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Abstract: In this study, we designed a framework in which three techniques—classification tree,
association rules analysis (ASA), and the naïve Bayes classifier—were combined to improve the
performance of the latter. A classification tree was used to discretize quantitative predictors into
categories and ASA was used to generate interactions in a fully realized way, as discretized variables
and interactions are key to improving the classification accuracy of the naïve Bayes classifier. We
applied our methodology to three medical datasets to demonstrate the efficacy of the proposed
method. The results showed that our methodology outperformed the existing techniques for all the
illustrated datasets. Although our focus here was on medical datasets, our proposed methodology is
equally applicable to datasets in many other areas.

Keywords: association rules analysis; classification tree; discretization; interactions; naïve Bayes

1. Introduction

As one of the most important data mining tasks in medical research, classification
has the defining purpose of predicting the group or class to which a new record belongs
based on its observed values for significant predictor variables. For example, classification
techniques can be used to assign new patients to a high-risk or low-risk group based on
observations of predictors related to disease patterns. Among the many classifiers applied
to medical problems, the naïve Bayes classification algorithm is widely used due to its
simplicity, efficiency, and efficacy [1–4].

Several extensions of the naïve Bayes classifier have been proposed, with the goal of
improving its classification performance. Presenting an overview of naïve Bayes variants,
Al-Aidaroos et al. [5] roughly categorized them into four groups depending on whether
they (1) manipulated a set of attributes; (2) allowed interdependencies between attributes;
(3) used the principle of local learning; or (4) adjusted the probability by numeric weight.
However, some naïve Bayes adaptations integrate more than one approach—a fact that
these categorizations do not take into account. For example, Melingi and Vijayalakshmi [6]
utilized an effective meta-heuristic algorithm for selecting features and integrated naïve
Bayes (NB) and sample weighted random forest (SWRF) classifiers into a single classi-
fication approach to achieve an efficient technique for sub-acute ischemic stroke lesion
segmentation. After preprocessing, the extracted features were selected by using the multi-
objective enhanced firefly algorithm to minimize errors and reduce dimensionality. In the
procedure proposed by Melingi and Vijayalakshmi, the hybrid NB-SWRF classifier was
used for image segmentation.

Under the assumption that all categorical predictors are independent for each class
(i.e., the conditional independence assumption), the naïve Bayes classifier works very
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well at predicting the class of a new record based on the conditional probabilities using
Bayes’ theorem. However, for most datasets in real-world applications, the conditional
independence assumption is often violated. Furthermore, to alleviate the interdependence
problem and improve classification, numerous researchers have proposed some adapted
naïve Bayesian classifiers. Jiang et al. [7] reviewed several improved algorithms that deal
with the interdependence issue, and divided them into four main approaches: feature
selection, structure extension, local learning, and data expansion.

In addition, some naïve Bayes adaptations have been hybridized with other classifica-
tion techniques. For example, Farid et al. [8] proposed a hybrid algorithm for a naïve Bayes
classifier to improve classification accuracy in multi-class classification tasks. In the hybrid
naïve Bayes classifier, a decision tree is used to find a subset of important attributes for
classification, with the corresponding weights serving as exponential parameters for the
calculating the conditional probability of the class. Abraham et al. [9] proposed a hybrid
feature selection algorithm using the naïve Bayes classifier to reduce dimensionality by
removing irrelevant data, increasing learning accuracy, and improving the comprehensibil-
ity of the results. Their proposed algorithm relied on naïve minimum description length
(MDL) discretization to filter out the least relevant and irrelevant features via chi-square
feature selection ranking and used a greedy algorithm, the wrapper subset selector, to
identify the best feature set.

A new approach, associative classification with Bayes (AC-Bayes), has been used
to resolve rule conflicts in the naïve Bayesian model [10]. In AC-Bayes, a small set of
high-quality rules is generated by discovering both the frequent and mutually associated
item sets, then the best n rules are selected to predict the class of new instances. When
rule conflicts occur, the instances covered by the matched rules are collected to form a new
training set, which is used to compute the posterior probabilities of each class, conditioned
on the test instance.

By integrating association rule mining with classification tasks, associative classifi-
cation (AC) algorithms improve classification accuracy and produce easy-to-understand
rules. However, AC-based approaches often generate a large number of classification rules.
Moreover, several attributes may be excluded from the AC model by various ranking
and pruning methods. To cope with these shortcomings, Hadi et al. [11] proposed a new
hybrid AC algorithm (HAC) in which the naïve Bayes algorithm was used to reduce the
number of classification rules representing all the attribute values, thereby improving the
classification accuracy.

In this study, we integrated both the classification tree and association rules analysis
(ASA) with the naïve Bayes classifier into one framework. Our goal was to generate
candidate variables and interactions via two data mining methods—classification tree
and ASA—in order to improve the classification performance of the naïve Bayes classifier.
The focal step in the method we propose is to find interactions through ASA, as the most
thorough way of finding the combinations of variables that help to predict the class of the
response. In terms of a discretization method, we developed and described a classification
tree with a weighting as the most effective way to partition quantitative predictors into
levels for ASA. The proposed framework was applied to three medical datasets, all of which
initially consist of quantitative predictors only. Our proposed methodology was shown to
be significantly superior to all the established classifiers in terms of classification accuracy.

