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Abstract: In this paper, we consider the task of the analysis, modeling, and application of depen-
dencies between asset quotes at various capital markets. As an example, we study the dependency
between financial instrument observation series in the currency and stock markets. Our work intends
to give a theoretical basis to asset management strategies that estimate an asset’s price via regression,
taking into account its correlated assets in various markets. Furthermore, we provide a way to
increase the estimate quality using an evolutionary algorithm.

Keywords: stock market; currency market; forex; chaotic processes; multivariate statistical analysis;
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1. Introduction

The majority of prominent news in economics, politics, and other areas influences
asset quotations and integral trading indicators in various capital markets. This fact makes
it possible to hypothesize a significant correlation between these numerical indicators of
market trade. In turn, the presence of correlation creates a background for developing asset
management strategies based on it.

An obvious version of such a strategy is the ability to promptly estimate the price
of the used instrument used with multivariate statistical analysis. If an asset is either
under- or over-priced in relation to its market value, a probabilistic conclusion on its
quotation dynamics can be drawn. This, in turn, gives rise to constructing various proactive
management strategies based on regressor selection, i.e., market parameters used for the
multiregression estimation of a financial instrument’s value, the width of the sliding
window used for constructing statistical estimates, and other factors.

The theoretical basis of this management strategy is the hypothesis that various capital
market asset quotations significantly correlate, as well as the assumption that correlation
change dynamics are less variable than the changes in asset quotations.

The considered approach to the analysis and application of financial instrument
quotation dependencies is focused on the stochastic chaos model, in which the conditions of
stationarity and ergodicity of observation series do not hold [1–4]. In this case, conventional
statistical forecast quality estimates are inherently nonoptimal, and the only available
research method is a numerical comparative analysis run on a sufficiently large testing
polygon. The current article is dedicated to the investigation of this issue.

Further research directions in the area of dependencies between financial instruments
include the analysis of inter-market connections, presented in works such as [5–8]. This
approach opens a wide perspective for constructing forecast algorithms that take into
account the higher inertia of integral financial dynamics indicators. The subjects of this
research are the evaluation of the efficiency of multivariate statistical analysis in conditions
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of chaotic dynamics, as well as the application of specialized econometric approaches used
for analyzing causal relationships (for example, Granger causality [9]).

2. Methods

Let X = (xi, i = 1, . . . , m) be a quotation state vector formed by m parameters. Its in-
dividual components may pertain to different capital markets. In this case, the observation
matrix Xk = [xik, i = 1, . . . , m; k = 1, . . . , n] will define a vector-valued random process
with a discrete time that reflects the dynamics of market asset quotations.

The most widely adopted direct vector observation model [10–13] is an additive
scheme of the following form

Yk = Xk + vk, k = 1, . . . , n

where Xk, k = 1, . . . , n is a systemic component (i.e., used for the analysis and development
of management strategies), and vk, k = 1, . . . , n is noise.

An example of process Yk, k = 1, . . . , n shown by the USDCHF, EURUSD, EURJPY,
and USDJPY quotations on a five-day observation interval with equidistanced counts
dt = 1min can be seen in Figure 1.
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Figure 1. Observing the USDCHF quotation and its basic regressors EURUSD, EURJPY, and USDJPY
on a five-day observation interval.

It can be easily seen that the systemic component Xk, k = 1, . . . , n is an oscillatory
nonperiodic process with a large number of local trends. In the general theory of dynamic
processes, such observations are classified as chaotic [1–4]. The noise vk, k = 1, . . . , n is a
nonstationary process roughly described by the Gaussian model with changing parameters.
A more detailed justification of this model can be found in [1,3,14].

