ωni =
∑K

k=1 αnkqik

∑K
k=1 qik

(4)

With the ratio condensation rule, Equation (1) becomes the deterministic input, noisy
ratio (DINR) model. The ratio condensation rule is a special compensatory condensa-
tion rule that assumes increases in the number of mastered attributes are linearly related
to increases in correct response probability. In such cases, the DINR model can be con-
sidered as a particular case of the ACDM with the equal main effect of each attribute
(i.e., (1− si − gi)/ ∑K

k=1 qik). Thus, the DINR model assumes that all required attributes
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are equally weighted. The DINR model is considered instead of the ACDM to avoid
introducing additional item parameters, which keeps the model as simple as possible.

2.2. Mixture Item Response Models

Mixture/hybrid item response models are well studied and primarily used for de-
tecting and explaining the differential behavior of individuals of multiple latent groups
in the population (i.e., population heterogeneity). Typically, in mixture item response
models, multiple latent groups of individuals are assumed to be present in the sampled
population. These models have been widely applied to diverse research issues, such as
identifying problem-solving strategies (Mislevy and Verhelst 1990; Wang and Xu 2015) and
detecting differential item functioning (Cohen and Bolt 2005). Furthermore, for diagnostic
classification purposes, von Davier (2008b) proposed the GDM mixture, which extends the
GDM to tests with multiple observed and latent groups. Choi (2010) proposed a diagnostic
classification mixture Rasch model, incorporating the mixture Rasch model (Rost 1990) and
the LCDM. Yamaguchi and Okada (2020) presented a hybrid CDM, defined as a weighted
mixture of the DINA and DINO models. This model assumes two latent groups in the
population; one group of respondents’ responses are suitable for analysis using the DINA
model, and the other group’s responses are suitable for analysis using the DINO model.
However, the distinguishing feature of the proposed model in this study is that mixture
modeling accommodates the simultaneous existence of multiple condensation rules rather
than multiple latent groups of individuals.

3. Deterministic Input, Noisy Mixed Model
3.1. Model Formulation

As stated previously, this study aims to present a new CDM that can incorporate and
identify coexisting condensation rules. In the current study, we interpret the coexisting
condensation rules within an item as the required attributes that affect individuals’ item
responses according to multiple condensation rules with different proportions. Thus, when
an item contains coexisting condensation rules, respondents should use multiple cognitive
processes with different weights to respond correctly to this item.

Inspired by but different from the mixture item response models, the item response
function of the DINMix model can be expressed as

P(yni = 1|gi, si, Ψni) = gi + (1− si − gi)Ψni (5)

where Ψni is the mixed latent response of person n to item i, which can be further defined as

Ψni = ∑Mi
m=1 τimωnim (6)

where ωnim is the latent response of person n to item i in condensation rule m (m = 1, . . . , Mi);
τim is the item-level mixing proportion parameter of condensation rule m in item i, which
satisfies τim ∈ [0 , 1] and ∑Mi

m=1 τim = 1 for each item. The item-level mixing proportion
parameters can be interpreted as the proportions/weights of different cognitive processes
required to solve the problem correctly. Mi is the number of preselected condensation rules
for item i. For simplicity, but without loss of generality, it can be assumed that Mi = M for
all items throughout this study.

In this study, three typical condensation rules are considered for each item: conjunctive
(see Equation (2)), disjunctive (see Equation (3)), and ratio (see Equation (4)) condensation
rules. Thus, Equation (6) can be further expressed as

Ψni = τi1 ∏k
k=1 α

qik
nk + τi2

(
1−∏k

k=1(1− αnk)
qik
)
+ τi3

∑K
k=1 αnkqik

∑K
k=1 qik

(7)

Finally, the DINMix model can be expressed as
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P(yni = 1|gi, si, τi, αnk, qik)

= gi + (1− si − gi)

(
τi1 ∏k

k=1 α
qik
nk + τi2

(
1−∏k

k=1(1− αnk)
qik
)
+ τi3

∑K
k=1 αnkqik

∑K
k=1 qik

)
(8)

where all parameters have been defined above.
Equation (8) is an example of the DINMix model with three typical condensation rules.

In practice, by considering uncertainty during the item development phase, experts can
assist in determining which condensation rules may be included in the DINMix model
for each item in a particular test. For example, when any two of the three condensation
rules are preselected by experts, Equation (8) can be reduced to another mixed model with
only two condensation rules. Furthermore, the DINA, DINO, and DINR models can all be
viewed as special cases of the DINMix model by preselecting a specific condensation rule
for all items. Suppose it is difficult for experts to preselect all the possible condensation
rules for a particular item. In that case, Equation (8) can be used to identify potential
condensation rules from the data-driven perspective.

Theoretically, the number of item parameters in the DINMix model is 2I + (M − 1)I,
where M = 3 in this study. However, when an item requires only one attribute, there are
no differences among all the condensation rules. Thus, an additional constraint can be
added to the DINMix model to reduce the number of item parameters, which means that
for unidimensional items, the test-level mixing proportion parameters are set as τi = (τi1,
τi2, τi3)’ ≡ (1, 0, 0), indicating that the DINA model is forcibly assigned to unidimensional
items.2

The concept of coexisting condensation rules is more difficult to interpret than a single
one. Although coexisting condensation rules describe the complex relationship between
the required attributes and the item response, they reduce the interpretability of the model
parameters compared to reduced models. The interpretable and meaningful insights gained
from the model are essential in educational and psychological applications to meet the need
for accountability (Zhan 2020). Thus, using the proposed model to identify items containing
coexisting condensation rules is of considerable practical significance. It may improve the
degree of model-data fitting, thus improving diagnostic accuracy, as well as help guide item
revision to make revised items contain a single expert-defined condensation rule, thereby
improving the validity of the measurement and increasing the interpretability of the model
parameters.