This study is organized as follows. The techniques that comprise our framework are re-
viewed in Section 2, followed by a detailed description of the framework and the proposed
method. Applications of our framework to real datasets are described in Section 3, and
performance comparisons between our framework and some well-known data classifiers
are provided in Section 4. In Section 5, the implications of our results are discussed and the
concluding remarks are presented.
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2. Materials and Methods
2.1. Basic Concepts

In the context of statistical classification, our goal is to assign a new record
xp =

(
x1, x2, . . . , xp

)
to a particular class C∗k with a minimal probability of misclassifi-

cation. It can be proved that, when the new record xp is assigned to class C∗k , the posterior
probability P

(
Ck

∣∣xp
)

is maximized [12,13]. Based on Bayes’ Theorem, we can calculate the
posterior probability P

(
Ck

∣∣xp
)

for k = 1, 2, . . . , m as follows:

P
(
Ck

∣∣xp
)
=

P
(
xp

∣∣Ck
)

P(Ck)

P
(
xp

∣∣C1
)

P(C1) + . . . + P
(
xp

∣∣Cm
)

P(Cm)
(1)

With the naïve Bayes classifier, based on the assumption that all the predictors
x1, x2, . . . , xp are conditionally independent of each other, given the class, we obtain:

PNB
(
Ck

∣∣xp
)
=

∏
p
j=1 P

(
xj
∣∣Ck

)
P(Ck)

∏
p
j=1 P

(
xj
∣∣C1

)
P(C1) + . . . + ∏

p
j=1 P

(
xj
∣∣Cm

)
P(Cm)

(2)

Note that all the probabilities in Equation (2) can be estimated from pivot tables of the
response and predictor values in the training set. For example, P(x1|C1) can be estimated
by referring to the proportion of the x1 values of the records belonging to class C1 in
the training set and P(C1) can be estimated by referring to the proportion of the records
belonging to class C1 in the training set. We assign the class with the highest probability to
each observation.

2.1.1. Classification Tree

Due to its transparent rules and visual presentation, a classification tree is one of the
most frequently used data mining techniques for classification [14]; for this reason, we
selected this as the discretization method in our framework. Based on testing multiple
discretization methods with different criteria, we found that the most effective method for
our framework was a classification tree using weight to calculate measures including the
proportion of the data belonging to each class, the proportion of the data in the left and right
child nodes, the Gini impurity index in each node, and the reduction in the impurity of the
split. Note that we obtained the discretization results from the Salford Predictive Modeler
software program (https://cdn2.hubspot.net/hub/160602/file-249977783-pdf/docs/JSM,
accessed on 13 February 2021), which explains the classification tree using weight as
explained above.

2.1.2. Association Rules Analysis (ASA)

ASA is used to explore relationships between items in the form of rules, each of
which has two parts: the first part comprises left-hand-side item(s), or condition, and the
second is a right-hand-side item, or result. All the rules are represented in the following
format: if condition, then result [15–17]. Two measurements are attached to each rule. The
first measurement, support (s), is computed by s = P(condition and result). The second
measurement, confidence (c), is computed by c = P(condition and result)

P(condition) . ASA finds all the
rules that meet two key thresholds: minimum support and minimum confidence [18].

This set of rules can be used for other purposes, including classification. A technique
called classification rule mining (CRM), a subset of ASA, was developed to find a set of
rules in a database in order to produce an accurate classifier [19,20]. In this technique, an
item is used to represent a pair consisting of a main effect and its corresponding integer
value. More specific than ASA, CRM has only one target, and this must be specified in
advance. In general, the target of CRM is the response, which means the result of the rule
(the right-hand-side item) can only be the response and its class. Therefore, the left-hand-
side item (the condition) consists of the explanatory variable and its level. For example,
assume that there are k categorical variables, X1, X2, . . . , Xk, and a categorical response, Y.

https://cdn2.hubspot.net/hub/160602/file-249977783-pdf/docs/JSM
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Many rules can be generated by CRM. As an example, a rule could be “If X1 = 1, X2 = 3,
then Y = 1” with s = P(X1 = 1, X2 = 3, and Y = 1) and c = P(X1 = 1, X2 = 3, and Y = 1) /
P(X1 = 1 and X2 = 3).

We used CRM to find the combinations of levels of variables that appear frequently
and strongly for each of the classes of the response through selected rules, which will be
converted into new variables, called interactions (explained in detail in the next section).
These interactions have the potential to improve classification accuracy when they are
included in the models, as we will demonstrate with the focal datasets.

2.2. Proposed Method: Naïve Bayes Classifier Framework

The proposed framework for building a naïve Bayes classifier consists of four key
steps (Figure 1).
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Figure 1. Naïve Bayes classifier framework.

The four steps in our framework are:
Step 1 (Discretization by CT): Utilize a classification tree to discretize each quantita-

tive explanatory variable and convert each of them into a categorical variable.
Step 2 (Rules generation by ASA): Utilize CRM, a subset of ASA, to generate classifier

rules from all the categorical variables, i.e., the new categorical variables generated in Step 1
and the original categorical variables.