The presence of a chaotic structure in observation series of market assets contradicts
the simplest quotation model based on a stationary Gaussian process. Violating the prob-
abilistic analysis’ principal statement on the reproducibility of experience significantly
obstructs the usage of otherwise well-applied methods. This is due to an inherent violation
of conditions in which the existing computational schemes produce optimal results. This
makes conventional analytic methods of evaluating algorithm efficiency almost not appli-
cable. In this case, numerical studies of large observation samples become the main tool
for analyzing the efficiency of estimation and management.
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At the same time, useful patterns can also be found in trading asset quotation dy-
namics, as they are represented by multivariate observation series. As it will be shown
below, increasing the observation interval used for estimating the correlation reveals strong
dependencies between financial instruments. This gives rise to an ability to obtain a regres-
sion estimate of the managed asset’s value using its correlated observations. In this case,
it is possible to construct an indicator of the discrepancy between the market value and
the estimated value of the asset, which may indicate a potential change in the quotation’s
direction. In other words, this allows for forecasting the price dynamics using regression.

Let us now move on to correlational analysis of changes in the state of stock and
currency markets. We used the most widespread currency pairs, as well as two stock
market indicators, as the parameters for the observation vector. Their list can be seen in
Table 1. Further on, they will be denoted by their numbers in the table in the text.

Table 1. Financial instruments and their respective numbers.

Financial Instruments

1 2 3 4 5 6

EURUSD EURJPY EURGBP EURCHF EURCAD USDCAD

7 8 9 10 11 12

USDCHF USDJPY GBPCHF GBPJPY GBPUSD GBPUSD

13 14 15 16 17 18

AUDUSD CHFJPY NZDUSD NZDJPY FTSE DJ

We represent the stock market asset observation series as a rectangular table X of
size <n:m>, in which n is the number of observations (rows) and m is the number of the
observed financial instruments (columns). In this case, the covariation matrix is given
by a known equation cov(X) = XTX/(n− 1) =

[
pij, i, j = 1, . . . , m

]
. The corresponding

correlation matrix estimate is given by pairwise correlations R =
{

rij, i, j = 1, . . . , m
}

,
where rij = pij/

√pii pjj.
The estimates of the pairwise correlations between the stock indexes and the selected

currency instruments for three 30-day intervals and one common 90-day interval are
presented in Table 2.

Table 2. Estimates of pairwise correlations between selected stock indexes and currency instruments.

Intervals
(Days) Currency Instruments and FTSE Correlations

Days
1–30

0.147 0.951 0.334 0.908 0.113 0.049 0.256 0.703
0.019 0.491 −0.388 0.686 0.332 0.892 −0.311 0.519

Days
31–60

−0.697 −0.075 −0.376 0.868 −0.894 −0.502 0.829 0.688
0.700 0.235 −0.627 0.785 0.502 −0.738 −0.621 −0.054

Days
61–90

−0.431 −0.803 −0.113 0.437 −0.729 0.501 0.524 0.478
0.335 0.772 −0.458 −0.720 0.109 0.868 0.689 0.645

Days
1–90

−0.066 0.074 0.307 0.586 −0.223 −0.258 0.480 0.103
0.286 −0.094 −0.480 0.155 0.214 −0.348 0.009 0.238

Currency Instruments and DJ Correlations

Days
1–30

0.428 0.520 0.655 0.508 0.6181 0.637 −0.160 0.129
−0.452 −0.169 −0.605 −0.045 −0.271 0.468 −0.316 −0.060

Days
31–60

−0.672 0.172 −0.614 0.821 −0.477 0.047 0.795 0.859
0.819 0.597 −0.314 0.603 0.085 −0.518 −0.371 0.331

Days
61–90

−0.625 −0.743 −0.252 0.401 −0.746 −0.411 0.676 −0.308
0.396 −0.680 −0.593 −0.632 −0.277 −0.807 0.558 0.616

Days
1–90

−0.081 −0.255 0.187 0.278 −0.147 −0.139 0.262 −0.215
0.100 −0.403 −0.343 −0.220 −0.174 −0.590 0.290 0.092
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The correlations between the currency pairs from Table 1 and the FTSE and DJ indexes
are presented as tonal matrices in Figure 2a,b. The estimates were performed using the
time intervals drawn from Table 2.
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Figure 2. A tonal representation of the correlation matrices between the selected financial instruments and the (a) FTSE and
(b) Dow Jones index.