3.2. Bayesian Parameter Estimation

The Bayesian Markov chain Monte Carlo (MCMC) method is used to estimate model
parameters. This study used JAGS (version 4.3.0) software to automate the estimation
process. The corresponding code for the DINMix model and the other models used in this
study are available at https://osf.io/s2yjv/ (accessed on 15 March 2023). More details about
using JAGS for Bayesian CDM estimation are provided in a tutorial by Zhan et al. (2019a).

3.3. Relationship with Existing CDMs

With three typical and representative condensation rules, the DINMix model is suffi-
cient to cover various relationships between the required attributes and the item response
in most cases. Thus, the DINMix model is more general than the aforementioned reduced
models. As previously stated, the DINA, DINO, and DINR models can all be viewed as
special cases of the DINMix model by preselecting a specific condensation rule.

The differences among the four deterministic inputs, noisy models with the different
condensation rules described above are listed in Table 1, along with the item correct
response probabilities of eight individuals with different attribute profiles for an item
(qi = (1, 1, 1), gi = si = .1, τi1 = .8, τi2 = .1) based on them. First, compared to the DINA
and DINO models, the DINR and DINMix models can better reflect the differences in
various attribute profiles. Second, the values of item-level mixing proportions indicate

https://osf.io/s2yjv/


J. Intell. 2023, 11, 55 6 of 21

that this item contains three condensation rules simultaneously, and the proportion of the
conjunctive condensation rule is the highest. The DINMix model not only differentiates
individuals in the partial mastery group but also reflects the feature of the conjunctive
condensation rule (i.e., individuals in the partial mastery group have low correct response
probabilities).

Table 1. The Correct Response Probabilities of Four Deterministic Input, Noisy Models for an Item.

Attribute
Profile

Number of
Mastered
Attributes

DINA DINO DINR DINMix

(0, 0, 0) 0 0.1 0.1 0.1 0.1
(1, 0, 0) 1 0.1 0.9 0.367 0.207
(0, 1, 0) 1 0.1 0.9 0.367 0.207
(0, 0, 1) 1 0.1 0.9 0.367 0.207
(1, 1, 0) 2 0.1 0.9 0.633 0.233
(1, 0, 1) 2 0.1 0.9 0.633 0.233
(0, 1, 1) 2 0.1 0.9 0.633 0.233
(1, 1, 1) 3 0.9 0.9 0.9 0.9

Note: Item characteristics are qi = (1, 1, 1), gi = si = 0.1, and τi1 = 0.8, τi2 = 0.1, where qi is the required attribute
profile of item i, gi, and si is the guessing and slip parameters of item i, respectively; τi1 is the item-level mixing
proportion parameter for the conjunctive condensation rule; τi2 is the item-level mixing proportion parameter for
the disjunctive condensation rule; DINA = deterministic input, noisy ‘and’ gate model; DINO = deterministic
input, noisy ‘or’ gate model; DINR = deterministic input, noisy ratio model; DINMix = deterministic input, noisy
mixed model.

Additionally, although the DINMix model was initially developed for adaptively
identifying coexisting condensation rules, it can still be viewed as a constraint model of the
GDINA model after some parameter transformations (see Section S1 in the Supplementary).
For each within-item multidimensional item, the number of item parameters in the GDINA
model increases as the number of required attributes increases, while the number of item
parameters in the DINMix model is always four (i.e., si, gi, τi1, and τi2). Therefore, similar to
the DINA model, all items in the DINMix model have the same number of item parameters
that are easier to interpret than those (e.g., main effects, two-way interactions, three-way
interactions) in the GDINA model. More importantly, the DINMix and GDINA models
were developed for different purposes. The former was designed for identifying coexisting
condensation rules, and the latter was created for model generalization.

3.4. Parameter Identifiability

Parameter identifiability is an essential issue in CDMs. It is necessary for consistently
estimating model parameters and valid statistical inferences (e.g., Gu and Xu 2019, 2020).
As mentioned above, the DINMix model can be viewed as a constraint model of the
GDINA model. According to Gu and Xu’s (2019) classification of CDMs, the DINMix
model is a multi-parameter Q-restricted latent class model. Thus, the conditions for generic
identifiability (i.e., conditions C5 and C6 in Theorem 7), which were also given by Gu and
Xu (2019), also apply to the DINMix model.

4. Simulation Studies

Two simulation studies were conducted. The purpose of simulation Study 1 was
to determine whether parameters of the DINMix model could be recovered accurately,
especially whether the proposed model can correctly identify items that contain coexisting
condensation rules, in which the data were simulated from the DINMix model and analyzed.
Simulation Study 2 was conducted to compare the performance of the proposed model and
some other CDMs in six simulated test situations to illustrate the relative advantages and
disadvantages of the proposed model.
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4.1. Study 1
4.1.1. Design and Data Generation

In simulation Study 1, five factors were manipulated, including (a) sample size (N)
at two levels, 500 and 1000, (b) test length (I) at two levels, 15 and 30, and (c) item quality
(IQ) at two levels, higher and lower. Referencing Zhan et al. (2019b), item parameters were
generated from a bivariate normal distribution with a negative correlation coefficient using(

logit(gi)
logit(si)