Step 3 (Interactions generation): Generate the interactions for all the classifier rules
in Step 2.

Step 4 (Naïve Bayes model selection): Select the optimal model for the naïve Bayes
classifier—i.e., the one that provides the best value for our selection method—from all the
original categorical variables, all the generated categorical variables in Step 1, and all the
interactions generated in Step 3.

Step 1: Discretization by CT
As noted, we recommended a classification tree with weighting as the discretization

method for our framework. In this step, we fitted the classification tree with each predictor
as the sole predictor to find the splitting values. In turn, these values were used to partition
the quantitative variable into levels as a basis for converting each quantitative variable into
a categorical variable as needed.

Step 2: Rule Generation by ASA
In Step 2, we used CRM to create rules from the datasets. The candidate variables

for generating the rules are (i) all the original categorical variables; and (ii) all the newly
generated categorical variables from Step 1. This step is expected to result in rules in the
form of “If Xi’s = xi’s, then Y = y,” where xi is the level of variable Xi and where y is the level
of response Y. To perform the CRM, we used the classification based on associations (CBA)
program developed by the Department of Information Systems and Computer Sciences at
the National University of Singapore [19]. By simplifying the process, we used the classifier
rules obtained from CBA, as shown in the following section. All classifier rules became the
input for Step 3.

Step 3: Interactions Generation
In Step 3, we generated the interactions for the naïve Bayes classifier from the classifier

rules generated in Step 2. We generated interactions between the items on the left-hand
side with the same settings as those that appear in the rule. We assumed that the selected
rule had three predictors in the form of “If Xi = xi, Xj = xj, and Xk = xk, then Y = y,” where
xi is the level of variable Xi, xj is the level of variable Xj, xk is the level of variable Xk, and y
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is the level of response Y. We generated the interactions among Xi, Xj, and Xk by labeling
each interaction as 1 if Xi = xi, Xj = xj, and Xk = xk, and as 0 otherwise. This interaction is
denoted Xi(xi)Xj(xj)Xk(xk). For example, for the rule “If X1 = 2, X2 = 2, and X3 = 1, then
Y = 1,” we created an interaction among X1, X2, and X3, denoted X1(2)X2(2)X3(1). We have
X1(2)X2(2)X3(1) = 1 if X1 = 2, X2 = 2, and X3 = 1, and 0 otherwise. The level of Y does not
play any role in generating the variables. These interactions will be the candidate variables
in Step 4.

Step 4: Naïve Bayes Model Selection
In Step 4, we selected the model for the naïve Bayes classifier by finding the set of

predictors that give the best accuracy measure, which is the leave-one-out cross-validation
method (LOOCV) or k-fold cross-validation with k = number of observations. The can-
didate variables are (i) the original categorical variables; (ii) the categorical variables
generated in Step 1; and (iii) the interactions generated in Step 3.

3. Illustrated Examples

We demonstrated our methodology using three datasets: the thyroid dataset, the
diabetes dataset, and the appendicitis dataset. Note that each of these three datasets
initially comprised only quantitative predictors.

3.1. Thyroid Dataset

Retrieved from the University of California Irvine (UCI) machine learning site
(https://archive.ics.uci.edu/ml/datasets/thyroid+disease, accessed on 11 February 2021),
the dataset provided information on the thyroid function of 215 patients: 150 (69.77%)
with normal function, 35 (16.28%) with hyperfunction, and 30 (13.95%) with hypofunction.
There were five predictors in the dataset, all of which were quantitative variables (Table 1).
The objective of this analysis was to classify the patients as normal (Class 1), hyperfunction
(Class 2), or hypofunction (Class 3).

Table 1. Predictors for the thyroid dataset.

Variable N Mean Standard Deviation Minimum Median Maximum

T3 RESIN 215 109.60 13.15 65.00 110.00 144.00

THYROXIN 215 9.81 4.70 0.50 9.20 25.30

THYRONINE 215 2.05 1.42 0.20 1.70 10.00

THYROID 215 2.88 6.12 0.10 1.30 56.40

TSH_VALUE 215 4.20 8.07 −0.70 2.00 56.30

We applied our approach to the thyroid dataset via the following steps.
Step 1 (Discretization by CT): We discretized the five quantitative variables into

categories using a classification tree. We fitted the model to predict the response, using one
variable at a time, and thus obtaining the splitting values for each quantitative variable.

The classification model in which T3 resin was used as a predictor to classify the re-
sponse yielded two splitting values: 99.5 and 117.5. Therefore, we generated the categorical
variable by discretizing T3 resin (X1), which has three levels (Table 2).

The classification model in which thyroxine was used as a predictor to classify the re-
sponse yielded two splitting values: 5.65 and 12.65. Therefore, we generated the categorical
variable by discretizing thyroxin (X2), which has three levels (Table 2).

The classification model in which thyronine was used as a predictor to classify the
response yielded two splitting values: 1.15 and 2.65. Therefore, we generated the categorical
variable by discretizing thyronine (X3), which has three levels (Table 2).

https://archive.ics.uci.edu/ml/datasets/thyroid+disease
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Table 2. Discretized variables generated using the classification tree method: thyroid dataset.

