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Abstract: In this paper, we construct novel numerical algorithms to solve the heat or diffusion
equation. We start with 105 different leapfrog-hopscotch algorithm combinations and narrow this
selection down to five during subsequent tests. We demonstrate the performance of these top five
methods in the case of large systems with random parameters and discontinuous initial conditions,
by comparing them with other methods. We verify the methods by reproducing an analytical solution
using a non-equidistant mesh. Then, we construct a new nontrivial analytical solution containing
the Kummer functions for the heat equation with time-dependent coefficients, and also reproduce
this solution. The new methods are then applied to the nonlinear Fisher equation. Finally, we
analytically prove that the order of accuracy of the methods is two, and present evidence that they
are unconditionally stable.

Keywords: odd-even hopscotch method; diffusion equation; heat equation; explicit time-integration;
stiff equations; unconditional stability

1. Introduction

This paper can be considered to be a continuation of our previous work [1–4], in
which we developed novel numerical algorithms to solve the heat or diffusion equation.
The phenomenon of diffusion is described by the heat or diffusion equation, which, in its
simplest form, is the following linear parabolic partial differential equation (PDE):

∂u
∂t

= α∇2u (1)

where u is the concentration or temperature, and α is the diffusion coefficient or thermal
diffusivity in the case of particle or heat transport, respectively. If the medium in which the
diffusion takes place is not homogeneous, one can use a more general form

cρ
∂u
∂t

= ∇(k∇u) (2)

where, in the case of conductive heat transfer, k = k
(→

r , t
)

, c = c
(→

r , t
)

, and ρ = ρ
(→

r , t
)

are the heat conductivity, specific heat, and mass density, respectively. The α = k/(cρ)
relation connects the four nonnegative quantities.

The heat equation, either the simplest version (1) or similar but more difficult equa-
tions, has an increasing number of analytical solutions. Unfortunately, most consider only
systems with relatively simple geometries, such as a cylindrical inclusion in an infinite
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medium [5]. Moreover, parameters such as the diffusion coefficient or the heat conductivity
are typically taken as constants, or a fixed and relatively simple function of the space
variables [6] at best. This means that, for intricate geometries, and in the case of space- and
time-dependent coefficients in general, numerical calculations cannot be avoided. However,
approaches such as the finite difference (FDM) or finite element (FEM) methods require
the full spatial discretization of the system; thus, they are computationally demanding.
We explained in our previous papers [3,4,7], and also demonstrate in this paper, that the
widely used conventional solvers, either explicit or implicit, have serious difficulties. The
explicit methods are usually conditionally stable, so when the stiffness of the problem is
high, very small time step sizes have to be used. By comparison, when the number of cells
is large, which is almost always the case in two or three dimensions, the implicit solvers
become very slow and use a significant amount of memory. This information highlights
the fact that finding effective numerical methods is still important.

One of the very few easily parallelizable explicit and unconditionally stable methods is
the two-stage odd-even hopscotch (OEH) algorithm [3,8–10]. In our previous papers [3,4],
we showed that this method is robust and powerful for spatially homogeneous grids but,
in the case of stiff systems, it can be disastrously inaccurate for large time step sizes. We
constructed and tested new hopscotch combinations and found [1–4] that some of them
behave much better, not only for large, but also for medium and small time step sizes. In
this paper, we extend our research by further modifying the underlying space and time
structure as explained below.

Our current work was inspired by the well-known leapfrog method [11] used by the
molecular dynamics community to solve Newton’s equations of motion. In their books,
Hockney and Eastwood [12] (p. 28) and, later, Frenkel and Smit [13] (p. 75) introduced this
method in the following form:

v(t + ∆t/2) = v(t− ∆t/2) + F(x(t))∆t/m
x(t + ∆t) = x(t) + v(t + ∆t/2)∆t

In Figure 1, a diagram of this method is presented, and one can immediately under-
stand why the method is called leapfrog.

Figure 1. Diagram of the original leapfrog algorithm.

The leapfrog scheme was successfully adapted and also generalized to hyperbolic
PDEs [14], but for parabolic equations it is unstable. This can be addressed by a modification
to obtain the Dufort–Frankel method [15] (Subsection 8.3). In all of these publications, the
nodes of the spatial mesh are treated equivalently, unlike in the OEH method. Verwer and
Sommeijer [16] presented a composite method for the advection-diffusion problem, where
the leapfrog scheme was used for the horizontal advection part, and the Du Fort Frankel
and Crank–Nicolson methods are used for the other parts. It can be easily determined that
their method is significantly different from ours. In addition, we have been unable to find
any combinations of the leapfrog and hopscotch structures in the literature that are at least
a little similar to ours.

The remainder of this paper is organized as follows. In Section 2 we introduce the
new algorithms, both for the simplest, one-dimensional, equidistant mesh, and also for
general, arbitrary meshes. In Section 3, first we very briefly present the results of the
numerical tests for the first assessment of the 105 combinations to obtain a manageable
number of methods. Then, in Sections 3.3 and 3.4, two numerical experiments are presented



Computation 2021, 9, 92 3 of 25

for two space dimensional stiff systems consisting of 10,000 cells. We choose the top five
combinations with the highest accuracy and compare them to selected other methods.
In Section 3.5, we reproduce an analytical solution from the top five methods using a
non-equidistant mesh for verification. In Section 3.6, we construct a new analytical solution
for time-dependent diffusivity and then, in Section 3.7, the top five methods are verified
again by comparing their numerical results to this solution. In Section 3.8, the convergence
and stability properties of these methods are analytically investigated. In Section 4 we
summarize the conclusions and our research plan for the future.

2. The New Methods

To implement the OEH algorithm, we need to construct a bipartite grid, in which
the set of nodes (or cells) is divided into two similar subsets with odd and even space
indices, such that all nearest neighbors of odd nodes are even, and vice versa. In one space
dimension, where the space variable is discretized as usual, xi = i∆x, i = 0, ..., N − 1,
it is straightforward. Let us fix the time discretization for the remainder of the paper to
tn = t0 + nh, n = 1, ..., T, T = (tfin − t0)/h. In the original OEH method, odd and even
time steps can also be distinguished: in odd time steps the odd nodes are treated in the
first stage, and only the u values belonging to the beginning of the time step are used.
Then, in the second stage, when the even nodes are calculated, the new values of their
odd neighbors, which have just been calculated, are used. In even time steps, the roles
of the nodes are interchanged, as shown in Figure 2a. The original OEH method always
applies the standard explicit Euler formula in the first stage and the implicit Euler formula
in the second stage. However, in each stage of this structure, the latest available u values
of the neighbors are used; thus, when the second stage calculations begin, the new values
of the neighbors un+1

i−1 and un+1
i+1 are known, which makes the implicit formula effectively

explicit. Therefore, it is obvious that the OEH method is fully explicit, and the previous
u values do not need to be stored at all, which means that one array is sufficient to store the
variable u in the memory. We emphasize that all of our algorithms described in this paper
have this property, irrespective of the modifications. In one of our previous papers [1], we
applied the UPFD method in stage one and the explicit Euler in stage two, which we then
called the UPFD + Explicit Euler odd-even Hopscotch method. However, this can simply
be the called the reversed hopscotch method, as one only needs to change the order of the
two formulas in the code of the original OEH to obtain the code of this method. Then, we
modified the space and time structures and constructed the so called shifted-hopscotch
method [4].