)
∼ MVN

((
−2.197
−2.197

)
,
(

1
−0.6 1

))
(9)

for higher-quality items and(
logit(gi)
logit(si)

)
∼ MVN

((
−1.386
−1.386

)
,
(

1
−0.6 1

))
(10)

for lower-quality items. These settings led to the guessing and slip probabilities for all items
following a positively skewed distribution (mean ≈ 0.1, minimum ≈ 0.01, and maximum
≈ 0.6 for higher quality, and mean ≈ 0.2, minimum ≈ 0.05, and maximum ≈ 0.7 for lower
quality), assuming that guessing and slip parameters follow a negative correlation is more
realistic (Zhan et al. 2019b). Additionally, (d) the type of item-level mixing proportion (TM)
at two levels of uniform and skew mixing was manipulated. Since the first I/3 items in
the Q-matrix are unidimensional items, we set τ1~I/3 = (1, 0, 0). Then, we set τ(I/3 + 1)~I
= (1/3, 1/3, 1/3) for uniform mixing. In contrast, for skew mixing, we set τ(I/3+1)~8I/15 =
(0.6, 0.2, 0.2), τ(8I/15+1)~11I/15 = (0.2, 0.6, 0.2), and τ(11I/15+1)~I = (0.2, 0.2, 0.6). Furthermore,
(e) the latent structural model of attributes (LSM) at two levels of an unstructured and a
multivariate normal distribution was manipulated. When an unstructured LSM was used,
the true attribute profile of each person was randomly chosen from all possible patterns
with equal probability; in these cases, the tetrachoric correlations among attributes were
approximately zero. In contrast, when a multivariate normal distribution was used, a latent
variable matrix with continuous elements was first generated from a five-dimensional
multivariate normal distribution (e.g., Chiu et al. 2009):

Θ =


θ1
θ2
θ3
θ4
θ5

 ∼ MVN




0
0
0
0
0

,


1

0.6
0.6
0.6
0.6

1
0.6
0.6
0.6

1
0.6
0.6

1
0.6 1


 (11)

where θk = (θ1k, . . . , θNk)
′; then, the true attribute was determined by

αnk =

{
0 θnk < 0
1 θ1 ≥ 0

(12)

In this case, tetrachoric correlations among the attributes were approximately 0.6.
Five attributes (K = 5) were measured, and the simulated Q-matrices are presented

in Figure 1. Each Q-matrix contained at least one identity matrix. Each attribute was
measured at least three times, which satisfies the conditions for generic identifiability (i.e.,
conditions C5 and C6 in Theorem 7) described by Gu and Xu (2019). Finally, the observed
responses were generated from yni~Bernoulli (pni), where pni was given in Equation (8) in
the main text.
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4.1.2. Analysis

Thirty replications were implemented in each simulated condition. Two Markov
chains with random starting points were used for each replication, and 10,000 iterations
were run for each chain. The first 5000 iterations in each chain were discarded as burn-in.
The remaining 10,000 iterations (5000 in each chain) were retained for model parameter
inferences. The potential scale reduction factor (PSRF; Brooks and Gelman 1998) was
computed to assess the convergence of each parameter. In this study, the PSRFs were
generally less than 1.01, suggesting good convergence in the specified settings.

To evaluate parameter recovery, the bias and root mean square error (RMSE) of
the item parameter estimates were computed as bias(x) = ∑30

r=1
x̂r−xr

30 and RMSE(x) =√
∑30

r=1
( x̂r−xr)

2

30 , where x̂ and x were the estimated and true values of the model parameters
in r-th replication. The attribute correct classification rate (ACCR) and attribute pattern
correct classification rate (PCCR) were computed to evaluate classification accuracy, as

ACCRk =
∑30

r=1 ∑N
n=1 I(α̂nkr=αnkr)

NR and PCCR =
∑30

r=1 ∑N
n=1 I

(
^
αnr=αnr

)
NR .

4.1.3. Results

Figure 2 summarizes the recovery of attributes (details can be found in Table S1
in the Supplementary). Referencing previous studies of CDMs with unstructured LSM
(e.g., Ma et al. 2016; Zhan et al. 2019b), the classification accuracy of the DINMix model
under different conditions is adequate and consistent with expectations. Furthermore,
increasing the test length and item quality yielded higher classification accuracy. Higher
correlations among attributes (i.e., when attributes were simulated from a multivariate
normal distribution) led to higher classification accuracy. The sample size had a limited
effect on classification accuracy. The classification accuracy in conditions with the skew
type of an item-level mixing proportion seems slightly better than in conditions with the
uniform type of item-level mixing proportion.

Figure 3 presents the RMSE of attribute profile proportions (details in Table S2 in
the Supplementary). Except for two profiles, (00000) and (11111), which have relatively
lower recovery in the multivariate normal distribution-based LSM, the recovery of the
remaining 30 patterns is basically the same in the two LSMs. The main reason is that the
number of people with those two extreme profiles is inherently small in the multivariate
normal distribution-based LSM. In addition, increasing the test length and item quality
yielded a smaller RSME. The sample size had a limited effect. The deviance of RMSEs in
conditions with the skew type of an item-level mixing proportion appears slightly higher
than in conditions with the uniform type of item-level proportion for conditions with lower
item quality.
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Table 2 summarizes the recovery of item parameters. It should be noted that only their
recovery in the multidimensional items (i.e., items 6–15 under I = 15 conditions and items
11–30 under I = 30 conditions) was computed for item-level mixing proportion parameters.
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The recovery of guessing and slip parameters was better than that of item-level mixing
proportion parameters across all conditions. Larger sample sizes, longer test lengths, and
higher item quality led to better item parameter recovery. Guessing and slip parameters
were well recovered across different conditions. Specifically, the recovery of guessing
and slip parameters under conditions with the skew type of item-level mixing proportion
seems better than under conditions with the uniform type of item-level mixing proportion.
Conversely, the recovery of item-level mixing proportion parameters under conditions with
the skew type of item-level mixing proportion was worse than under conditions with the
uniform type of item-level mixing proportion, especially for lower-quality items. Generally,
the recovery of τ3 was worse than that of τ1 and τ2, mainly because τi3 = 1 − (τi1 + τi2),
and thus, τi3 needs to offset both estimation errors of τi1 and τi2.