Original Variable Discretized
Variable Detail

T3 resin X1
X1 = 1 if T3 resin < 99.5
X1 = 2 if 99.5 ≤ T3 resin < 117.5
X1 = 3 if T3 resin ≥ 117.5

Thyroxine X2
X2 = 1 if thyroxine < 5.65
X2 = 2 if 5.65 ≤ thyroxine < 12.65
X2 = 3 if thyroxine ≥ 12.65

Thyronine X3
X3 = 1 if thyronine < 1.15
X3 = 2 if 1.15 ≤ thyronine < 2.65
X3 = 3 if thyronine ≥ 2.65

Thyroid X4

X4 = 1 if thyroid < 0.75
X4 = 2 if 0.75 ≤ thyroid < 1.05
X4 = 3 if 1.05 ≤ thyroid < 1.15
X4 = 4 if 1.15 ≤ thyroid < 1.45
X4 = 5 if 1.45 ≤ thyroid < 1.65
X4 = 6 if 1.65 ≤ thyroid < 1.75
X4 = 7 if 1.75 ≤ thyroid < 1.85
X4 = 8 if 1.85 ≤ thyroid < 4
X4 = 9 if thyroid ≥ 4

TSH-value X5
X5 = 1 if TSH-value < 0.65
X5 = 2 if 0.65 ≤ TSH-value < 4.45
X5 = 3 if TSH-value ≥ 4.45

The classification model in which thyroid was used as a predictor to classify the
response yielded eight splitting values: 0.75, 1.05, 1.15, 1.45, 1.65, 1.75, 1.85, and 4.0.
Therefore, we generated the categorical variable by discretizing thyroid (X4), which has
nine levels (Table 2).

The classification model in which the TSH-value was used as a predictor to classify
the response yielded two splitting values: 0.65 and 4.45. Therefore, we generated the
categorical variable by discretizing the TSH-value (X5), which has three levels (Table 2).

Step 2 (Rules generation by ASA): We used CBA to obtain the classifier rules. In
this step, the variables inputted into the process were the original categorical predictors
(X1–X5). In total, 21 classifier rules were generated in this step (Table 3).

Table 3. Classifier rules generated by CBA: thyroid dataset.

No. Rules Generated Interactions

1 If X5 = 2 and X2 = 2, then Y = 1
X5(2)X2(2) = 1 if X5 = 2 and X2 = 2

X5(2)X2(2) = 0, otherwise

2 If X5 = 2 and X3 = 2, then Y = 1
X5(2)X3(2) = 1 if X5 = 2 and X3 = 2

X5(2)X3(2) = 0, otherwise

3 If X4 = 2 and X2 = 2, then Y = 1
X4(2)X2(2) = 1 if X4 = 2 and X2 = 2

X4(2)X2(2) = 0, otherwise

4 If X5 = 2 and X4 = 2, then Y = 1
X5(2)X4(2) = 1 if X5 = 2 and X4 = 2

X5(2)X4(2) = 0, otherwise

5 If X4 = 4 and X2 = 2, then Y = 1
X4(4)X2(2) = 1 if X4 = 4 and X2 = 2

X4(4)X2(2) = 0, otherwise

6 If X3 = 3 and X2 = 3, then Y = 2
X3(3)X2(3) = 1 if X3 = 3 and X2 = 3

X3(3)X2(3) = 0, otherwise

7 If X4 = 9, then Y = 3
X4(9) = 1 if X4 = 9

X4(9) = 0, otherwise
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Table 3. Cont.