In the case of the new leapfrog-hopscotch method, the calculation starts with taking a
half-sized time step for the odd nodes using the initial u0

i values, which is symbolized by
a green box containing the number 0 in Figure 2b. Then, full time steps are taken for the
even and odd nodes strictly alternately until the end of the last timestep (orange box in
Figure 1), which must also be halved for odd nodes to reach exactly the same time point
as the even nodes. In Figure 1, the number “0” means that this stage is performed only
once and is not repeated. By comparison, stages 1–4 are repeated T/2 times (including
the last, halved stage 4), so T must be an even integer. Thus, finally, we have five different
stages 0. . . 4 in which five different formulas can be applied to maximize the efficiency. Let
us turn our attention to these formulas.
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Figure 2. The diagram of the odd-even hopscotch structures for two nodes. The numbers in the boxes
represent the different formulas, whereas the areas surrounded by thick red lines are the repeating
units. (a) The original OEH algorithm. (b) The new leapfrog-hopscotch structure. The green and
orange boxes are non-repeating stages.

It is relatively common [17] (p. 112) to spatially discretize Equation (1) in one dimen-
sion by applying the central difference formula to obtain a system of ordinary differential
equations (ODEs) for nodes i = 1, ..., N − 2:

dui
dt

= α
ui−1 − 2ui + ui+1

∆x2 . (3)

Suppose now that one needs to solve Equation (2) when the material properties are
not constants but functions of the space variables and the mesh is possibly unstructured.
We have shown in our previous papers [3,7] (based on, e.g., Chapter 5 of the book [18]) that
Equation (3) can be generalized to arbitrary grids consisting of cells of various shapes and
properties:

dui
dt

= ∑
j 6=i

uj − ui

Ri ,jCi
, (4)

where the heat capacity and the inverse thermal resistance can be calculated approximately as:

Ci = ciρiVi and 1/Rij ≈ kij Aij/dij, (5)

respectively, where Vi is the volume of the cell, and Aij and dij are the surface between the
cells and the distance between the cell centers, respectively. Figure 3 can help the reader
to understand these quantities. Although the grid should be topologically rectangular to
maintain the explicit property of the OEH-type methods, we emphasize that the geometrical
shape of the cells is not necessarily rectangular.
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Figure 3. Visualization of the generalized variables. The red arrows symbolize conductive (heat)
transport between cells with heat capacities Ci and Cj through the resistances Rij.

Equation systems (3) and (4) can be written into a condensed matrix-form:

d
→
u

dt
= M

→
u . (6)

The matrix M is tridiagonal in the one-dimensional case of Equation (3) with the
following elements:

mii = −
2α

∆x2 (1 < i < N), mi,i+1 =
α

∆x2 (1 ≤ i < N), mi,i−1 =
α

∆x2 (1 < i ≤ N). (7a)

In the general case of Equation (4), the nonzero elements of the matrix can be given as:

mij =
1

Ri ,jCi
, mii = −∑

j 6=i
mij. (7b)

Let us introduce the characteristic time or time constant τi of cell i, which is always a
non-negative quantity:

τi
.
= −(mii)

−1. (8)

Using this we introduce the following notations:

ri =
h
τi

and Ai = h∑
j 6=i

mijun
j = h∑

j 6=i

un
j

CiRij
. (9)

Here, ri is the generalization of r = αh
∆x2 = −miih

2 , the usual mesh ratio. We recall the
so-called theta method:

un+1
i = un

i + r
[
θ
(
un

i−1 − 2un
i + un

i+1
)
+ (1− θ)

(
un+1

i−1 − 2un+1
i + un+1

i+1

)]
, (10)

where θ ∈ [0, 1]. If θ = 1, this scheme is the explicit (Euler) or forward-time central-space
(FTCS) scheme. Otherwise the theta method is implicit, and for θ = 0, 1/2 one has the
implicit (Euler) and the Crank–Nicolson methods, respectively [17]. However, we remind
the reader that in our leapfrog-hopscotch scheme, the neighbors are always taken into
account at the same, most recent time period; thus, we can express the new value of the
u variable in the following brief form in the 1D case:

uµ+1
i =

(1− 2rθ)uµ
i + r

(
uµ+1/2

i−1 + uµ+1/2

i+1

)
1 + 2r(1− θ)

, (11)
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and in the general case:

uµ+1
i =

(1− riθ)u
µ
i + Ai

1 + ri(1− θ)
. (12)

Here, µ = n for the even cells, and µ ∈
{

n, n− 1
2 , n− 1

}
for the odd cells, depending

on where we are in the leapfrog-hopscotch structure. For easier understanding, see Figure 1,
in addition to Example 1 below.

The other formula we use is derived from the constant-neighbor (CNe) method, which
was introduced in our previous papers [7,19]. For the leapfrog-hopscotch method in the
one-dimensional case, this can be written as follows:

uµ+1
i = uµ

i · e
−2r +

uµ+1/2

i−1 + uµ+1/2

i+1
2

(
1− e−2r

)
, (13)

whereas for general grids it is:

uµ+1
i = uµ

i · e
−ri +

Ai
ri

(
1− e−ri

)
, (14)

and for halved time steps, ri and Ai must be divided by 2, obviously.

Remark 1. In case of the theta method for θ = 0 (Formulas (11) and (12)) and the CNe methods
(Formulas (13) and (14)), the new un+1

i values are the convex combinations of the old un
j values.

Indeed, in (11) the coefficients (1− 2r)/(1 + 2r), r/(1 + 2r), and r/(1 + 2r) are nonnegative
and their sum is one. This property can be similarly shown for (12)–(14).

Here, briefly outline the notation of the individual combinations. The five numbers
in a bracket are the values of the parameter θ for each of the stages 0, . . . , 4, whereas the
letter “C” means the CNe constant neighbor method. For example, L2 (1/4, 1/2, C, 1/2, 1/2)
means the following algorithm, which will be selected among the top five algorithms in
Section 3.3, and is also denoted L2.

Example 1. Algorithm L2 (1/4, 1/2, C, 1/2, 1/2), general from.
Stage 0. Take a half time step with the (12) formula with θ = 1/4 for odd cells:

u1/2
i =

(1− ri/8)u0
i + Ai,half

1 + ri/2(1− 1/4)
, Ai,half =

h
2 ∑

j 6=i

u0
j

CiRij
.

Repeat the following four stages for n = 0, ..., T − 3:
Stage 1. Take a full time step with the (12) formula with θ = 1/2 for even cells:

un+1
i =

(1− ri/2)un
i + Ai

1 + ri(1− 1/2)
, Ai = h∑

j 6=i

un+1/2
j

CiRij
.

Stage 2. Take a full time step with the (14) formula for odd cells:

un+3/2
i = un+1/2

i · e−ri +
Ai
ri

(
1− e−ri

)
, Ai = h∑

j 6=i

un+1
j

CiRij
.

Stage 3. Take a full time step with the (12) formula with θ = 1/2 for even cells:

un+2
i =

(1− ri/2)un+1
i + Ai

1 + ri(1− 1/2)
, Ai = h∑

j 6=i

un+3/2
j

CiRij
.
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Stage 4. If n + 2 < T − 1, then take a full time step with θ = 1/2 for odd cells:

un+5/2
i =

(1− ri/2)un+3/2
i + Ai

1 + ri(1− 1/2)
, Ai, = h∑

j 6=i

un+2
j

CiRij
,

else take a half time step with the (12) formula with θ = 1/2 for odd cells:

un+2
i =

(1− ri/4)un+3/2
i + Ai,half

1 + ri/2(1− 1/2)
, Ai,half =

h
2 ∑

j 6=i

un+2
j

CiRij
.