Table 2. Summary of the Recovery of Item Parameters in Simulation Study 1.

LSM IQ N I TM
g s τ1 τ2 τ3

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Un High 500 15 Unif 0.017 0.048 0.020 0.054 −0.041 0.100 −0.048 0.107 0.089 0.150
Skew 0.015 0.049 0.020 0.049 0.039 0.089 0.023 0.107 −0.061 0.154

30 Unif 0.013 0.037 0.013 0.035 −0.036 0.083 −0.041 0.090 0.077 0.121
Skew 0.009 0.036 0.011 0.035 −0.023 0.089 −0.013 0.084 0.037 0.134

1000 15 Unif 0.009 0.040 0.014 0.038 −0.029 0.085 −0.024 0.093 0.053 0.132
Skew 0.008 0.036 0.007 0.036 0.013 0.076 0.013 0.087 −0.026 0.130

30 Unif 0.005 0.025 0.008 0.026 −0.042 0.078 −0.035 0.075 0.077 0.126
Skew 0.006 0.024 0.007 0.024 −0.025 0.073 −0.026 0.072 0.050 0.119

Low 500 15 Unif 0.012 0.059 0.022 0.065 −0.019 0.080 −0.020 0.085 0.039 0.077
Skew 0.013 0.063 0.018 0.064 0.084 0.117 0.054 0.153 −0.138 0.215

30 Unif 0.011 0.049 0.017 0.048 −0.030 0.096 −0.015 0.099 0.045 0.081
Skew 0.008 0.050 0.012 0.047 −0.009 0.121 0.003 0.124 0.006 0.167

1000 15 Unif 0.006 0.048 0.015 0.055 −0.026 0.099 −0.012 0.097 0.039 0.087
Skew 0.001 0.052 0.010 0.049 0.081 0.131 0.036 0.144 −0.117 0.200

30 Unif 0.006 0.037 0.010 0.039 −0.034 0.092 −0.031 0.094 0.065 0.104
Skew 0.001 0.036 0.008 0.036 −0.013 0.099 −0.009 0.107 0.022 0.145

MVN High 500 15 Unif 0.007 0.031 0.007 0.031 −0.039 0.089 −0.039 0.090 0.078 0.130
Skew 0.009 0.032 0.006 0.030 0.052 0.104 0.036 0.113 −0.089 0.173

30 Unif 0.005 0.026 0.004 0.025 −0.043 0.086 −0.039 0.086 0.083 0.125
Skew 0.005 0.026 0.005 0.026 −0.017 0.095 −0.014 0.089 0.031 0.147

1000 15 Unif 0.004 0.023 0.005 0.023 −0.037 0.087 −0.038 0.093 0.076 0.156
Skew 0.002 0.021 0.006 0.022 0.019 0.085 0.027 0.094 −0.046 0.146

30 Unif 0.003 0.018 0.004 0.018 −0.040 0.079 −0.044 0.080 0.084 0.133
Skew 0.002 0.018 0.003 0.018 −0.019 0.077 −0.019 0.078 0.037 0.132

Low 500 15 Unif −0.001 0.040 0.002 0.041 −0.032 0.097 −0.036 0.097 0.069 0.095
Skew −0.004 0.041 −0.001 0.039 0.087 0.134 0.041 0.141 −0.128 0.201

30 Unif 0.004 0.034 0.007 0.034 −0.033 0.096 −0.028 0.097 0.061 0.090
Skew 0.002 0.034 0.006 0.033 −0.008 0.126 0.001 0.124 0.007 0.167

1000 15 Unif 0.000 0.031 0.001 0.029 −0.040 0.105 −0.029 0.103 0.069 0.110
Skew −0.003 0.031 0.004 0.031 0.057 0.109 0.044 0.127 −0.102 0.176

30 Unif 0.001 0.025 0.005 0.024 −0.037 0.096 −0.033 0.092 0.071 0.106
Skew 0.001 0.023 0.005 0.023 −0.011 0.099 −0.007 0.098 0.018 0.149

Note, g = guessing parameter; s = slip parameter; τ1 = item-level mixing proportion parameter for the conjunctive
condensation rule; τ2 = item-level mixing proportion parameter for the disjunctive condensation rule; τ3 =
item-level mixing proportion parameter for the ratio condensation rule; LSM = latent structural model; IQ = item
quality; N = sample size; I = test length; TM = type of item-level mixing proportion; Un = unstructured LSM;
MVN = multivariate normal distribution; Unif = uniform; RMSE = root mean square error.