In order to select regressors, it is important to know not only the values of the pairwise
correlations, but also their dynamic properties. We estimated the pairwise correlations
looping over time within a sliding observation window. The respective computation
examples are presented in Figure 3. The presented plots show that the estimated correlation
values become highly variable as the observation interval changes.
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Figure 3. Correlation changes between EURUSD, EURJPY, GBPJPY, and NZDJPY on a sliding observation window of (a) 10
days, (b) 5 days, and (c) 1 day.

We selected EURUSD, EURJPY, GBPJPY, and NZDJPY as our currency instruments,
setting the lengths of the sliding windows to 10, 5, and 1 observation days. Pairwise
correlations between the currency instruments and the FTSE index of the London Stock
Exchange were considered as an example.

The presented calculations show that decreasing the size of the observation window
leads to a significant increase in variability of the pairwise correlations. Consequently, em-
ploying multiregressional analysis for “fast” asset management, such as intraday trading,
would not be efficient.



Computation 2021, 9, 88 5 of 12

Using a sliding window larger than five days reveals intervals with relatively stable
correlation estimates. In such cases, these financial instruments can be used as regressors
for estimating the managed indicators.

An immutable set of predictors cannot guarantee an efficient regression estimate for
the indicators. This makes it necessary to structurally adapt the regression function to the
correlational market changes.

Further enlargement of the sliding window increases the stability of pairwise corre-
lations, but disables the ability to react flexibly to possible variations in the correlations.
A smaller sliding window increases the forecast quality, but may lead to false alarm er-
rors caused by the fluctuating properties of the initial processes. Using robust processing
algorithms is one of the ways of resolving this contradiction [15–17].

The rest of the section will be dedicated to the formal problem setting for asset
management using multivariate correlation. Let Yk = (yk, k = 1, . . . , n) be a quotation
vector of the financial instrument, Xk = [xki, i = 1, . . . , m; k = 1, . . . , n], a matrix that
contains quotations correlated with Yk and used as a regressor for forecasting the financial
instrument.

The conventional multivariate regression model of a sequential financial instrument
price forecast has the form [18,19]

Ŷk =
m

∑
j=1

ckjxkj + vk, k = 1, . . . , n.

The most common way of constructing such a forecast is multivariate linear regression
(multiregression) based on the least squares method (LSM) [20–22]. Because of the data’s
chaotic nature and fast loss of relevancy, the estimate of the transfer coefficient of the LSM
filter is constructed using a sliding window Yk−L,k = (yk−L, yk−L+1, . . . , yk) k = 1, . . . , n.

Using the following matrix notation

Ck = (c1, c2, . . . , cm)
T
k , vk = (v1, v2, . . . , vm)

T
k ,

X(k−L,k) =


1 xk−L,1 · · · xk−L,m
1 xk−L+1,1 · · · xk−L+1,m
...

... · · ·
...

1 xk,1 · · · xk,m


and the conventional minimization of the square error vT

k vk = (Yk−L,k − XT
k−L,kC)T(

Yk−L,k − XT
k−L,kC

)
= min, we obtain the well-known relation used for estimating the

transfer coefficient of the LSM filter of form Ĉk = (XT
k−L,kXk−L,k)

−1XT
k−L,k_Yk−L,k.

Thus, at each step of observing the state of the market, we have the value of the current
asset price yk and its estimate ŷk = ĈkXk−L,k, constructed using the values of the observed
correlated financial instruments. The value of dk = Ŷk − Yk is an oscillatory indicator of
the under- or over-price of the current asset that allows for forecasting the direction of its
quotation.

As an illustration, Figure 4 contains the observation plots of USDCHF in a seven-day
period with an observation interval of 1 min, as well as its regression forecast constructed
with the use of correlated quotations of EURUSD, EURJPY, and USDJPY.

Figure 5 presents the difference di, i = 1, . . . , n between the quotations of USDCHF
and their regression estimates, as well as the smoothed version, obtained via applying an
exponential filter with a transfer coefficient of α = 0.05.
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Let us now consider the simplest application of this difference to the construction of
an asset management strategy.

3. Results
3.1. Multiregressional Data Analysis-Based Management Strategy Constructed upon Financial
Instrument Correlation

The simplest asset management strategy based on computational regression estimates
can be constructed with the following criterion K : |dk| > d∗, k = 1, . . . , n.