No. Rules Generated Interactions

8 If X5 = 3 and X2 = 1, then Y = 3
X5(3)X2(1) = 1 if X5 = 3 and X2 = 1

X5(3)X2(1) = 0, otherwise

9 If X2 = 3 and X1 = 1, then Y = 2
X2(3)X1(1) = 1 if X2 = 3 and X1 = 1

X2(3)X1(1) = 0, otherwise

10 If X4 = 5 and X3 = 2, then Y = 1
X4(5)X3(2) = 1 if X4 = 5 and X3 = 2

X4(5)X3(2) = 0, otherwise

11 If X3 = 3 and X1 = 1, then Y = 2
X3(3)X1(1) = 1 if X3 = 3 and X1 = 1

X3(3)X1(1) = 0, otherwise

12 If X4 = 8 and X3 = 2, then Y = 1
X4(8)X3(2) = 1 if X4 = 8 and X3 = 2

X4(8)X3(2) = 0, otherwise

13 If X3 = 1 and X2 = 1, then Y = 3
X3(1)X2(1) = 1 if X3 = 1 and X2 = 1

X3(1)X2(1) = 0, otherwise

14 If X4 = 8 and X1 = 2, then Y = 1
X4(8)X1(2) = 1 if X4 = 8 and X1 = 2

X4(8)X1(2) = 0, otherwise

15 If X4 = 1 and X2 = 3, then Y = 2
X4(1)X2(3) = 1 if X4 = 1 and X2 = 3

X4(1)X2(3) = 0, otherwise

16 If X4 = 1 and X1 = 1, then Y = 2
X4(1)X1(1) = 1 if X4 = 1 and X1 = 1

X4(1)X1(1) = 0, otherwise

17 If X4 = 3 and X3 = 3, then Y = 2
X4(3)X3(3) = 1 if X4 = 3 and X3 = 3

X4(3)X3(3) = 0, otherwise

18 If X3 = 2, X2 = 2, and X1 = 2, then Y = 1
X3(2)X2(2)X1(2) = 1 if X3 = 2, X2 = 2, and X1 = 2

X3(2)X2(2)X1(2) = 0, otherwise

19 If X5 = 2 and X1 = 2, then Y = 1
X5(2)X1(2) = 1 if X5 = 2 and X1 = 2

X5(2)X1(2) = 0, otherwise

20 If X2 = 2 and X1 = 2, then Y = 1
X2(2)X1(2) = 1 if X2 = 2 and X1 = 2

X2(2)X1(2) = 0, otherwise

21 If X5 = 1 and X2 = 3, then Y = 2
X5(1)X2(3) = 1 if X5 = 1 and X2 = 3

X5(1)X2(3) = 0, otherwise

Step 3 (Interactions generation): We converted the 21 classifier rules into interactions.
In total, 21 interactions were generated from the 21 classifier rules (Table 3).

Note that the first rule has support (s) = 0.4884 and confidence (c) = 1, which means
that P(X5 = 2, X2 = 2, and Y = 1) = 0.4884 and P(X5 = 2, X2 = 2, and Y = 1)/P(X5 = 2 and
X2 = 2) = 1.

Step 4 (Naïve Bayes model selection): We combined the 21 interactions with the
other discretized variables (X1–X5) to generate 26 candidate predictors for naïve Bayes. We
searched for the model that gave the best LOOCV accuracy. We selected the model with all
the discretized variables X1–X5 and the first 19 interactions shown in Table 3. The LOOCV
value generated by this model was 99.53%.

3.2. Diabetes Dataset

Originally from the National Institute of Diabetes and Digestive and Kidney Diseases,
the diabetes dataset was retrieved from Kaggle (https://www.kaggle.com/uciml/pima-
indians-diabetes-database, accessed on 17 February 2021). In this dataset, eight quan-
titative variables were used to classify patients as either healthy or diabetic [21]. With
768 observations, there were 500 healthy patients (Class 0) and 268 patients with diabetes
(Class 1). In this data, 65.1% of the observations belonged to Class 0 and 34.9% belonged to
Class 1. There were eight predictors in the dataset, all of which were quantitative variables
(Table 4). The objective of this analysis was to classify the patients as healthy (Class 0) or
diabetic (Class 1).

https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://www.kaggle.com/uciml/pima-indians-diabetes-database
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Table 4. Predictors for the diabetes dataset.

Variable N Mean Standard Deviation Minimum Median Maximum

Pregnancies 768 3.85 3.37 0.00 3.00 17.00

Glucose 768 120.89 31.97 0.00 117.00 199.00

Blood pressure 768 69.11 19.36 0.00 72.00 122.00

Skin thickness 768 20.54 15.95 0.00 23.00 99.00

Insulin 768 79.80 115.24 0.00 30.50 846.00

BMI 768 31.99 7.88 0.00 32.00 67.10

Diabetes pedigree function 768 0.47 0.33 0.08 0.37 2.42

Age 768 33.24 11.76 21.00 29.00 81.00

We applied our approach to the diabetes dataset via the follow steps.
Step 1 (Discretization by CT): We discretized the eight quantitative variables into

categories using a classification tree. The discretized variables are shown in Table 5.

Table 5. Discretized variables generated by the classification tree: diabetes dataset.

Original Variable Discretized
Variable Detail

Pregnancies X1
X1 = 1 if pregnancies < 6.5
X1 = 2 if pregnancies ≥ 6.5

Glucose X2

X2 = 1 if glucose < 99.5
X2 = 2 if 99.5 ≤ glucose < 111.5

X2 = 3 if 111.5 ≤ glucose < 114.5
X2 = 4 if 114.5 ≤ glucose < 115.5
X2 = 5 if 115.5 ≤ glucose < 123.5
X2 = 6 if 123.5 ≤ glucose < 125.5
X2 = 7 if 125.5 ≤ glucose < 126.5
X2 = 8 if 126.5 ≤ glucose < 127.5
X2 = 9 if 127.5 ≤ glucose < 152.5
X2 = 10 if 152.5 ≤ glucose < 154.5

X2 = 11 if glucose ≥ 154.5

Blood pressure X3

X3 = 1 if blood pressure < 42
X3 = 2 if 42 ≤ blood pressure < 69
X3 = 3 if 69 ≤ blood pressure < 71
X3 = 4 if 71 ≤ blood pressure < 73

X3 = 5 if 73 ≤ blood pressure < 74.5
X3 = 6 if 74.5 ≤ blood pressure < 75.5
X3 = 7 if 75.5 ≤ blood pressure < 79
X3 = 8 if 79 ≤ blood pressure < 81

X3 = 9 if blood pressure ≥ 81

Skin thickness X4
X4 = 1 if skin thickness < 7.5

X4 = 2 if 7.5 ≤ skin thickness < 31.5
X4 = 3 if skin thickness ≥ 31.5

Insulin X5

X5 = 1 if insulin < 14.5
X5 = 2 if 14.5 ≤ insulin < 87.5
X5 = 3 if 87.5 ≤ insulin < 91.5
X5 = 4 if 91.5 ≤ insulin < 95.5
X5 = 5 if 95.5 ≤ insulin < 99.5
X5 = 6 if 99.5 ≤ insulin < 121

X5 = 7 if insulin ≥ 121
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Table 5. Cont.