Overall, the results of simulation Study 1 indicate that model parameters for the
DINMix model can be well recovered, as the proposed model can correctly identify items
that contain coexisting condensation rules via the proposed Bayesian MCMC estimation
method, especially in conditions with a larger sample, longer test length, and higher item
quality.
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4.2. Study 2
4.2.1. Design and Data Generation

In simulation Study 2, six test situations were simulated. Precisely, including the
situations in which the relationships between item responses and required attributes (a)
follow the conjunctive condensation rule (i.e., the DINA model was used to generate data),
(b) follow the disjunctive condensation rule (i.e., the DINO model was used to generate
data), (c) follow the ratio condensation rule (i.e., the DINR model was used to generate
data), (d) follow the compensatory condensation rule (i.e., the ACDM was used to generate
data), (e) fuzzily follow some unclear condensation rules (i.e., the GDINA model was
used to generate data), and (f) separately follow some clear condensation rules (i.e., five
separate CDMs were combined to generate data, including DINA, DINO, DINR, ACDM,
and GDINA models). Note that all the above situations are unfair to the DINMix model
because it is not used as the data generation model in any of them.

Other factors were set as control variables. More specifically, the number of attributes,
sample size, and test length were fixed at 5, 1000, and 30, respectively. The Q-matrix and
corresponding allocation plan of the data generation model are presented in Figure 4. The
Q-matrix contained two identity matrices, and each attribute was measured at least three
times to make all the mentioned CDMs identifiable (Gu and Xu 2019, 2020). In all simulated
test situations, since the first 10 items were unidimensional (i.e., all CDMs were equivalent),
the DINA model was forcibly assigned to them for simplicity. In the simulated test situation
(f), for items 11–14, the DINA model was used as the true model; for items 15–18, the DINO
model was used as the true model; for items 19–22, the DINR model was used as the true
model; for items 23–26, the ACDM was used as the true model; for items 27–30, the GDINA
model was used as the true model. To ensure that data were only determined by the data
generation model, items with the same required attributes were assigned to each model,
and all item parameters were set to fixed values.
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Figure 4. K-by-I Q’ matrix for simulation Study 2 and the data generation model for each item. Note:
blank means ‘0’ and gray means ‘1’; DINA = deterministic input, noisy ‘and’ gate model; DINO =
deterministic input, noisy ‘or’ gate model; DINR = deterministic input, noisy ratio model; ACDM =
additive cognitive diagnosis model; GDINA = generalized DINA model; DINMix = deterministic
input, noisy mixed model.

The upper and lower limits of correct response probability were set as 0.9 and 0.1,
respectively. Thus, in the DINA, DINO, and DINR models, gi and si were both fixed at 0.1.
In the ACDM, the intercept parameters were all fixed at 0.1; for two-dimensional items,
two main effects were fixed at 0.5 and 0.3; for three-dimensional items, three main effects
were fixed at 0.35, 0.25, and 0.2. In the GDINA model, the intercept parameters were all
fixed at 0.1; for two-dimensional items, two main effects, and one two-way interaction
effects were fixed at 0.35, 0.25, and 0.2, respectively; for three-dimensional items, three main
effects, three two-way interaction effects, and one three-way interaction effects were fixed
at 0.15, 0.1, 0.05, 0.05, 0.1, 0.15, and 0.2, respectively. The unstructured latent structural
model was used (i.e., the true attribute profile of each person was randomly chosen from
all possible patterns with equal probability). Finally, the observed responses of each item
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were generated from the corresponding model presented in Figure 1. Thirty datasets were
generated in each condition.

4.2.2. Analysis

In the simulated test situations (a) to (e), only the true model and the DINMix model
were used to fit the generated data; while in the simulated test situation (f), five models
were used to fit the generated data: DINA, DINO, DINR, DINMix, and GDINA models.
All models were estimated using the Bayesian MCMC method. Analysis processes were
identical to those used in simulation Study 1 (see Section S1 in the Supplementary). In
addition to bias, the RMSE, the PCCR, the deviance information criterion (DIC; Spiegelhalter
et al. 2002), and the log conditional predictive ordinate (Kim and Bolt 2007; Levy and
Mislevy 2016, p. 247) multiplied by –2 (i.e., –2LCPO) were computed for model selection.
Both the test- and item-level –2LCPO were reported. A smaller value of the DIC and
–2LCPO indicates a better model-data fit.

4.2.3. Results

Table 3 presents the overall performance of six models in simulation Study 2, including
model-data fitting, the recovery of item parameters, the recovery of attributes, and the
recovery of attribute profile proportions (details can be found in Table S2 and Figure S1
in Supplementary). For the first five test situations, it was unsurprising that the overall
performance of the DINMix model was worse than that of the data generation model itself,
but the relative disadvantage of the former was minimal, even in these extremely unfair
test situations. Additionally, both model-data fitting indicators can successfully identify the
true model, indicating that the degree of model-data fitting can be used as evidence of the
validity of the measurement of cognitive processes. For the last test situation, the overall
performance of the six models was evaluated in the following relative order: GDINA ≥
DINMix >> ACDM ≥ DINR > DINA > DINO. More specifically, first, the GDINA model
performs best in complex test situations, as expected, because it is a saturated model; second,
the performance of the DINMix model was slightly worse than that of the GDINA model;
third, the performance of the first two models was much better than that of the last four
reduced models; fourth, the ACDM performed only slightly better than the DINR model.

Table 3. Summary of the Results of Simulation Study 2.