Based on this example, all other combinations can be easily constructed. In our
previous paper [4], the best shifted-hopscotch combination was S4 (0, 1/2, 1/2, 1/2, 1), and,
in the category of the positivity-preserving algorithms, S1 (C, C, C, C, C). These will be
tested against the new leapfrog-hopscotch algorithms in the following section.

3. Results
3.1. On the Methods and Circumstances of the Investigation

In Sections 3.2–3.4, two space dimensional, topologically rectangle-structured lattices
with N = Nx × Nz cells are investigated (see Figure 3 for visualization). We consider the
system as thermally isolated (zero Neumann boundary conditions), which is implemented
by the omission of those terms of the sum in Equation (4), which have infinite resistivity
in the denominator due to the isolated boundary. Let us denote by λMIN and λMAX the
eigenvalues of the system matrix M with the (nonzero) smallest and the largest absolute
values, respectively. Now, λMAX/λMIN gives the stiffness ratio of the system, and the
maximum possible time step size for the FTCS (explicit Euler) scheme is exactly given by
hFTCS

MAX = |2/λMAX|, above which the solutions are expected to diverge due to instability.
This threshold is frequently called the CFL limit and also holds for the second-order explicit
Runge–Kutta (RK) method [20].

In Sections 3.2–3.4, the reference solution is calculated by the ode15s built-in solver
of MATLAB, with very strict error tolerance and, therefore, high precision. In Section 3.5,
Section 3.6, and Section 3.8 the reference solution is an analytical solution. The (global)
numerical error is the absolute difference of the numerical solutions unum

j produced by the

examined method and the reference solution uref
j at final time tfin. We use these individual

errors of the nodes or cells to calculate the maximum error:

Error(L∞) = max
1≤j≤N

∣∣∣uref
j (tfin)− unum

j (tfin)
∣∣∣, (15)

the average error:

Error(L1) =
1
N ∑

1≤j≤N

∣∣∣uref
j (tfin)− unum

j (tfin)
∣∣∣, (16)

and the so-called energy error:

Error(Energy) = ∑
1≤j≤N

Cj

∣∣∣uref
j (tfin)− unum

j (tfin)
∣∣∣, (17)

which, in the case of heat conduction, yields the error in terms of energy. However, for
different algorithms, these errors depend on the time step size in different ways. If we want
to evaluate the overall performance of the new methods compared to the original OEH
method, we consider a fixed value of the final time tfin, and first calculate the solution with
a large time step size (typically tfin/4), then repeat the whole calculation for subsequently
halved time step sizes S times until h reaches a very small value (typically around 2× 10−6).
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Then, the aggregated relative error (ARE) quantities are calculated for each type of error
defined above. For instance, in the case of the L∞ error, it has the following form:

ARE(L∞) =
1
S

S

∑
i=1

(log(Error(L∞))OEH − log(Error(L∞))examined). (18)

We can also take the simple average of these errors,

ARE =
1
3
(ARE(L∞) + ARE(L1) + ARE(Energy)), (19)

to obtain one single quantity for a method applied on a concrete problem, which will help
us to select the best combinations. For example, if ARE = 2, then the examined method
produces smaller errors by two orders of magnitude than the OEH method.

For the simulations where running times are measured, we used a desktop com-
puter with an Intel Core i5-9400 CPU, 16.0 GB RAM with the MATLAB R2020b software,
in which there was a built-in tic-toc function to measure the total running time of the
tested algorithms.

3.2. Preliminary Tests

The following nine values of the parameter theta are substituted into the formula
given in (12): θ ∈ {0, 1/5, 1/4, 1/3, 1/2, 2/3, 3/4, 4/5, 1 }. Thus, with the CNe Formula (14), we
have 10 different formulas. There are five stages in the leapfrog-hopscotch structure and, by
inserting these 10 formulas in all possible combinations, we obtain 105 = 100,000 different
algorithm combinations in total. We wrote MATLAB code which constructs and tests all of
these combinations in a highly automatized manner under the following circumstances.

The generalized Equation (4) is solved in the case of four different small systems with
Nx × Nz = 2× 2, 2× 6, 4× 4, and 3× 5, to ensure the total running times are manageable
despite the large number of combinations. Here, and also in Sections 3.3 and 3.4, randomly
generated cell capacities and thermal resistances following a log-uniform distribution

Ci = 10(αC−βC×rand), Rx,i = 10(αRx−βRx×rand), Rz,i = 10(αRz−βRz×rand) (20)

have been used. The parameters αC , βC, αRx, βRx, αRz, βRz of the distribution of the mesh-
cells data were chosen to construct test problems with various stiffness ratios and hFTCS

MAX, for
example, αC = 1, 2, or 3, βC = 2, 4, or 6. The (pseudo-)random number, rand, is generated
by MATLAB for each quantity with a uniform distribution in the unit interval (0, 1). We
also generate different random values for the initial conditions ui(0) = rand. The final
times were set to tfin = 0.1 and once to tfin = 10. The purpose of this latter, larger number
is to let instabilities manifest themselves in order to exclude the unstable combinations.
The computer program calculated the aggregated relative error (ARE) quantities and then
sorted the algorithms in descending order according to this quantity to obtain a ranking list
of the 105 algorithm combinations. Finally, we manually checked the top of these lists for
all of the four small systems to select the best 20 combinations, which have the following
short form:

(C, C, C, C, C), (1/4, 1/2, C, 1/2, 1/2), (1/4, 1/2, C, 1/2, 1/2), (1/4, 1/2, 1/2, 1/2, C),
(1/4, 1/2, C, 1/2, C), (C, 1/2, C, 1/2, C), (C, 1/4, 1/2, C, 1/2), (C, 1/2, C, 1/2, 1/2),

(C, 1/2, C, C, 1/2), (C, 1/3, 1/2, 2/3 , C), (1/4, C, 1/4, C, 3/4), (0, C, 1/2, 1/2, 1/2, 1/2)
(C, 1/2, 1/2, 1/2, 1/2), (1/4, C, 1/4, 1/2, 3/4), (0, 1/2, 1/2, 1/2, 1/2), (1, 1/2, 1/2, 1/2, 1/2),

(1/4, 1/2, 1/2, 1/2, 1/2), (1/3, 1/2, 1/2, 1/2, 1/2), (1/2, 1/2, 1/2, 1/2, 1/2), (1/5, 1/2, 1/2, 1/2, 1/2).

(21)

In the next two subsections, we start only with these combinations. We note that
there is an “odd one out” in the list above, i.e., the (C, C, C, C, C) combination, which was
typically not at the top of the ranking lists above. We include it into the top 20 and, later, in
the top five, because it is the best among those combinations which preserve positivity of
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the solution; more precisely, it always follows the maximum and minimum principles as
the true solution [17] (p. 87), which is proven in Section 3.8.

We stress that, until this point, we have not stated anything precisely. The only
purpose of these preliminary tests on the small systems is the reduction of the large number
of algorithm combinations by eliminating those which are probably not worthy of more
careful investigation.