Original Variable Discretized
Variable Detail

BMI X6

X6 = 1 if BMI < 27.85
X6 = 2 if 27.85 ≤ BMI < 29.85
X6 = 3 if 29.85 ≤ BMI < 40.05
X6 = 4 if 40.05 ≤ BMI < 40.85

X6 = 5 if BMI ≥ 40.85

Diabetes pedigree function X7

X7 = 1 if diabetes pedigree function < 0.21
X7 = 2 if 0.21 ≤ diabetes pedigree function < 0.28
X7 = 3 if 0.28 ≤ diabetes pedigree function < 0.32
X7 = 4 if 0.32 ≤ diabetes pedigree function < 0.38
X7 = 5 if 0.38 ≤ diabetes pedigree function < 0.52
X7 = 6 if 0.52 ≤ diabetes pedigree function < 0.53

X7 = 7 if diabetes pedigree function ≥ 0.53

Age X8
X8 = 1 if age < 28.5

X8 = 2 if 28.5 ≤ age < 62.5
X8 = 3 if age ≥ 62.5

Step 2 (Rules generation by ASA): We used CBA to obtain the classifier rules. In
this step, the variables inputted into the process were the original categorical predictors
(X1–X8). In total, 77 classifier rules were generated in this step.

Step 3 (Interactions generation): We converted the 77 classifier rules into interactions.
In total, 77 interactions were generated from the 77 classifier rules.

Given the high number of rules and interactions generated, we presented only the
first 10 rules and the interactions they generated in Table 6.

Table 6. First 10 classifier rules generated by CBA: diabetes dataset.

No. Rules Generated Interactions

1 If X6 = 1, X2 = 1, and X1 = 1,
then Y = 0

X6(1)X2(1)X1(1) = 1 if X6 = 1, X2 = 1, and X1 = 1
X6(1)X2(1)X1(1) = 0, otherwise

2 If X4 = 2, X3 = 2, and X2 = 1,
then Y = 0

X4(2)X3(2)X2(1) = 1 if X4 = 2, X3 = 2, and X2 = 1
X4(2)X3(2)X2(1) = 0, otherwise

3 If X6 = 1, X4 = 2, and X2 = 1,
then Y = 0

X6(1)X4(2)X2(1) = 1 if X6 = 1, X4 = 2, and X2 = 1
X6(1)X4(2)X2(1) = 0, otherwise

4 If X5 = 2, X3 = 2, and X2 = 1,
then Y = 0

X5(2)X3(2)X2(1) = 1 if X5 = 2, X3 = 2, and X2 = 1
X5(2)X3(2)X2(1) = 0, otherwise

5 If X8 = 1, X7 = 1, and X6 = 1,
then Y = 0

X8(1)X7(1)X6(1) = 1 if X8 = 1, X7 = 1, and X6 = 1
X8(1)X7(1)X6(1) = 0, otherwise

6 If X8 = 1, X5 = 1, and X2 = 2,
then Y = 0

X8(1)X5(1)X2(2) = 1 if X8 = 1, X5 = 1, and X2 = 2
X8(1)X5(1)X2(2) = 0, otherwise

7 If X8 = 2, X7 = 7, X2 = 11, and X1 = 2, then Y = 1
X8(2)X7(7)X2(11)X1(2) = 1 if X8 = 2, X7 = 7, X2 = 11, and X1 = 2

X8(2)X7(7)X2(11)X1(2) = 0, otherwise

8 If X5 = 7, X2 = 11, and X1 = 2,
then Y = 1

X5(7)X2(11)X1(2) = 1 if X5 = 7, X2 = 11, and X1 = 2
X5(7)X2(11)X1(2) = 0, otherwise

9 If X6 = 3, X5 = 1, X2 = 11, and X1 = 1, then Y = 1
X6(3)X5(1)X2(11)X1(1) = 1 if X6 = 3, X5 = 1, X2 = 11, and X1 = 1

X6(3)X5(1)X2(11)X1(1) = 0, otherwise

10 If X6 = 1 and X2 = 1,
then Y = 0

X6(1)X2(1) = 1 if X6 = 1 and X2 = 1
X6(1)X2(1) = 0, otherwise

Step 4 (Naïve Bayes model selection): We combined the 77 interactions with the
other discretized variables (X1–X8) to generate 85 candidate predictors for naïve Bayes. We
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searched for the model that gave the best LOOCV value. We selected the model with X1,
X2, X5, X6, X7, and X8 and the interaction generated from Rule 2, which is X4(2)X3(2)X2(1).
The LOOCV value from this model was 81.25%.