Test Situation Analysis Model DIC Test_–2LCPO RMSE_g RMSE_s PCCR RMSE_α

Conjunctive DINA 20,748.69 21,201.02 0.012 0.021 0.805 0.006
DINMix 20,852.34 21,256.41 0.024 0.022 0.804 0.006

Disjunctive DINO 20,746.62 21,200.64 0.022 0.013 0.806 0.006
DINMix 20,827.94 21,251.88 0.022 0.024 0.803 0.006

Ratio DINR 29,963.85 30,625.57 0.020 0.020 0.853 0.004
DINMix 30,020.02 30,676.92 0.021 0.021 0.852 0.004

Compensatory ACDM 29,613.86 30,390.21 0.020 0.020 0.853 0.003
DINMix 30,084.68 30,713.51 0.022 0.021 0.844 0.004

Fuzzily GDINA 28,541.86 29,260.53 0.020 0.022 0.845 0.004
DINMix 28,743.04 29,372.46 0.023 0.024 0.840 0.004

Separately DINA 29,348.12 29,971.11 0.195 0.035 0.746 0.007
DINO 30,078.30 30,616.86 0.039 0.227 0.726 0.008
DINR 28,386.28 28,972.58 0.079 0.093 0.827 0.004

ACDM 28,266.83 28,911.75 0.079 0.092 0.828 0.004
GDINA 25,595.61 26,341.86 0.022 0.022 0.900 0.003
DINMix 25,744.26 26,397.83 0.021 0.022 0.899 0.003

Note: The value is the mean value of 30 replications; DIC = deviance information criterion; Test_–2LCPO =
test-level –2 log conditional predictive ordinate; RMSE_g = mean root mean square errors of guessing parameter
across all items; RMSE_s = mean RMSEs of slipping parameters across all items; RMSE_α = mean RMSEs of 32
attribute profile proportions; PCCR = attribute pattern correct classification rate; DINA = deterministic input,
noisy ‘and’ gate model; DINO = deterministic input, noisy ‘or’ gate model; DINR = deterministic input, noisy ratio
model; ACDM = additive cognitive diagnosis model; GDINA = generalized DINA model; DINMix = deterministic
input, noisy mixed model.
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Figure 5 presents the estimates of item-level mixing proportion parameters of the
DINMix model in six test situations. First, by using the estimate of τi1 > 0.9 and τi2 > 0.9
as a judgment condition, τi1 and τi2 can accurately identify the conjunctive and disjunc-
tive condensation rules for each item across all test situations, respectively. For τi3, we
cannot make a judgment directly by using a certain cut-point (e.g., 0.9), as for τi1 and τi2;
however, by judging whether τi3 is simultaneously larger than τi1 and τi2, the items that
follow the ratio/compensatory condensation rule can still be identified. Second, when
the relationships between item responses and required attributes fuzzily followed some
condensation rules (i.e., the test situation (e)), τi1, τi2, and τi3 seemed to show the following
pattern: the proportion of τi1 and τi3 was much higher than that of τi2. Of course, this
pattern may change depending on the simulated values of different item parameters in
the GDINA model. Third, for test situation (f), even in such a complex test situation, the
DINMix model can identify the condensation rules followed by each item by adaptively
adjusting the estimates of τi1, τi2, and τi3. If the identified condensation rules for some
items were inconsistent with those predefined by experts, then the experts may consider
revising these items.
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Figure 5. Estimates of the item-level mixing proportion parameter in simulation Study 2 from
the DINMix model. Note: The value is the mean value of 30 replications; τ1 = item-level mixing
proportion parameter for the conjunctive condensation rule; τ2 = item-level mixing proportion
parameter for the disjunctive condensation rule; τ3 = item-level mixing proportion parameter for the
ratio condensation rule; DINMix = deterministic input, noisy mixed model; GDINA = generalized
DINA model.

To better illustrate the comparative advantages and disadvantages of the proposed
model, the following discussion focuses on test situation (f). Figure 6 summarizes the
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recovery of the item parameters of six models (details can be found in Table S3 in the
Supplementary). Only the recoveries of the upper and lower limits of the correct response
probability (i.e., the guessing and slip parameters) were computed. The DINMix and
GDINA models performed well in recovering the parameters in all items and were unaf-
fected by the true condensation rule followed by each item. Additionally, when the true
condensation rule followed by an item did not match the condensation rule adopted by the
analysis model, the DINA model substantially overestimated the guessing parameter, while
the DINO model substantially overestimated slip parameters, and the DINR model’s results
were a bit more complicated. Specifically, when the true condensation rule was conjunctive,
the DINR model substantially overestimated slip parameters and slightly underestimated
guessing parameters; however, when the true condensation rule was disjunctive, the DINR
model substantially overestimated guessing parameters and slightly underestimated slip
parameters. Furthermore, the ACDM still performed similarly to the DINR model.
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Figure 7 displays the item-level –2LCPO of the six models (details in Table S4 in the
Supplementary). The GDINA and the DINMix models were more effective than the other
four reduced models in fitting the data on most, if not all, items, regardless of the true
model for each item. The DINA, DINO, DINR, and ACDM models had a relatively high
degree of item-level fit, but only when their adopted condensation rule conformed to the
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true condensation rule followed by an item; in contrast, the GDINA and DINMix models
seemed to be unaffected by the true condensation rule followed by the item.
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Overall, despite these unfair test situations, the DINMix model performed well. The
results of simulation Study 2 indicate that (a) the DINMix model can adaptively identify
different condensation rules existing separately in multiple items, and (b) the overall per-
formance of the DINMix model is similar to that of the GDINA model, both of which are
suitable for complex test situations. However, it should be noted that the DINMix and
GDINA models deal with complex test situations differently. The former identifies con-
densation rules followed by different items by adjusting the item-level mixing proportion
parameters, while the latter accounts for all possible condensation rules through saturated
interaction effects. Thus, the analysis results of the former are more helpful for item revision
from the perspective of improving validity.

