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Abstract: The rapid growth in biomedical datasets has generated high dimensionality features that
negatively impact machine learning classifiers. In machine learning, feature selection (FS) is an essen-
tial process for selecting the most significant features and reducing redundant and irrelevant features.
In this study, an equilibrium optimization algorithm (EOA) is used to minimize the selected features
from high-dimensional medical datasets. EOA is a novel metaheuristic physics-based algorithm and
newly proposed to deal with unimodal, multi-modal, and engineering problems. EOA is considered
as one of the most powerful, fast, and best performing population-based optimization algorithms.
However, EOA suffers from local optima and population diversity when dealing with high dimen-
sionality features, such as in biomedical datasets. In order to overcome these limitations and adapt
EOA to solve feature selection problems, a novel metaheuristic optimizer, the so-called improved
equilibrium optimization algorithm (IEOA), is proposed. Two main improvements are included
in the IEOA: The first improvement is applying elite opposite-based learning (EOBL) to improve
population diversity. The second improvement is integrating three novel local search strategies to
prevent it from becoming stuck in local optima. The local search strategies applied to enhance local
search capabilities depend on three approaches: mutation search, mutation–neighborhood search,
and a backup strategy. The IEOA has enhanced the population diversity, classification accuracy, and
selected features, and increased the convergence speed rate. To evaluate the performance of IEOA,
we conducted experiments on 21 biomedical benchmark datasets gathered from the UCI repository.
Four standard metrics were used to test and evaluate IEOA’s performance: the number of selected
features, classification accuracy, fitness value, and p-value statistical test. Moreover, the proposed
IEOA was compared with the original EOA and other well-known optimization algorithms. Based
on the experimental results, IEOA confirmed its better performance in comparison to the original
EOA and the other optimization algorithms, for the majority of the used datasets.

Keywords: equilibrium optimization algorithm (EOA); elite opposite-based learning (EOBL); feature
selection (FS); wrapper method

1. Introduction

The classification process of biomedical datasets is a critical procedure for disease
detection and diagnoses. Classifying such datasets could allow the control and prevention
of certain non-treatable diseases, such as tumor, cancer, etc. Most biomedical datasets use
several features to diagnose the disease symptoms and histories. Some features could
be redundant, ineffective, or have a similar classification impact as other features. These
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dimensionality features need a large amount of computational storage and time, and could
negatively affect the classifier’s accuracy. Moreover, these stated challenges can affect the
classification accuracy, pattern recognition, and data analysis since they mainly depend on
the machine learning (ML) classifier. To accurately classify these features, feature selection
(FS) techniques need to be considered [1].

FS techniques have a significant role in ML, as a pre-processing step to reduce irrele-
vant and redundant features [2]. This works by excluding the features that may negatively
affect the classifier’s performance, such as irrelevant, redundant, and less informative
features. FS refers to selecting the minimum features out of the exclusive features that are
employed or related to the problem [3]. Therefore, FS techniques improve the performance
of the classifier in the majority of the cases [4]. FS techniques are categorized into two
primary types: filter based techniques (FBT) and wrapper based techniques (WBT).

The FBT employs linear functions to select and classify the feature subsets before
applying the classifier. The FBT, such as information gain (IG), Pearson correlation, and chi-
square, has no explicit connection to the classifier and the fitness function before utilizing
the classifier [5]. Alternatively, WBT techniques have an explicit connection to the applied
classifier [6]. Several experiments have employed WBT in optimization algorithms for FS,
such as in [7,8]. Computationally, WBT is more expensive than FBT but it can achieve better
scores [9]. Usually, in an optimization algorithm, WBT is applied in FS problems because
of its ability to cooperate with the classifier. Moreover, WBT is used to minimize the search
space, which improves the classification performance and minimizes the selected features,
such as in [10,11].

In WBT, the fitness function is used to guide the search process in a FS problem,
taking into consideration the classification accuracy. Several studies have conducted
optimization algorithm-based wrapper methods, such as in [7,12–15], in order to increase
the classification accuracy in the FS problem. However, applying optimization algorithms
in FS determines the optimum feature sets or the sets near to the optimum within a logical
time. Alternatively, the standard complete-search that searches all possible combinations
of features is considered a time-consuming search and a type of NP-hard problem [16].
However, depending on the problem types to be solved, some optimization algorithms
suffer from local optima and population diversity problems, specifically when they are
applied to datasets with high dimensionality, such as biomedical datasets.