3.3. Appendicitis Dataset

Retrieved from the KEEL website (https://sci2s.ugr.es/keel/dataset.php?cod=183,
accessed on 21 April 2021), the appendicitis dataset comprised seven medical measures to
classify patients according to whether or not they had appendicitis. In 106 observations,
there were 85 healthy patients (Class 0) and 21 patients who had appendicitis (Class 1). In
the data, 80.19% of the observations belonged to Class 0 and 19.81% belonged to Class 1.
There were seven predictors in the dataset, all of which were quantitative variables (Table 7).
The objective of this analysis was to classify the patients as healthy (Class 0) or as having
appendicitis (Class 1).

Table 7. Predictors for the appendicitis dataset.

Variable N Mean Standard
Deviation Minimum Median Maximum

WBC1 106 0.40 0.19 0.00 0.41 1.00

MNEP 106 0.68 0.21 0.00 0.75 1.00

MNEA 106 0.42 0.21 0.00 0.44 1.00

MBAP 106 0.21 0.20 0.00 0.15 1.00

MBAA 106 0.17 0.18 0.00 0.11 1.00

HNEP 106 0.68 0.22 0.00 0.74 1.00

HNEA 106 0.38 0.20 0.00 0.40 1.00

We applied our approach to the appendicitis dataset via the following steps:
Step 1 (Discretization by CT): We discretized the seven quantitative variables into

categories using a classification tree. The discretized variables are shown in Table 8.

Table 8. Discretized variables generated by the classification tree: appendicitis dataset.

Original Variable Discretized
Variable Detail

WBC1 X1

X1 = 1 if WBC1 < 0.2155
X1 = 2 if 0.2155 ≤WBC1 < 0.362
X1 = 3 if 0.362 ≤WBC1 < 0.3845
X1 = 4 if 0.3845 ≤WBC1 < 0.942

X1 = 5 if WBC1 ≥ 0.942

MNEP X2

X2 = 1 if MNEP < 0.42
X2 = 2 if 0.42 ≤MNEP < 0.509

X2 = 3 if 0.509 ≤MNEP < 0.5625
X2 = 4 if 0.5625 ≤MNEP < 0.598
X2 = 5 if 0.598 ≤MNEP < 0.616
X2 = 6 if 0.616 ≤MNEP < 0.652
X2 = 7 if 0.652 ≤MNEP < 0.741

X2 = 8 if 0.741 ≤MNEP < 0.8125
X2 = 9 if MNEP ≥ 0.8125

MNEA X3
X3 = 1 if MNEA < 0.2315
X3 = 2 if MNEA ≥ 0.2315

https://sci2s.ugr.es/keel/dataset.php?cod=183
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Table 8. Cont.

Original Variable Discretized
Variable Detail

MBAP X4

X4 = 1 if MBAP < 0.007
X4 = 2 if 0.007 ≤MBAP < 0.021
X4 = 3 if 0.021 ≤MBAP < 0.035
X4 = 4 if 0.035 ≤MBAP < 0.049
X4 = 5 if 0.049 ≤MBAP < 0.0625
X4 = 6 if 0.0625 ≤MBAP < 0.104
X4 = 7 if 0.104 ≤MBAP < 0.132
X4 = 8 if 0.132 ≤MBAP < 0.16

X4 = 9 if 0.16 ≤MBAP < 0.3125
X4 = 10 if 0.3125 ≤MBAP < 0.34
X4 = 11 if 0.34 ≤MBAP < 0.5695
X4 = 12 if 0.5695 ≤MBAP < 0.59

X4 = 13 if MBAP ≥ 0.59

MBAA X5
X5 = 1 if MBAA < 0.0535
X5 = 2 if MBAA ≥ 0.0535

HNEP X6

X6 = 1 if HNEP < 0.509
X6 = 2 if 0.509 ≤ HNEP < 0.6685
X6 = 3 if 0.6685 ≤ HNEP < 0.757

X6 = 4 if HNEP ≥ 0.757

HNEA X7

X7 = 1 if HNEA < 0.1475
X7 = 2 if 0.1475 ≤ HNEA < 0.215
X7 = 3 if 0.215 ≤ HNEA < 0.2435
X7 = 4 if 0.2435 ≤ HNEA < 0.343
X7 = 5 if 0.343 ≤ HNEA < 0.365
X7 = 6 if 0.365 ≤ HNEA < 0.432

X7 = 7 if 0.432 ≤ HNEA < 0.4365
X7 = 8 if 0.4365 ≤ HNEA < 0.9185

X7 = 9 if HNEA ≥ 0.9185

Step 2 (Rules generation by ASA): We used CBA to obtain the classifier rules. In
this step, the variables inputted into the process were the original categorical predictors
(X1–X7). In total, 10 classifier rules were generated in this step.

Step 3 (Interactions generation): We converted the 10 classifier rules into interactions.
In total, 10 interactions were generated from the 10 classifier rules, as shown in Table 9.

Table 9. Classifier rules generated by CBA: appendicitis dataset.