5. An Empirical Example

A commonly used empirical dataset was used to illustrate the applicability and
advantages of the proposed model: the fraction subtraction (FS) dataset (Tatsuoka 2002).
Since this dataset has been widely used in many previous studies, it does not need to be
described in detail here. In addition to the DINA, DINO, DINR, ACDM, GDINA, and
DINMix models, a selected mixing model via the Wald test (Ma et al. 2016) was used to
fit the data. The analysis processes for the first six models were identical to those used in
simulation studies. To make the results comparable, the Wald test was first used for the
selected mixing model to select a suitable reduced CDM for each item using the GDINA
package (Ma and de la Torre 2020) in R software. The candidate-reduced models included
the DINA, DINO, and ACDM. Then, according to the selected models3, Bayesian estimation
was used. The DIC and –2LCPO were computed for model selection.

The FS dataset consists of responses given by 536 individuals to 20 items measuring
eight attributes. The Q-matrix was published by Tatsuoka (2002)4. Previous studies have
shown that the DINA model can fit these data well (e.g., DeCarlo 2011; de la Torre and
Douglas 2004). Table 4 presents the DIC and test-level –2LCPO of seven models. The
DINMix model was preferred based on the DIC, and the GDINA model was selected based
on the test-level –2LCPO. Additionally, Figure 8 displays the item-level –2LCPO of the
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seven models. The DINA, DINMix, GDINA, and selected mixing models have approximate
fittings, mainly because the latter three also agree that the conjunctive condensation rule is
more suitable for most items.

Table 4. The DIC and –2LCPO of Seven Models for the Fraction Subtraction Data.

Analysis Model DIC Test-Level –2LCPO

DINA 8347.341 7882.304
DINO 9038.505 8665.394
DINR 8911.684 8293.461

ACDM 10,528.705 7826.567
GDINA 11,096.800 7690.248
DINMix 8330.826 7803.378

Wald-selected 8785.672 7783.750
Note: DIC = deviance information criterion; –2LCPO = –2 log conditional predictive ordinate; DINA = determinis-
tic input, noisy ‘and’ gate model; DINO = deterministic input, noisy ‘or’ gate model; DINR = deterministic input,
noisy ratio model; ACDM = additive cognitive diagnosis model; GDINA = generalized DINA model; DINMix =
deterministic input, noisy mixed model; Wald-selected = selected mixing model via Wald test.
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Figure 8. Item-level –2LCPO of seven models for the fraction subtraction data. Note: DINA =
deterministic input, noisy ‘and’ gate model; DINO = deterministic input, noisy ‘or’ gate model;
DINR = deterministic input, noisy ratio model; ACDM = additive cognitive diagnosis model; GDINA
= generalized DINA model; DINMix = deterministic inputs, noisy mixed model; Wald-selected =
selected mixing model via Wald test.

Figure 9 presents the estimated item parameters of the DINMix model for the FS data
(the results of other models are provided in Tables S5 and S6 in the Supplementary). The
estimates of τims indicate that the conjunctive condensation rule accounts for the largest
proportion of most items. When using the judgment rules obtained in simulation Study
2 (e.g., τi1 > 0.9 or τi2 > 0.9), it was difficult to determine which specific condensation
rule that items 1, 4, 5, 12, 14, 16, and 18 followed, primarily because they were judged to
contain coexisting condensation rules. Similarly, the results of the Wald test also suggest
that no particular condensation rule applied to items 1, 4, 12, 14, and 16. This consistency
also indicates that the proposed model can further explain why the Wald test cannot find
a specific condensation rule for some items. Additionally, use the item 14, 3 4

5 − 3 2
5 ,5 as

an example. Attributes α2 (separate a whole number from a fraction) and α7 (subtract
numerators) were required to respond correctly according to the Q-matrix. However,
respondents who mastered α7 but not α2 could still identify that the correct answer was
2/5. The first reason is that respondents may ignore the integer part and only focus on the
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difference between the fraction part. The second reason is that alternative attributes that
are unspecified by the Q-matrix can probably be used to answer this item, such as convert
mixed number to fraction (Mislevy 1996). Apparently, for whatever reason, the expert-defined
conjunctive condensation rule does not fully apply to this item, which is also what the
DINMix model indicated.
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Note: g = guessing parameter; s = slip parameter; τ1 = item-level mixing proportion parameter for
the conjunctive condensation rule; τ2 = item-level mixing proportion parameter for the disjunctive
condensation rule; τ3 = item-level mixing proportion parameter for the ratio condensation rule;
DINMix = deterministic input, noisy mixed model.

6. Summary and Discussion

The condensation rule describes the logical relationship between the required at-
tributes and the item response, reflecting the explicit assumption about respondents’ cog-
nitive processes to solve problems. When an item contains coexisting condensation rules,
the contribution of required attributes to the correct item response probability follows
multiple condensation rules with different proportions. Coexisting condensation rules
reflect the complexity of cognitive processes in problem solving and that the cognitive
processes respondents employ in their item responses are inconsistent with the expert-
designed condensation rule. This study proposed the DINMix model to identify coexisting
condensation rules to provide feedback for item revision. Two simulation studies were
conducted to evaluate the psychometric properties of the proposed model. The simulation
results indicate that (a) the model parameters for the DINMix model can be well recovered;
(b) the DINMix model can adaptively and accurately identify coexisting condensation rules,
either existing simultaneously in an item or existing separately in multiple items; (c) the
overall performance of the DINMix model is similar to that of the GDINA model, both of
which are suitable for complex test situations. An empirical example was also analyzed to
illustrate the applicability and advantages of the proposed model.