3.3. Comparison with Other Methods for a Large, Moderately Stiff System

We examine a grid similar to the one in Figure 2 with an isolated boundary, but where
the sizes are fixed to Nx = 100 and Nz = 100; thus, the total number of cells is 10,000,
and the final time is tfin = 0.1. The exponents introduced above were set to the following
values:

αC = 2, βC = 4, αRx = αRz = 1, βRx = βRz = 2, (22)

which means, e.g., that log-uniformly distributed values between 0.01 and 100 were given
to the capacities. The generated system can be characterized by its stiffness ratio and
hFTCS

MAX values, which are 3.1× 107 and 7.3× 10−4, respectively. The performance of the new
algorithms is compared with the following, widely used MATLAB solvers:

• ode15s, a first- to fifth-order (implicit) numerical differentiation formulas with variable-
step and variable order (VSVO), developed for solving stiff problems;

• ode23s, a second-order modified (implicit) Rosenbrock formula;
• ode23t, applies implicit trapezoidal rule using a free interpolant;
• ode23tb, a combination of backward differentiation formula and trapezoidal rule;
• ode45, a fourth-/fifth-order explicit Runge–Kutta–Dormand–Prince formula;
• ode23, a second-/third-order explicit Runge–Kutta–Bogacki–Shampine method;
• ode113, a first- to 13th-order VSVO Adams–Bashforth–Moulton solver.

In the case of the MATLAB solvers, we could not directly set the time step size, but
changed the tolerances instead, starting from a large value, such as ‘AbsTol’ = ‘RelTol’ .

=
‘Tol’ =103, towards a small minimum value, for example, ‘Tol’ =10−5. In addition to these

solvers, we also used the following methods for comparison purposes; the original UPFD,
the CNe, the two- and three-stage linear-neighbor (LNe and LNe3) methods [7], and the
Dufort–Frankel (DF) algorithm [17] (p. 120):

un+1
i =

(1− ri)un−1
i + 2Ai

1 + ri
(23)

are explicit unconditionally stable schemes. The DF scheme is a two-step method which is
not self-starting; thus, we calculated the first time step by two subsequent UPDF steps with
halved time step sizes. The Heun method, also called the explicit trapezoidal rule, is one of
the most common second-order RK scheme [21]. Finally, the widely used Crank–Nicolson
scheme (abbreviated here as CrN) is an implicit scheme:(

I − h
2

M
)

︸ ︷︷ ︸
A

→
u

n+1
=

(
I +

h
2

M
)

︸ ︷︷ ︸
B

→
u

n
,

where I is the N × N unit matrix. The A and B matrixes here are time-independent; thus,
it is sufficient to calculate them only once, before the first time step. We implement this
scheme in two different ways: one is to calculate Y = A−1B before the first time step and

then each time step is just a simple matrix multiplication
→
u

n+1
= Y

→
u

n
, which is denoted by

“CrN invert”. The other is the
→
u

n+1
= linsolve

(
A, B

→
u

n )
command of MATLAB, which

we denote by “CrN lins”.
We plotted the L∞, L1, and energy errors as a function of the effective time step size

hEFF, and based on this (and on similar data that are presented in the next subsection), we
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selected the following top five combinations from those listed in (21) and discarded the
reminder:

L1 (C, C, C, C, C),
L2 (0, 1/2, 1/2, 1/2, 1/2),
L3 (1/5, 1/2, 1/2, 1/2, 1/2),
L4 (1/4, 1/2, C, 1/2, 1/2),
L5 (1/5, 1/2, C, 1/2, 1/2).

One can see that L2–3 and L4–5 are highly similar; only the zeroth stage is different.
We tried to optimize the value of theta for this zeroth stage by calculating the errors for a
few fixed time step sizes for θ = k/Nθ , k = 0, ..., Nθ , where Nθ = 1000. In the case of the
method L2–3 (θ, 1/2, 1/2, 1/2, 1/2), we found that the errors are larger for large values of
theta and the smallest when θ ≈ 0. In case of the L4–5 (θ, 1/2, C, 1/2, 1/2) combination, we
found that there is a nontrivial minimum of the error function at around θ ≈ 0.2, but its
position slightly depends on the time step size, as shown in Figure 4. We can conclude that
the L4 combination is usually slightly more accurate than that of L5.

Figure 4. Errors as a function of the parameter θ0 for the first (moderately stiff) system, in the case of
the method L4–5 (θ, 1/2, C, 1/2, 1/2).

In Figure 5, we present the energy error as a function of the time step size for these
top five combinations and other methods, and Figure 6 shows the L1 errors vs. the total
running times. Furthermore, Table 1 presents some results that were obtained by our
numerical schemes and the “ode” routines of MATLAB. One can see that, as expected, the
implicit Crank–Nicolson scheme is the most accurate, but the accuracy of the L2 method,
in addition to the L5 and S4 methods, approaches it, and is similar to that of the Heun
method below the CFL limit.
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Figure 5. Energy errors as a function of the time step size for the first (moderately stiff) system, in the case of the original
OEH method (OEH REF), the new algorithms L1–L5, and several other methods.

Figure 6. Errors as a function of the running time for the first (moderately stiff) system, in the case of the original OEH
method (OEH REF), the new algorithms L1–L5, and several other methods.
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Table 1. Comparison of different leapfrog-hopscotch algorithms with other methods for the moderately stiff system of ten
thousand cells.

Numerical Method Error(L∞) Error(L1) Energy Error Running Time (s)

ode45, Tol = 10−3 5.18× 10−5 1.01× 10−8 4.26× 10−5 2.12× 101

ode23, Tol = 10−5 3.85× 10−6 2.06× 10−8 1.03× 10−4 1.73× 101

ode113, Tol = 10−4 6.77× 10−5 1.49× 10−8 6.42× 10−5 1.54× 101

ode15s, Tol = 102 1.18× 10−2 1.05× 10−3 5.27× 100 4.03× 10+2

ode23s, Tol = 102 4.11× 10−4 2.90× 10−5 1.46× 10−1 4.23× 103

ode23t, Tol = 10−7 1.32× 10−6 9.32× 10−8 4.68× 10−4 6.88× 102

ode23tb, Tol = 103 4.18× 10−4 2.95× 10−5 1.48× 10−1 4.36× 102

CNe, h = 5× 10−4 3.33× 10−3 1.78× 10−4 1.71× 100 3.19× 10−2

LNe, h = 5× 10−5 2.99× 10−6 8.33× 10−8 6.84× 10−4 6.52× 10−1

LNe3, h = 1.25× 10−4 8.78× 10−6 2.11× 10−7 2.50× 10−3 2.61× 10−1

DF, h = 2.5× 10−6 1.04× 10−8 2.59× 10−10 2.98× 10−6 6.7× 100

Rev. hop., h = 5× 10−6 4.23× 10−8 4.27× 10−10 5.75× 10−7 3.82× 100

L1, h = 1.25× 10−4 9.06× 10−6 2.63× 10−7 2.56× 10−3 1.68× 10−1

L2, h = 2.5× 10−4 1.16× 10−5 1.58× 10−7 3.11× 10−4 8.19× 10−2

L3, h = 1.25× 10−6 5.19× 10−10 1.11× 10−11 2.99× 10−7 1.62× 10−1

L4, h = 1.25× 10−5 3.05× 10−8 6.20× 10−10 5.98× 10−6 1.62× 100

L5, h = 5× 10−6 3.51× 10−9 8.01× 10−11 6.80× 10−7 4.07× 100

S1, h = 2.5× 10−6 3.63× 10−9 1.05× 10−10 1.03× 10−6 9.93× 100

S4, h = 1.25× 10−5 6.61× 10−8 6.68× 10−10 8.92× 10−7 1.97× 100

Heun, h = 1.25× 10−4 2.79× 10−7 1.97× 10−8 8.68× 10−5 2.5× 10−1

CrN (inv), h = 5× 10−3 3.67× 10−4 1.59× 10−5 6.93× 10−2 1.80× 101

CrN (lins), h = 5× 10−3 3.67× 10−4 1.59× 10−5 6.93× 10−2 7.03× 101

3.4. Comparison with Other Methods for a Large, Very Stiff System

In the second case study, new values were set for the α and β exponents:

αC = 3, βC = 6, αRx = 3, αRz = 1, βRx = βRz = 4.