EOA is a novel meta-heuristic algorithm proposed by [17]. EOA is inspired by the
control mass balance function for estimating both dynamic and static states. EOA has
been classified as one of the most powerful, fast, and best performing population-based
optimization algorithms in many studies, such as [18–20]. In EOA, each solution with its
position represents a search agent. The search agents randomly update their positions
regarding the best-so-far solutions, specified as equilibrium candidates, to reach the optimal
result (equilibrium state). According to the authors of EOA, the algorithm outperforms
several well-known meta-heuristic algorithms, such as the grey wolf optimizer (GWO),
gravitational search algorithm (GSA), slap swarm algorithm (SSA), generic algorithm
(GA), and particle swarm optimization (PSO). In addition, EOA was benchmarked with 58
unimodal, multi-modal, and mathematic functions and engineering problems. The study
reported very promising results. However, like other optimization algorithms, EOA has
limitations, and these include solution diversity and local optima problems. Furthermore,
based on the stated no-free-lunch theorem (NFL) [21] there is no perfect optimization
algorithm for all kind of problems. This means that an algorithm can outperform other
algorithms in some types of problems, but not all types of problems. The above-mentioned
limitations of EOA and the NFL motivated the research presented in this paper.

This research proposes a novel algorithm, named the improved equilibrium optimiza-
tion algorithm (IEOA). IEOA aims at improving the classification performance of the FS
problem in biomedical datasets. IEOA employs elite opposite-based learning (EOBL) to
improve the diversity of solutions during the exploration phase in EOA. Employing EOBL
adds various advantages to IEOA, and these include improving the search agents’ distribu-
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tion in the search space, enhancing the computational performance, and accelerating the
convergence speed. Furthermore, IEOA employs a local dynamic search mechanism during
the exploitation phase to avoid becoming stuck in a local optimum. The dynamic search is
conducted using three strategies, namely mutation search, mutation-neighborhood search,
and a backup strategy. In the literature, different improvements were proposed to EOA
in order to enhance the feature selection problem performance. However, as far as the
authors are aware, this is the first time a hybrid EOA algorithm with EOBL method and
new local search approaches for the feature selection problem has be utilized. IEOA will be
used to improve the classification performance for the FS problem in biomedical datasets.
The main contributions of this study are listed as follows:

1. An improved version of the original EOA, named IEOA is proposed for FS problems
in wrapper mode.

2. Two main improvements were introduced to the original EOA to solve its limitations:

• EOBL technique is applied at the initialization phase of EOA to improve its
population diversity.

• A novel local search mechanism is proposed and integrated with EOA to prevent
trapping in local optima and to improve the EOA exploitation search.

3. The performance of IEOA was evaluated using classification accuracy, selected fea-
tures, fitness value, and p-value. In addition, IEOA results were compared with the
results of other well-known and recent optimization algorithms, including particle
swarm optimization (PSO), genetic algorithm (GA), whale optimization algorithm
(WOA), grasshopper optimization algorithm (GOA), ant lion optimizer (ALO), slime
mould algorithm (SMA), and butterfly optimization algorithm (BOA). In these experi-
ments, 21 benchmark biomedical datasets from the UCI repository were used. The
conducted experiments revealed the superior performance of IEOA in comparison to
these baseline algorithms.

The rest of the paper is structured as follows: Section 2 reviews related works.
Section 3 briefly describes the EOA, EOBL, and the local search strategies, and Section 4
shows the proposed IEOA. Section 5 details the used datasets and the conducted exper-
iments, and Section 6 presents the experimental results and analysis. Finally, Section 7
concludes the paper.

2. Related Works

Recently, optimization algorithms have been used to solve high-dimensional feature
selection problems in many fields. The optimization algorithms verified their efficiency
for improving classification accuracy and reducing the selected features. Samples of
these recent implementations are PSO [22], BOA [23], SSA [8], ALO [24], WOA [21,25],
GOA [26], and GA [27]. Despite the unique construction of each optimization algorithm,
there are some shared characteristics: initializing a random population (solutions) as the
opening process, evaluating the solutions on each iteration based on the fitness function,
updating the solution, and determining the best solution based on a termination term. The
search behavior of optimization algorithms includes exploration and exploitation stages.
During these stages, an optimization algorithm tries to search the promising regions of
the search space. Additionally, the optimization algorithms’ stochastic search scans all
promising areas of the feature space. However, some of these optimization algorithms
suffer from population diversity and local optima limitations when they are applied to
high-dimensional features, such as in [28,29]. Thus, many methods are applied to the
optimization algorithm to improve the local search problem and the population diversity
and make it suitable for these dimensional features.