No. Rules Generated Interactions

1 If X6 = 4 and X5 = 2, then Y = 0
X6(4)X5(2) = 1 if X6 = 4 and X5 = 2

X6(4)X5(2) = 0, otherwise

2 If X6 = 2 and X3 = 2, then Y = 0
X6(2)X3(2) = 1 if X6 = 2 and X3 = 2

X6(2)X3(2) = 0, otherwise

3 If X4 = 5 and X1 = 1, then Y = 1
X4(5)X1(1) = 1 if X4 = 5 and X1 = 1

X4(5)X1(1) = 0, otherwise

4 If X7 = 3 and X5 = 2, then Y = 1
X7(3)X5(2) = 1 if X7 = 3 and X5 = 2

X7(3)X5(2) = 0, otherwise

5 If X7 = 3 and X6 = 3, then Y = 1
X7(3)X6(3) = 1 if X7 = 3 and X6 = 3

X7(3)X6(3) = 0, otherwise

6 If X7 = 7 and X2 = 7, then Y = 1
X7(7)X2(7) = 1 if X7 = 7 and X2 = 7

X7(7)X2(7) = 0, otherwise
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Table 9. Cont.

No. Rules Generated Interactions

7 If X4 = 3 and X2 = 8, then Y = 1
X4(3)X2(8) = 1 if X4 = 3 and X2 = 8

X4(3)X2(8) = 0, otherwise

8 If X5 = 1 and X1 = 1, then Y = 1
X5(1)X1(1) = 1 if X5 = 1 and X1 = 1

X5(1)X1(1) = 0, otherwise

9 If X6 = 1 and X1 = 1, then Y = 1
X6(1)X1(1) = 1 if X6 = 1 and X1 = 1

X6(1)X1(1) = 0, otherwise

10 If X7 = 1 and X1 = 1, then Y = 1
X7(1)X1(1) = 1 if X7 = 1 and X1 = 1

X7(1)X1(1) = 0, otherwise

Step 4 (Naïve Bayes model selection): We combined 10 interactions with the other
discretized variables (X1–X7) to generate 17 candidate predictors for naïve Bayes. We
searched for the model that gave the best LOOCV value. We selected the model with X7
and all 10 interactions shown in Table 9. The LOOCV value from this model was 95.28%.

4. Performance Comparison via Medical Datasets

In this section, we describe our application of the other well-known classification
methods to the thyroid, diabetes, and appendicitis datasets in order to compare their
performance with our methodology.

A comparison of the performance of the five methods is shown in Table 10. The five
methods tested are as follows: (1) random forest (RF); (2) support vector machine (SVM);
(3) k-nearest neighbors (kNN); (4) classification tree (CT); and (5) naïve Bayes (NB) with
classification tree (CT) and ASA, which is our approach (NB + CT + ASA). The comparison
is shown through the LOOCV accuracy.

Table 10. LOOCV accuracy (%) for the five methods tested.

Medical
Dataset

Random Forest SVM kNN Classification Tree CT+ASA+NB

Ntree Accuracy Kernel Accuracy Accuracy Accuracy Accuracy

Thyroid

100 96.74 sigmoid 93.95

96.28 93.95 99.53
200 97.21 linear 96.27

500 96.28 poly 91.16

1000 96.28 radial 95.81

Diabetes

100 76.30 sigmoid 69.66

74.87 78.12 81.25
200 77.08 linear 77.08

500 76.95 poly 74.74

1000 76.69 radial 75.78

Appendicitis

100 87.74 sigmoid 78.30

87.74 84.91 95.28
200 87.74 linear 87.74

500 86.79 poly 86.79

1000 86.79 radial 86.79

For random forest, we set the number of trees (ntree) according to four levels: 100,
200, 500, and 1000. Then, for each number of trees, we searched for the best LOOCV value
among all the numbers of variables considered at each split, as indicated in Table 10.

For SVM, the LOOCV value, as shown in Table 10, was found for each of the four
kernel types: the sigmoid kernel, the linear kernel, the polynomial kernel, and the radial
basis kernel.

For kNN, the indicated LOOCV accuracy value shown in Table 10 is the highest for
all the odd numbers of neighbors (k) from 1 to 19.
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For the classification tree, the LOOCV accuracy value shown in Table 10 was obtained
from the number of splits that gave the best LOOCV value among all possible numbers.

As shown in Table 10, our approach provided the highest LOOCV value of all the
methods for all three medical datasets, with the most impressive performance shown for
the appendicitis dataset.

5. Discussion and Conclusions

Our naïve Bayes model selection framework provides a classifier that significantly
outperformed the other well-known data mining techniques tested, i.e., classification tree,
random forest, kNN, and SVM. Our approach has an advantage over the other methods
in that it can be used to generate interactions through ASA—an unconventional way of
generating interactions by finding the combinations of the levels of the variables that are im-
portant for predicting the class for the categorical responses. In particular, ASA is effective
at finding the combinations of the levels of variables that appear frequently and strongly
for each of the classes of the response through selected rules. The model’s effectiveness in
this regard is very helpful for working with unbalanced datasets such as the thyroid and
appendicitis datasets. Moreover, our experiments with the different discretization methods
showed the classification tree to be the most effective for our approach.

We demonstrated that the integration of three techniques—classification tree, ASA,
and the naïve Bayes classifier—constituted a superior and practical classifier. Based on our
application examples, it is evident that these newly generated variables and interactions
made a significant contribution to improving the naïve Bayes classifier.
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