This means that the width of the distribution of the capacities and thermal resis-
tances were increased and a non-negligible anisotropy appeared because, on average, the
resistances in the x direction are two orders of magnitude larger than in the z direction.
Note that the geometric mean of the C and R quantities is still equal to one. With this
modification, we gained a system with a much higher stiffness ratio, 2.5× 1011, and the
CFL limit for the standard FTCS was hEE

MAX = 1.6× 10−6, which, we stress again, also
holds for the Heun method. All other parameters and circumstances are the same as in
the previous subsection. In Figures 7 and 8, the energy and the L∞ errors are presented as
a function of the time step size and the total running time, respectively. As expected, the
implicit methods gained a slight advantage compared to the previous, less stiff case, but
the new L2 method outperforms all other examined methods provided that not only the
accuracy, but also the speed, is taken into account. In Table 2, we report the data related to
this numerical experiment, and in Table 3 we summarize the ARE error quantities, defined
in Equation (19), of the explicit stable methods for both case studies.
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Figure 7. Energy errors as a function of the time step size for the second (very stiff) system, in the case of the original OEH
method (OEH REF), the new algorithms L1–L5, and some other methods.

Figure 8. Errors as a function of the running time for the second (very stiff) system, in the case of the original OEH method
(OEH REF), one stage CNe method, the new algorithms L1–L5, and several other methods.
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Table 2. Comparison of different algorithms for the very stiff system of ten thousand cells.

Numerical Method Error L∞ Error L1 Energy Error Running Time (s)

ode45, Tol = 100 8.13× 10−2 1.52× 10−5 7.03× 10−2 9.48× 103

ode23, Tol = 10−2 1.25× 10−2 2.34× 10−6 1.08× 10−2 5.33× 103

ode113, Tol = 10−4 4.07× 10−5 8.84× 10−9 4.08× 10−5 6.15× 103

ode15s, Tol = 10−1 1.05× 10−2 7.19× 10−4 3.65× 100 4.72× 102

ode23s, Tol = 10−3 3.12× 10−4 1.57× 10−5 7.89× 10−2 2.48× 104

ode23t, Tol = 10−5 2.58× 10−5 1.31× 10−6 6.55× 10−3 7.07× 102

ode23tb, Tol = 10−7 1.04× 10−6 5.29× 10−8 2.65× 10−4 1.30× 103

CNe, h = 1.25× 10−4 8.62× 10−2 1.32× 10−3 2.64× 101 1.28× 10−1

LNe, h = 5× 10−5 2.35× 10−2 1.37× 10−4 2.39× 100 6.52× 10−1

LNe3, h = 2.5× 10−5 1.79× 10−2 3.81× 10−5 7.26× 10−1 1.98× 100

DF, h = 1.25× 10−5 3.74× 10−4 3.75× 10−7 6.47× 10−3 8.9× 100

Rev. hop., h = 1.25× 10−5 1.31× 10−4 3.55× 10−7 1.07× 10−4 1.54× 100

L1, h = 1.25× 10−5 2.92× 10−3 1.46× 10−5 2.48× 10−1 1.67× 100

L2, h = 5× 10−6 1.85× 10−6 5.59× 10−9 3.89× 10−6 4.08× 100

L3, h = 2.5× 10−6 2.04× 10−5 1.52× 10−7 3.38× 10−3 8.18× 100

L4, h = 1.25× 10−3 4.36× 10−1 3.59× 10−3 4.44× 101 1.65× 10−2

L5, h = 5× 10−7 1.61× 10−6 6.76× 10−9 9.48× 10−5 4.08× 101

S1, h = 5.5× 10−5 2.20× 10−2 1.25× 10−4 1.99× 100 4.94× 10−1

S4, h = 2.5× 10−6 1.31× 10−6 3.55× 10−9 1.71× 10−6 9.87× 100

Heun, h = 1.25× 10−6 2.83× 10−11 1.39× 10−12 7.77× 10−8 2.52× 101

CrN (inv), h = 1.25× 10−4 1.56× 10−7 7.91× 10−9 4.08× 10−4 4.83× 101

CrN (lins), h = 1.25× 10−4 1.56× 10−7 7.91× 10−9 4.08× 10−4 2.78× 103

Table 3. ARE (average relative error) quantities of different explicit stable algorithms.

Numerical Method ARE (Mod. Stiff) ARE (Very Stiff)

CNe −1.242 1.264

LNe 0.699 1.804

LNe3 0.924 1.859

Dufort-Frankel 0.615 1.575

Reversed hopscotch 0.928 2.570

L1 (C, C, C, C, C) 0.985 1.885

L2 (0, 1/2, 1/2, 1/2, 1/2) 1.745 3.988

L3 (1/5, 1/2, 1/2, 1/2, 1/2) 1.326 2.451

L4 (1/4, 1/2, C, 1/2, 1/2) 1.486 2.315

L5 (1/5, 1/2, C, 1/2, 1/2) 1.573 2.385

S1 (C, C, C, C, C) 0.985 1.885

S4 (0, 1/2, 1/2, 1/2,1) 1.509 3.184
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3.5. Verification 1. Comparison to Analytical Results Using a Non-Uniform Mesh

We consider a very recent [22] nontrivial analytical solution of Equation (1), given on
the whole real number line for positive values of t as follows:

uexact =
x

t5/2

(
1− x2

6αt

)
e−

x2
4αt , (24)

where, for the sake of simplicity, we use the value α = 1. In our last paper [4], we
reproduced this solution by prescribing the Dirichlet boundary conditions calculated using
the analytical solution at the two ends of the interval. Now, we do not use this kind
of information, but construct a large-scale non-equidistant spatial grid according to the
following procedure. First, we define the coordinates of the cell borders by the formula:

xj = xj−1 + ∆xj−1, x0 = 0, ∆x0 = 0.01, ∆xj = ∆x0 exp
(

γj4
)

, j = 1, ..., 1000.

where γ = 10−11. Thus, we have a relatively dense system of nodes close to the origin,
which becomes increasingly less dense as one moves further from the origin, and towards
+5922.3, which is the right boundary of the mesh. Then the cell centers are easily calculated:

Xj = Xj−1 +
∆xj

2
, X0 = 0, j = 1, ..., 1000.