Meta-heuristics are mainly divided into three main classes: evolutionary algorithms,
swarm intelligence, and physics-based algorithms. The equilibrium optimization algorithm
(EOA) is a physics-based algorithm. Physics-based algorithms are based on the principles
of physical laws and are often used to characterize the interactions of search agents. One



Computation 2021, 9, 68 4 of 23

of the most widely used algorithms in this class is simulated annealing [30], which uses
thermodynamics laws applied to the heating and then controlled cooling of a material to
increase the size of its crystals. The gravitational search algorithm [31] employs Newton’s
gravitational laws between masses and their interactions to update the position toward the
optimum point. Henry gas solubility optimization (HGSO) mimics the behavior controlled
by Henry’s law to solve challenging optimization problems. Henry’s law is an essential
gas law, relating the amount of a given gas that is dissolved to a given type and volume of
liquid at a fixed temperature. The equilibrium optimization algorithm (EOA) was recently
developed by Faramarzi et al. [17], and has been used in many benchmark problems, such
as in [18,20,32,33].

Based on the NFL theorem, there are still many alternative methods that can be
used for the FS problem. Therefore, we were prompted to work to improve the EOA
algorithm that will be used in FS. The EOA algorithm was applied to FS problems in
several studies. For example, [32] applied S-shaped and V-shaped transfer functions for
selecting the optimal feature set in classification problems. In [34], the authors implemented
a general learning strategy in EOA, helping the search-agents to avoid the local optima
and to improve the capability for discovering a promising area. Moreover, [35] integrated
simulated annealing with the equilibrium algorithm to improve its local search. In our
proposed algorithm, IEOA, EOBL is used at the initialization phase to improve the initial
solutions created in the standard EOA. To the best of our knowledge, this is the first time
that an improvement to the EOA with EOBL and the new local search strategies has been
integrated and applied in FS problems.

EOBL is an enhanced version of the OBL technique, proposed by Tizhoosh in 2005 [36].
The primary purpose of EOBL is to produce more promising solutions by considering the
opposite solutions of the best solutions [21]. The opposite solutions are possible to locate in
the best position, in which the global optima are located [37]. The EOBL method has been
integrated into many optimization algorithms to improve the population diversity of the
algorithm. For example, [38] applied EOBL to improve the flower pollination algorithm
(FBA). Reference [37] utilized EOBL to enhance the diversity of the population of Harris
hawk optimization (HHO). EOBL was used in [39] to increase the grey wolf optimizer’s
population diversity quality. While, in [21,40], the EOBL was applied at the initialization
phase to improve the quality of initial solutions of WOA. Moreover, in [41] EOBL improved
the cuckoo search algorithm’s population diversity (CSA). Additionally, EOBL was used to
improve the convergence speed in particle swarm optimization [42].

In the literature, optimization algorithms have been hybridized with multiple types
of local search approaches to improve their exploitation capabilities. As an example of
this implementation, study [23] improved the BOA by applying a local search method
based on a mutation (LSAM) operator to avoid the local optimum problem. Study [43]
hybridized the PSO algorithm with a variable neighborhood search (VNS) technique to
improve the local search. Study [6] also hybridized a POS algorithm with a novel local
search strategy for FS problems. Study [44] enhanced the harmony search (HS) algorithm
with stochastic local search (SLS) for the FS problem. Study [45] combined WOA with
a local search strategy to escape from the local optimum problem. Study [46] combined
simulated annealing with a binary coral reefs optimization (BCRO) algorithm as a local
search strategy. Study [47] hybridized the algorithm of ACO ant with iterated local search
(ILS) as a stochastic local search method. Study [8] included a novel local search algorithm
with SSA to improve the exploitation capability of the algorithm. Study [48] hybridized
WOA with simulated annealing as local search, to enhance the best solution discovered
after each iteration. Study [49] improved WOA with a new local search algorithm (LSA)
to solve the WOA local optima. Study [37] improved HHO using EOBL and a novel
search mechanism to avoid the local optima problem. Thus, the mentioned studies, and
more, motivated our research into hybridizing EOA with dynamic local search. This
dynamic search is proposed based on a group of strategies: the mutation method, mutation
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neighborhood method, and backup method. The dynamic search is for improving the
capabilities of both the exploration and exploitation searches of EOA.

3. Preliminaries
3.1. Equilibrium Optimization Algorithm (EOA)

This section explains the mathematical model and algorithm of the equilibrium opti-
mizer algorithm (EOA). EOA is a novel physics-inspired population-based optimization
algorithm introduced in 2020 by Faramarzi et al. [17]. EOA is based on the conservation
of mass principle in physics. That is, a mass balance equation is used to describe the
centralization of a non-reactive component. In this sense, the mass balance equation mod-
els the conservation of mass entering, leaving, and generated in a control volume. The
first-order ordinary differential equation expresses the generic mass-balance equation, and
it is formulated in (1). In this equation, the change in mass over time equals the amount of
mass entering the system plus the amount being generated inside the system minus the
amount leaving the system.