The work represented in this article is an initial attempt to consider multiple condensa-
tion rules in a single CDM simultaneously. Despite the promising results, some limitations
remain. First, the utilized model framework (see Equations (1) and (5)) models aberrant
responses at the item level. However, in practice, such unusual responses may occur at
the attribute rather than the item level, such as noisy input, deterministic, and gate model
(Junker and Sijtsma 2001). Exploring ways to incorporate attribute-level aberrant responses
into the proposed model is worthy of further research, for which Equation (11) of de la Torre
(2011) seems to give us a reference. Second, within-item characteristic dependency (Zhan
et al. 2019b) was not considered in the proposed model, which means that dependency
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exists between the guessing and slip parameters within an item. It can be incorporated
into the proposed model to increase the estimation accuracy of item parameters in a future
study. Third, only the dichotomous scoring item and binary attribute were modeled in
the proposed model. Extending the current model to consider polytomous scoring items
(e.g., Ma and de la Torre 2016) and polytomous attributes (e.g., Zhan et al. 2020) would be
meaningful and practical. Fourth, in recent years, some studies have focused on Q-matrix
validation or estimation (Chen et al. 2018; de la Torre and Chiu 2016) and multiple strategies
for problem solving (Ma and Guo 2019), which are not covered in the current study. Fifth,
inspired by the modeling logic of mixture item response models, this study proposed the
idea of the coexistence of multiple factors (e.g., condensation rules) at the item level. This
item-level mixed-modeling idea may have some extended uses worth exploring, such
as coexisting problem-solving strategies and coexisting Q-matrices (i.e., q-vectors, to be
exact) at the item level. Sixth, notably, the generalizability of the findings of this study is
dependent upon the limitations of the design of the simulation studies, such as using a
fixed number of attributes and assuming the Q-matrix is correct. To further generalize these
findings, a wider range of simulated conditions should be considered in future studies.
Seventh, in addition to the MCMC algorithm used in this study, subsequent attempts can
be made to use the maximum likelihood estimation with a potentially shorter computing
time. Eighth, 30 sets of data were randomly generated in the simulation study, which may
not be sufficient to eliminate the impact of random error.

Lastly, model identifiability is essential for valid statistical inferences, but determining
the identifiability conditions could be challenging. Although the conditions for generic
identifiability for the multi-parameter Q-restricted latent class model are also applicable to
the DINMix model, it remains to be explored whether there are other specific identifiable
requirements for the DINMix model. In other words, the identifiability conditions of
the proposed model have yet to be established. In cognitive diagnosis, many CDMs
were proposed without addressing the issue of model identifiability, and researchers have
long recognized that CDMs are generally not identifiable (DeCarlo 2011; DiBello et al.
1995). For example, even the identifiability condition of the most practiced DINA model
was not solved until more than 10 years after it was proposed (Xu and Zhang 2016; Xu
2017). Similarly, the identifiability condition of the GDINA model was only recently
addressed (Gu and Xu 2020). Although the unified model (DiBello et al. 1995) also had
an unidentifiable issue when it was proposed, it will be solved as the research advances
(Hartz and Roussos 2008). In addition to those early proposed models, some recent new
CDMs with identifiability issues still need to be addressed (e.g., Ma 2022).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jintelligence11030055/s1, Section S1. The relationship between
DINMix model and GDINA model; Figure S1. Root Mean Square Error of Attribute Profile Propor-
tions in Simulation Study 2; Table S1. Summary of the Recovery of Attributes in Simulation Study 1;
Table S2. Summary of the Recovery of Attributes in Simulation Study 2; Table S3. Summary of the
Recovery of Item Parameters in Test Situation (f) in Simulation Study 2; Table S4. Summary of the
Item-Level –2LCPO of Six Models in Test Situation (f) in Simulation Study 2; Table S5. The Estimated
Item Parameters for the Fraction Subtraction Data (Posterior Mean); Table S6. The Estimated Item
Parameters for the Fraction Subtraction Data (Posterior Standard Deviation).

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The toy data and running code for the models used in this study are
available at https://osf.io/s2yjv/.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/jintelligence11030055/s1
https://www.mdpi.com/article/10.3390/jintelligence11030055/s1
https://osf.io/s2yjv/


J. Intell. 2023, 11, 55 19 of 21

Notes
1 Specifically, it follows the data-first philosophy (i.e., by developing more complex models to realize the analysis of data in

complex situations). In contrast, for the perspective of measurement, considering the viewpoint of garbage-in, garbage-out for
predetermined measurement objects (e.g., attributes and cognitive processes) to ensure the reliability and validity of measurement,
factors unrelated to the measurement should be excluded (i.e., be revised or be deleted) as much as possible.

2 Any one element in τi can be set to 1 because all CDMs (for binary attributes) are identical to each other for unidimensional items.
3 According to the p-values of the Wald test, items 1, 4, 12, 14, and 16 are applicable to the GDINA model, while the remaining

items are applicable to the DINA model.
4 The author does, however, note that this Q-matrix has been suggested to be revised by some previous studies (e.g., Chen et al.

2018). However, it is still fair to compare several models with the same Q-matrix, especially when there is no definite conclusion
about the revision of this Q-matrix.

5 The specific content of each item can be found in table 1 in DeCarlo (2011).
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