It is straightforward to reflect this structure to the origin to create the mirror image
of the mesh at the negative side of the x axis, thus obtaining 2000 cells in total. Now, at
the vicinity of the origin we have small cells with diameter 0.01, which are increasing as
we move further from the origin, first very slowly, then increasingly rapidly until they
reach ∆x±1000 = 211.6. The resistances and the cell capacities can then be calculated using
Formula (5) in Section 2:

Ci = ∆xi , i = 1, ..., 2000 and Ri = Xi+1 − Xi , i = 1, ..., 1999

We took into account the zero Neumann boundary conditions, as in the previous two
subsections, which is a good approximation because the values of the initial function are
extremely close to zero far from the origin. The stiffness ratio is 5.7× 1011 for this mesh, and
hFTCS

MAX = 5× 10−5. As in our last paper [4], and also in the next subsection, we reproduce
the analytical solution in the finite time interval t ∈ [t0, tfin], where t0 = 0.5, tfin = 1.
Obviously, the generalized Formulas (12) and (14) must be used. In Figure 9, the L∞ errors
as a function of the time step size h are presented for the case of the u solution for the top
five leapfrog-hopscotch algorithms, a first-order “reference-curve” for the original CNe
method, and the Heun method. These results verify not only the second-order convergence
of the numerical methods, but also the procedure of generalizing the calculations to non-
uniform grids (see Equations (4) and (5) above). One can also see that the L2 and L3
algorithms reach the minimum error (determined by the space discretization) for larger
values of h than the CFL limit for the Heun method.
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Figure 9. The L∞ errors as a function of time step size h for the space-dependent mesh to reproduce
the exact solution given in (24).

3.6. New Analytical Solution with Time-Dependent Diffusion Coefficient

Now we investigate the analytical solutions of the diffusion equation where the
diffusion constant has a power-law time dependence:

∂u(x, t)
∂t

= α̂tn ∂2u(x, t)
∂x2 . (25)

To avoid confusion, we use the “hat” notation for the “generalized diffusion coef-
ficient”, α̂, which is considered constant and has the dimension of t−nα. We apply the
self-similar Ansatz, first introduced by Sedov [23], with the form

u(x, t) = t−a f (η), η =
x
tb ,

where a, b ∈ R are the self-similar exponents describing the decay and the spreading of the
solution in time and space. These properties make this Ansatz physically extraordinarily
relevant. In the previous decade, we applied this Ansatz to numerous physical systems
described by partial differential equations, most with hydrodynamical origins [24,25].

The constraint among the exponents is defined via a + 1 = a + 2b− n. Therefore, a
can have arbitrary real values but b = (1 + n)/2 must be fulfilled. These relations dictate
the reduced ODE of:

− a f (η)− 1 + n
2

η
d f (η)

dη
= α̂

d2 f (η)
dη2 .

The solution can be evaluated with the Maple 12 software and reads:

f (η) = ηe−
(1+n)η2

4α̂

(
c1 M

[
1 + n− a

1 + n
,

3
2

,
(1 + n)η2

4α̂

]
+ c2U

[
1 + n− a

1 + n
,

3
2

,
(1 + n)η2

4α̂

])
, (26)

where M and U are the Kummer functions [26], whereas c1 and c2 are arbitrary real
constants. Note that the larger the exponent n, the quicker the spreading of the solutions.
Figure 10 shows numerous shape functions for various values of n.
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Figure 10. The M part of the solutions in the case of time-dependent diffusion coefficients of
Equation (25). (a) Shape functions for different n exponents of the diffusion parameter. The black,
red, blue dotted, green dashed-dotted, and brown dashed lines are for n = −1.1, −0.8, 0, 1, and 10,
respectively. (b) Illustration of the solution given in Equation (28) for α̂ = 1.

In the next subsection we address the first term on the right-hand side of (26); thus,
we give this part of the solution (c1 = 1, c2 = 0) as a function of the x and t variables:

u(x, t) = t−a x
tb e−

(1+n)x2

4α̂t2b M
[

1 + n− a
1 + n

,
3
2

,
(1 + n)x2

4α̂t2b

]
. (27)

3.7. Verification 2. Comparison to Analytical Results with Time-Dependent Material Properties

We examine Equation (25) and take the solution given in (27) for a = 1, n = 1 as a
reference solution:

uexact
2 =

x
t2 e−

x2

2α̂t2 M
[

1
2

,
3
2

,
x2

2α̂t2

]
, (28)

whose 3D graph can be seen in Figure 10b. We reproduce this solution in finite space
and time intervals x ∈ [x1, x2] and t ∈ [t0, tfin], where x1 = −5, x2 = 5, while t0 = 0.5,
tfin = 1, and α̂ = 1. The space and time intervals are discretized as usual: xj = x1 + j∆x,
j = 0, ..., 1000, ∆x = 0.01 and tn = t0 + nh, n = 1, ..., T, T = (tfin − t0)/h; thus, we can re-
turn to the equidistant theta and CNe Formulas (11) and (13). For this grid, hFTCS

MAX = 5× 10−5
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again, and the stiffness ratio is only 4.1× 105. We use the analytical solution to prescribe
the appropriate Dirichlet boundary conditions at the two ends of the interval. We take
into consideration the continuous change of the thermal diffusivity by recalculating the
mesh ratio at each time step by multiplying its original value by the physical time taken
at the middle of the actual time step, i.e., rn =

(
tn +

h
2

)
αh

∆x2 is used at the nth time step in
Formulas (11) and (13). The values of the Kummer M function were calculated by the hy-
pergeom function of MATLAB. The L∞ errors as a function of the time step size h, which are
presented in Figure 11, show that our methods, particularly L2 and L3, can also easily solve
this problem. Figure 11 is highly similar to Figure 10, and we also obtained similar error
functions for several other values of the parameters t0, tfin, x1,2, ∆x, ... for both problems.

Figure 11. The L∞ errors as a function of time step size h for the problem with a time-dependent coefficient.

We also present the graphs of the initial function u(x, t = 0.5), the reference analytical
solution uref(x, tfin), and a corresponding numerical solution for h = 7.8× 10−3 in Figure 12.
We intentionally chose such a large time step size (more than two orders of magnitude
larger than hFTCS

MAX), for which the L∞ error is 0.096, to demonstrate the robustness of the
algorithms, because now one can see that there is nothing unphysical in the numerical
solution. We observed that, for even larger time step sizes, the numerical solution is
approaching the initial function, which means that increasing the time step size is roughly
equivalent to the slowing of the numerical diffusion process. The second conclusion we
can draw is that the CNe formula is less effective than the θ = 1/2 formula if we have small,
nearly equally sized cells directly adjacent to one another.



Computation 2021, 9, 92 19 of 25

Figure 12. The graphs of the u functions for time-dependent coefficients. Here, u0 is the initial function
u(x, t = 0.5), uref is the analytical solution at the final time tfin = 1, and L2 is the corresponding
numerical solution served by the L2 (0, 1/2, 1/2, 1/2, 1/2) algorithm for h = 7.8× 10−3.

3.8. Solution for the Nonlinear Fisher Equation

Here, we examine a nonlinear reaction-diffusion equation, the so-called Fisher equa-
tion [27], in the following form:

∂u
∂t

= α∇2u + βu(1− u). (29)

This equation is also known as the Kolmogorov–Petrovsky–Piskunov or Fisher-KPP
equation [28,29], and was originally developed to describe the spread of advantageous
gene variants in space. We found the following analytical solution for α = 1 in the litera-
ture [30,31]:

uexact(x, t) =
(

1 + e
√

β
6 x− 5

6 βt
)−2

. (30)

As in Section 3.7, we use this solution to gain the initial condition:

u(x, t = 0) =
(

1 + e
√

β
6 x
)−2

.

and the Dirichlet boundary conditions at the ends of the interval:

u(x = x1, t) =
(

1 + e
√

β
6 x1− 5

6 βt
)−2

, and u(x = x2, t) =
(

1 + e
√

β
6 x2− 5

6 βt
)−2

.