V
dC
dt

= QCeq −QC + G (1)

where V is the control volume and V dc/dt is the mass change’s speed in the control volume.
Q is the volume velocity into and out of the control volume. C is the concentration within
the control volume and Ceq stands for the concentration at the equilibrium state, where
there are no production waves inside the control volume. G is the mass production rate
inside the control volume. When V dc/dt equals zero, a stable equilibrium state is achieved.

In EOA, there are three main aspects for updating a particles’ positions, and each
particle updates its concentration via three individual aspects. The main aspect is the
equilibrium concentration, known as the best solutions; so far randomly chosen from
the equilibrium pool. The second aspect is related to the difference between particle
concentration and the equilibrium state, which works as a direct search technique. This
aspect helps particles explore the search space. The third aspect is related to the generation
rate, which mainly performs the exploitation search. These aspects and how they affect the
search pattern are described in the following.

3.1.1. Initialization Phase

In this phase, the initial particles with their centralization are constructed. Moreover,
the initial population, the objective function and solution space are defined as in (2)

Cinitial
i = Cmin + randi(Cmax − Cmin) i = 1, 2, . . ., N (2)

where Cinitial
i denotes the initial concentration vector of the ith particle. In addition, Cmax

and Cmin symbolize the maximum and minimum values of dimensions. randi is a random
vector over the interval [0, 1], and N is the number of particles in the population. The
solutions (particles) are evaluated for their fitness function and stored to determine the
equilibrium candidates.

The equilibrium position is the ultimate convergence state of the algorithm, which is
searched for to be the global optimum. The optimization process starts with no information
about the equilibrium position, and hence, the first equilibrium candidates are generated
to support a search pattern for the particles. These candidates are the four best-so-far
particles, selected during the entire optimization process, combined with the fifth particle,
which is the concentration of the arithmetic mean of the above four particles, as in Equation
(3). These candidates increase the EOA exploration capability, while the average value
improves the exploitation. These five particles are chosen as equilibrium candidates, and
they are used to create a vector, named the equilibrium pool as in Equation (4)

Cave =
Ceq1 + Ceq2 + Ceq3 + Ceq4

4
(3)
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Ceq.pool =
{

Ceq(1) , Ceq(2) , Ceq(3) , Ceq(4) , Ceq(ave)

}
(4)

Furthermore, the velocity term function (F) is used to balance exploration and ex-
ploitation. Here, λ has been used to model the turnover rate, which may vary over time in
a real control pool. To this end, λ is used to generate a random vector in an interval of [0,
1], as formulated in (5)

F = e−λ(t−t0) (5)

where t is the time represented by a function of iteration (Iter), and thus, it decreases with
the number of iterations, as formulated in (6)

t =
(

1− Iter
T

)(a2
Iter
T )

(6)

where Iter and T define the number of current and maximum iterations, respectively. a2 is
a constant value that controls the exploitation capability. To secure the convergence carve
by decreasing the search speed along with improving the global and local search ability of
the algorithm, the algorithm considers formulation (7)

t0 =
1
λ

In
(
−a1 sin(r− 0.5)

[
1− e−λt

])
+ 1 (7)

where a1 is a constant value proposed to control the exploration ability. Furthermore,
sin(r − 0.5) value impacts the direction of the global and local search. For all the experi-
ments executed in this paper a1, a2 are equal to 2 and 1, respectively. r is a random vector in
the interval of [0, 1]. A modified version of Equation (5) with the substitution of Equation
(7) into Equation (5) is as follows in (8)

F = a1 sin(r− 0.5)
[
e−λt − 1

]
(8)

The generation rate, G is also one of the most important values for providing the
typical solution by improving the local search. Therefore, the generation rate equations are
presented as follows in (9)–(11)

G = G0.F (9)

where
G0 = GCP

(
Ceq − λC

)
(10)

GCP =

{
0.5r1 r2 ≥ GP
0 r2 < GP

(11)

where r1 and r2 are random numbers between [0, 1], and GCP is the generation rate control
parameter that monitors the probability of generation rate. This probability determines
the number of particles that employ the generation rate to update their concentration. In
addition, this is determined by another parameter called generation probability, GP. The
mechanism of this contribution is determined by Equations (10) and (11). Equation (11)
is considered at the level of each particle. A good balance between exploration and
exploitation is achieved when GP = 0.5. Finally, the updating rule of EOA is as in (12)

C = Ceq +
(
C− Ceq

)
. F +

G
λV

(1− F) (12)

where C is an equilibrium concentration, F is calculated as in Equation (8), and V is the
control unit, as in Equation (1). However, both the second and third terms correspond to the
differences in concentration. Figure 1 shows a theoretical drawing of the cooperation of all
equilibrium candidates and how they update the concentration one by one in the algorithm.
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Figure 1. Bit sequence mutation example, where the 3rd and 6th features are switched (mutated).