If dk > d∗, this means Yi > Ŷi, i.e., the financial instrument is overpriced, and its price
can be expected to go down. Vice versa, if di < −d∗, i.e., Yi < Ŷi, indicates underpricing
and therefore the price should go up. A statistical approach produces solutions that are
correct only to a certain confidence level. Critical values of d∗ are determined by its
distribution tables (or a statistic constructed upon it with a known distribution law). In
the conditions of nonstationary dynamics with a chaotic systemic component, such an
approach is unfeasible. The critical value has to be selected based on the preliminary
analysis of the retrospective information drawn from a large observation interval.

As an example, let us consider how dk = Ŷk −Yk changes for USDCHF on a five-day
observation interval with 1-min counts. The respective plot, the smoothed version of
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dk = Ŷk −Yk, and the decision levels are presented in Figure 6. For better understandability,
the value of the oscillator and its critical value are enlarged by 1.5 times. Figure 7 contains
a histogram of dk, k = 1, . . . , n, which demonstrates a weak convergence of the given
difference’s distribution to the Gaussian law.
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Figure 7. Process histogram dk.

According to the described management strategy, if the oscillator surpasses the thresh-
old value, i.e., ds(t) > d∗s , one can open a long position. Alternatively, a short position
can be opened if ds(t) < −d∗s . Positions can be closed along with a reverse crossing of
the threshold d∗s , or by the conventional method of setting the “take profit” and “stop
loss” levels.

Figure 6 shows that there is no stable trend for either underprice or overprice. The
reason for this is clear: the oscillator’s movement into either direction is determined by
its estimate of the prices of financial instruments used as regressors. At the same time,
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there are external factors that lead to the appearance of dynamic trends. The sum of these
movements produces the final form of the dynamics, the direction of which is determined
by a vector sum of heterogeneous and hardly forecasted influencing factors. Because of
this, our asset management strategy algorithm has to be adapted further to consider the
additional external impact factors of the financial instrument’s price.

3.2. Evolutionary Adaptation of Our Multiregressional Asset Management Strategy Algorithm

A natural development of the presented study lies in solving the issue of whether
a winning regression estimate strategy exists. This requires adapting the parameters of
the management algorithm in order to obtain the most positive result. It is impossible to
obtain a strict solution to an optimization problem in the conditions of chaotic dynamics.
Because of this, we implemented a numerical iterative optimization based on evolutionary
modeling [23–28]. In essence, this method was a modification of random search inspired
by Darwinian evolution [23]. An example of how evolutionary modeling can be applied to
optimize a management strategy can be found in [24].

A base algorithm of sequential adaptation is characterized by an array of modifiable
parameters that form a genome vector G =

[
g1, g2, . . . , gmg

]
. In structural adaptation, the

genome also contains the numbers of the regressors used for the estimation.
The criterion for opening a position during asset management, as was said previously,

is K :
∣∣∣d̃k

∣∣∣ > B, where d̃i is the smoothed value of the difference between the current
estimate and value of the observed process.

The starting value of the genome G0 = [g1, g2, . . . , gmg]0 is estimated based on
the results of the preliminary numerical analysis of the retrospective data. As threshold
values, we used standard deviations (SDs) of the modified parameter observations on the
specified interval.

The functional block diagram of the evolutionary adaptation of the asset value es-
timation algorithm is presented in Figure 8. Within the current study, we employed the
following three parametric genome modifications:

1. Little single modification, LSM. This term refers to a small change (within a single
SD) in a single randomly selected parameter of the parent genome.

2. Little group modification, LGM.
3. Strong single mutation, SSM, also known as parametric mutation. This refers to a

significant modification (within three SDs) of a single randomly selected parameter.