In principle, the nonlinear term βu(1− u) can be incorporated into the schemes in
many different ways. We chose the following semi-implicit treatment:

unew
i = upred

i + βupred
i (1− unew

i )h,

which can be rearranged into a fully explicit form:

unew
i =

1 + βh

1 + βhupred
i

upred
i , (31)

where upred
i is the most recent value of ui after performing the previous stage calculations

which describe the diffusion term. The operation (31) is performed in two extra, separate
stages, where a loop goes through all of the nodes (both odd and even). The first extra stage
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is after Stage 1, whereas the second is after (the original) Stage 4, at integer time levels, at
the same moments in which the boundary conditions are recalculated.

With this procedure, we observed that the new methods are very stable for Fisher’s
equation and behave very similarly to the linear case. We solved Equation (29) for several
different values of the parameters β, x1, x2, tfin, and ∆x. We present the L∞ errors as a
function of the time step size for β = 6, x1 = 0, x2 = 4, tfin = 1, and ∆x = 0.01 in Figure 13,
but we must note that very similar curves were produced for other values of the parameters.

Figure 13. The L∞ errors as a function of time step size h for the numerical solutions of Fisher’s
equation for α = 1 and β = 2.

We underline that the goal of this subsection is not the systematic investigation of
the new methods in the case of nonlinear equations, which is planned to be performed
in our future works. Here, we only show that these leapfrog-hopscotch methods can be
successfully applied to nonlinear equations, even if the coefficient of the nonlinear term
is large.

3.9. Analytical Investigations

We start with the analysis of the convergence properties of the five most advantageous
methods in the one-dimensional case for constant values of mesh ratio r, that is, when the
equidistant spatial discretization is fixed.

Theorem 1. The order of convergence of the L1. . . L5 leapfrog-hopscotch algorithms is two for the
system (6) of linear ODEs:

d
→
u

dt
= M

→
u ,
→
u (t = 0) =

→
u

0
, (32)

where M is introduced in (7) and
→
u

0
is an arbitrary initial vector.

The proof of Theorem 1 is presented in Appendix A.
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When analyzing the stability of the methods, we distinguish two types of algorithms.
In the first type, only the CNe and the θ = 0 formulas are present, in which the new un+1

i
values are the convex combinations of the old un

j values, see Remark 1. We also recall a
lemma [32] (p. 28) stating that a convex combination of convex combinations is again a
convex combination. These lemmas imply the following:

Corollary 2. The final uT
i values are the convex combinations of the initial u0

j values in the case of
all leapfrog-hopscotch algorithms containing only the CNe and the θ = 0 formulas.

This means that all of these algorithms, and particularly L1 (C, C, C, C, C), are positivity
preserving (more precisely, they satisfy the minimum and maximum principle), which is a
significantly stronger property than mere unconditional stability.

By comparison, the L2–L5 algorithms contain the theta-formula for θ 6= 0; thus,
they are not positivity preserving. We examine the stability through the eigenvalues of
their amplification matrixes. Because Stage 0 is not repeated, it cannot affect stability.
The smallest repeating unit in the L2 (0, 1/2, 1/2, 1/2, 1/2) and L3 (1/5, 1/2, 1/2, 1/2, 1/2)
combinations consists of only two stages containing the θ = 1

2 formula; therefore, it is
sufficient to construct them in a matrix form. If we denote the matrices of the θ = 1

2 formula
acting on the odd and even nodes by Ho and He, respectively, then these matrices have the
following elements:

Ho(2i, 2i) = He(2i + 1, 2i + 1) = 1 , Ho(2i + 1, 2i + 1) = He(2i, 2i) = 1−r
1+r ,

Ho(2i + 1, 2i + 2) = Ho(2i− 1, 2i) = He(2i, 2i± 1) = r
1+r , i = 1, ..., N − 1

(33)

and periodic boundary conditions are taken into account while calculating the first and the
last row. Now, the amplification matrix H2 = Ho He has the following elements:

H2(2i, 2i) = 1−r
1+r , H2(2i, 2i± 1) = r

1+r , H2(2i + 1, 2i + 1) = 1−r
1+r +

2r2

(1+r)2 ,

H2(2i + 1, 2i + 1± 1) = r(1−r)
(1+r)2 , H2(2i + 1, 2i + 1± 2) = r2

(1+r)2 , i = 1, ..., N − 1

Using the Maple software we analytically calculated the absolute values of the eigen-
values of this matrix for several values of N and found that none of them exceeds 1, which
implies stability for an arbitrary time step size. As an illustration, we present these in
Figure 14 as a function of the mesh ratio r, for N = 20.

Figure 14. The graphs of the eigenvalues of the amplification matrix H2 as a function of the mesh
ratio r for N = 20. (a) r ∈ [0, 5]. (b) r ∈ [1, 500].
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We also constructed the amplification matrix of the L4 (1/4, 1/2, C, 1/2, 1/2) and
L5 (1/5, 1/2, C, 1/2, 1/2) combinations by the multiplication of the appropriate four ma-
trices of Stages 1–4 in a similar manner, and obtained essentially the same results. These
calculations provide strong evidence that these algorithms are unconditionally stable.

4. Discussion and Summary

The present paper is the natural continuation of our previous work on explicit al-
gorithms for solving the time-dependent diffusion equation. In the current work, we
combined the hopscotch space structure with leapfrog time integration. By applying
the well-known theta method with nine different values of θ and the recently invented
CNe method, we constructed 105 combinations. Via subsequent numerical experiments,
this huge number was decreased by excluding the combinations that underperformed
and, finally, only the top five of these were retained. We used two two-dimensional stiff
systems containing 10,000 cells with completely discontinuous random parameters and
initial conditions, and presented the results of these five algorithms, in addition to those of
several other methods, for these systems. For the purpose of verification, two analytical
solutions were used. One was reproduced using a non-equidistant grid. The second was a
completely new solution containing the Kummer M function for time-dependent thermal
diffusivity, presented here for the first time. We also solved the nonlinear Fisher equation
and demonstrated that our algorithms can handle the nonlinearity of this equation with-
out losing stability. Then, we provided exact proof that the top five new methods have
second-order convergence for fixed spatial discretization, and also showed by analytical
calculations that they have very good stability properties.

We found that, in general, the L2 (0, 1/2, 1/2, 1/2, 1/2) combination is the most com-
petitive. This combination yields accurate results orders of magnitude faster than the
well-optimized MATLAB routines, and it is more accurate than all of the other examined
explicit and stable methods. Although, unlike the L1 (C, C, C, C, C) algorithm, L2 is not
positivity preserving, it is also surprisingly robust for relatively large time step sizes, which
is not that case for the original OEH algorithm. Moreover, this new L2 algorithm is easy
to implement and requires an even smaller amount of function evaluation and computer
memory than the conventional explicit second-order Runge–Kutta methods, such as the
Heun method. We can conclude that it combines has the most important advantages of the
standard explicit and the implicit methods.

Our next aim is to search for more accurate algorithms for nonlinear parabolic equa-
tions. We plan to construct new analytical solutions under circumstances in which the
heat conducting coefficients depend on space, and use these to test both the new and old
methods. These results will be of significant interest in the simulation of real problems,
such as in the field of engineering, the heat transfer by conduction, and the radiation in
elements of machine tools.
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Appendix A

Proof of Theorem 1. We start from the Taylor series of ui:

ui(t + h) ≈ ui + hui
′ +

h2

2
ui
′′ (A1)

where all u terms on the right-hand side are taken at time t. Let us substitute the spatially
discretized ODE:

ui
′ = α

ui−1 − 2ui + ui+1

∆x2 , (A2)

to obtain:

ui(t + h) ≈ ui + hα
ui−1−2ui+ui+1

∆x2 + h2

2 α
ui−1

′−2ui
′+ui+1

′

∆x2 =

ui + r(ui−1 − 2ui + ui+1) +
r
2 h
(

α
ui−2−2ui−1+ui

∆x2 + α
ui−1−2ui+ui+1

∆x2 + α
ui−2ui+1+ui+2

∆x2

) (A3)

After simplification one obtains:

ui(t + h) ≈ ui + r(ui−1 − 2ui + ui+1) +
r2

2
[6ui − 4(ui−1 + ui+1) + (ui−2 + ui+2)], (A4)

Thus, for a double time step:

un+2
i ≈

(
1− 4r + 12r2

)
un

i +
(

2r− 8r2
)(

un
i−1 + un

i+1
)
+ 2r2(un

i−2 + un
i+2
)
. (A5)

We show that the numerical solution is identical to (A5). We use series expansions up
to the second order and, for the sake of brevity, we omit the higher-order terms; thus, for
example, we write e−x ≈ 1− x + x2/2, etc. Starting with the L1 combination, (13) can be
written as:

un+1
i =

(
1− 2r + 2r2

)
un

i +
(

r− r2
)(

un+1/2
i−1 + un+1/2

i+1

)
(A6)

Let us calculate the value of u at the next time step:

un+2
i =

(
1− 2r + 2r2)un+1

i +
(
r− r2)(un+1+1/2

i−1 + un+1+1/2
i+1

)
=(

1− 2r + 2r2)[(1− 2r + 2r2)un
i +

(
r− r2)(un+1/2

i−1 + un+1/2
i+1

)]
+
(
r− r2)(un+1+1/2

i−1 + un+1+1/2
i+1

)
≈(

1− 4r + 8r2)un
i +

(
r− 3r2)(un+1/2

i−1 + un+1/2
i+1

)
+
(
r− r2)(un+1+1/2

i−1 + un+1+1/2
i+1

)
.

(A7)

We also repeat the same calculation for the left neighbors:

un+1/2
i−1 =

(
1− 2r + 2r2)un−1/2

i−1 +
(
r− r2)(un

i−2 + un
i
)

un+1+1/2
i−1 =

(
1− 2r + 2r2)un+1/2

i−1 +
(
r− r2)(un+1

i−2 + un+1
i

)
=(

1− 2r + 2r2)[(1− 2r + 2r2)un−1/2
i−1 +

(
r− r2)(un

i−2 + un
i
)]
+(

r− r2)[(1− 2r + 2r2)un
i−2 +

(
r− r2)(un+1/2

i−3 + un+1/2
i−1

)
+
(
1− 2r + 2r2)un

i +
(
r− r2)(un+1/2

i−1 + un+1/2
i+1

)]
=(

1− 4r + 8r2)un−1/2
i−1 +

(
r− 3r2)(un

i−2 + un
i
)
+
(
r− 3r2)(un

i−2 + un
i
)
+ r2

(
un+1/2

i−3 + 2un+1/2
i−1 + un+1/2

i+1

)
=

(1− 4r)un−1/2
i−1 + 2r

(
un

i−2 + un
i
)
+ O

(
r2) .

(A8)

The right neighbors can be treated similarly:

un+1/2
i+1 =

(
1− 2r + 2r2)un−1/2

i+1 +
(
r− r2)(un

i+2 + un
i
)

un+1+1/2
i+1 = (1− 4r)un−1/2

i+1 + 2r
(
un

i+2 + un
i
)
+ O

(
r2) .

(A9)

Substituting (A8) and (A9) back to (A7) we obtain:
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un+2
i =

(
1− 4r + 8r2)un

i +
(
r− 3r2)(un+1/2

i−1 + un+1/2
i+1

)
+
(
r− r2)[(1− 4r)

(
un−1/2

i+1 + un−1/2
i−1

)
+ 2r

(
un

i+2 + 2un
i + un

i−2
)]
≈(

1− 4r + 8r2)un
i +

(
r− 3r2)(un+1/2

i−1 + un+1/2
i+1

)
+
(
r− 5r2)(un−1/2

i+1 + un−1/2
i−1

)
+ 2r2(un

i+2 + 2un
i + un

i−2
)
=(

1− 4r + 12r2)un
i +

(
r− 3r2)(un+1/2

i−1 + un+1/2
i+1

)
+
(
r− 5r2)(un−1/2

i+1 + un−1/2
i−1

)
+ 2r2(un

i+2 + un
i−2
)

.

(A10)

The first and the last term on the right-hand side of (A10) is already equivalent to the
appropriate terms in (A5). The second and third terms containing the values of the first
neighbors need some more manipulation as follows:

un−1/2
i−1 = un

i−1 −
r
2
(
un

i−2 − 2un
i−1 + un

i
)
+ O

(
r2)

un+1/2
i−1 = un

i−1 +
r
2
(
un

i−2 − 2un
i−1 + un

i
)
+ O

(
r2)

}
±

un−1/2
i−1 + un+1/2

i−1 = 2un
i−1 + O

(
r2)

un+1/2
i−1 − un−1/2

i−1 = r
(
un

i−2 − 2un
i−1 + un

i
)
+ O

(
r2) .

(A11)

Now, we can cope with the second and third term on the right-hand side of (A10):(
r− 3r2)(un+1/2

i−1 + un+1/2
i+1

)
+
(
r− 5r2)(un−1/2

i+1 + un−1/2
i−1

)
=(

r− 4r2)(un+1/2
i−1 + un+1/2

i+1 + un−1/2
i−1 + un−1/2

i+1

)
+ r2

(
un+1/2

i−1 + un+1/2
i+1 − un−1/2

i−1 − un−1/2
i+1

)
=(

2r− 8r2)(un
i−1 + un

i+1

)
+ O

(
r3) .

(A12)

Substituting these back into (A10), one obtains (A5), which completes the proof for
the L1 algorithm.

For the theta method, we use the power series expansion (1 + x)−1 = 1− x + x2 − ...
to find, for the denominator of Equation (11), that (1 + 2r(1− θ))−1 ≈ 1− 2r(1− θ) +

4r2(1− θ)2; thus, rather than (A6), we now have:

un+1
i =

[
(1− 2rθ)un

i + r
(

un+1/2
i−1 + un+1/2

i+1

)]{
1− 2r(1− θ) + 4r2(1− θ)2

}
≈(

1− 2r + 4r2(1− θ)
)
uµ

i +
(
r− 2r2(1− θ)

)(
un+1/2

i−1 + un+1/2
i+1

)
.

(A13)

For θ = 1/2, this is the same as (A6); thus, the proof presented above for the L1 method
is also valid for the L2. . . L5 combinations. One can also see that for arbitrary combinations
of values of theta, the second-order property does not hold. �
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