The first generation of parent genomes was formed via applying LSM modifications to
G0. Next, using every mentioned type of modification, we created a group of child genomes,
which, combined with their parents, constitute the first generation of our estimation
algorithm parameters. The next step is, in accordance to the computational scheme shown
in Figure 8, testing every modified version of the algorithm on a polygon of retrospective
data. The result of the testing is evaluated using the terminal indicator of the quality of
management, i.e., the gain. Next, all of the genome versions are ordered by their profit.
During the selection process, the genomes with the least efficiency values are pruned,
and the best genomes become the parents of the next generation. Next, looping over the
generations, the versions are modified and selected, i.e., they are sequentially adapted
to the particularities of the currently observed asset quotation fragments. Theoretically
rigorous optimality of the found solutions is not guaranteed. However, the gain value
cannot decrease as the number of generations increases. Furthermore, the presence of
parametric and structural mutations allows for carrying the adaptation process out of local
extrema vicinities.

Note that in contrast with random search, every iteration preserves a finite group of
genomes instead of a single best solution. This approach allows for obtaining the best
terminal solution using sequences of intermediate nonoptimal solutions.
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3.3. An Evolutionally Adapted Implementation of a Regression Asset Management Strategy

Let us present a numerical example of using evolutionary adaptation for the regression
asset management task. Consider USDCHF as the managed asset, and EURUSD, EURJPY,
and USDJPY as regressors.

We used the parameter vector G = [nW, α, B] as the genome, where nW is the
size of the sliding window of data used to construct regression estimate Ŷk, α is the
transfer coefficient of the smoothing exponential filter, and B is the boundary (critical)
value used in the solution-making during asset management. The starting values of
the modified parameters G0 = [0.5, 0.03, 4] are estimates based on USDCHF quotation
dynamics analysis for 1-year interval and minute counts. The first parameter is evaluated
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in days, the second one is dimensionless, and the third one is measured in pipses. The
intervals of allowed variation in the genome parameters are defined by matrix

∆G =

 0.1 10
0.001 1

1 30


We used from 7 to 10 generation changes for evolutionary adaptation, preserving the

Na = 4 parent genomes each time. For each parent, we performed three LSMs, a single LGM
for all parameters, and one SSM. Thus, every generation included 24 genome modifications.

Next, we tested each genome version on the same data polygon. During selection, we
preserved the four most successful genomes, making them parents of the next generation.
The procedure was run for 7–8 iterations. The plot of the profit for the best solutions can be
seen in Figure 9.
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Figure 9. Profit increase during evolution.

The plot of the implemented regression asset management model that corresponds to
the best genome is presented in Figure 10. For a better illustration, we used a short trading
interval of 24 h. The plot shows the observed process of quotation dynamics Y(t), the plot
of criterial statistics d̃i(t) (enlarged for better understandability), and the decision levels B
(horizontal lines).

Stars on line Y(t) and denote the moments of d̃i(t) crossing the±B levels, i.e., position
opening. Positions were closed at the moments corresponding to the reverse crossing of
levels ±B by d̃i(t). The graph denotes these moments either with diamonds (profit gain) or
circles (profit loss). It can be seen that the result is not clear-cut: it is rather probabilistic.
The provided example has benefitted from our evolutionally adapted regression algorithm
by obtaining 140 pipses of profit in a single day.
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4. Discussion

The obtained results let us conclude that the chaotic multivariate environment of
trading assets contains explicit correlations, the presence of which allows for implementing
multiregressional computational schemes for asset management.

Using multiregressional estimates allows for constructing oscillating indicators with
an asset management strategy for multivariate chaotic environments, which is an inherent
possibility of a positive result.

A significant difference in this approach is the lack of requirement for trend identifi-
cation and usage. This makes it possible to move away from the conventional method of
extrapolation forecasting, which is essential when working with chaotic processes. Further
improvement in management quality is provided by evolutionary adaptation.

Using regression analysis allows for directly substituting forecasting a chaotic process
with an indirect estimate of the forthcoming price dynamics of the financial instrument
price. Such an approach makes the forecast more stable in view of nonstationary variations
of quotation dynamics.

It is important to note that the proposed approach, just as with any other oscillator, may
lead to a negative result. In particular, an oscillator-based judgement of an instrument’s
overprice during a long-lasting positive trend may lead to a loss. These situations can be
overcome with a complex solution based on multi-expert management. These issues will
constitute the subject of further research.
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