3.1.2. Exploration Phase

There are four parameters and techniques in EOA that can direct the exploration
process, and summarized as follows. First, a1 value; this value controls the exploration
by estimating the extent of the new position to the equilibrium candidate. The higher the
value of a1, the higher the exploration power. However, if the a1 value is larger than three,
then the exploration performance will reduce considerably. Second, sin(r − 0.5) value;
controls the exploration direction. Since r is a random vector in an interval of [0, 1] with
equal distribution, there is an equal possibility of signs being either negative or positive.

Third, GP value controls the probability of a candidate’s concentration. When GP = 1
there will be no generation rate involved in the optimization process. This condition
confirms a high-level of exploration capability, and it often leads to inaccurate results.
When GP = 0, then the generation rate is considered in the optimization process, and hence,
it increases the probability of stagnation in the local optimum. Based on the experimental
analysis, GP = 0.5 provides a good balance between global and local search. Fourth, the
equilibrium pool; this vector contains five particles. The selection of these candidates is
based on experimental testing. In the initial iterations, the particles are far away from each
other in the search space. Updating the concentration according to these candidates can
improve the ability of the algorithm to search the global space. The average candidate also
supports finding unknown search spaces at initial iterations when particles are far apart
from each other.

3.1.3. Exploitation Phase

There are four parameters and techniques in EOA that can affect the exploitation
process, and summarized as follows. First, a2 value; this value works like a2, but controls
the local search by estimating the magnitude of exploitation via mining around the best
solution. Second, sin(r − 0.5) value; also responsible for controlling the direction of local
search. Third, is the memory saving parameter, this factor keeps the best-so-far particles
and uses them to replace the poorer ones. This feature clearly improves the exploitation of
the EOA algorithm. Fourth, is the equilibrium pool; as the iteration progresses, exploration
gradually decreases, and exploitation gradually disappears. Therefore, in the last iteration,
the candidate’s positions are close to each other, and the concentration update process will
help to perform a local search near the candidate positions, leading to exploitation.

To compute the fitness value, the classification error and number of selected features
need to be involved to the fitness function, which is mathematically formulated as in (13)

↓ f itness = αγ(R) + β |F|/|N| (13)

where γ(R) is the classifier error rate, |F| is the number of selected features, and |N| is the
total number of features. In addition, α, β are two factors where α ∈ [0, 1] and β = (1 − α).

3.2. Elite Opposition Based-Learning (EOBL)

EOBL is an improved edition of the OBL technique, proposed by Tizhoosh in 2005 [36].
OBL is a machine intelligence approach designed to improve the performance of optimiza-
tion algorithms. This technique considers discovering a more useful solution among the
current individuals, usually initialized randomly by the optimization algorithm and its
corresponding opposite solution. The evaluation function is applied in both solutions, and
the best solution is selected for the next iteration. Mathematically, OBL can be formulated
as follows: if x = (x1, x2, . . . , xD) is a location of the current particles, where D is the problem
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dimension, and x ∈ [yk, zk], k = 1, 2, . . . , D. Thus, the opposition location x̃ = (x̃1, x̃2, . . . ,
x̃D) is formulated as in (14)

x̃k = yk + zk − xk (14)

EOBL employs an elite individual to lead the population to the global optima solution.
The elite individual is likely to have more helpful information than other individuals. Basi-
cally, EOBL uses the elite individual in the current population to generate corresponding
opposites of the current particles located within the search dimension. Thus, the elite will
guide the particles and finally reach a promising area, where the best solution could be
found. Consequently, utilizing the EOBL method will improve the population diversity and
enhance the exploration of the EOA algorithm. As stated, EOBL was previously applied in
the literature to improve several optimization algorithms.

In this paper, the EOBL method was utilized to improve the exploration ability of
EOA. The opposition position is framed as follows: for the individual Xk = (xk1, xk2, . . . ,
xkD) in the current population Xi = (xi1, xi2, . . . , xiD); therefore, the elite opposite position
will be X̃k = (x̃k1, x̃k2, . . . , x̃kD) formulated as (15):

x̆k,j = F×
(
dyj + dzj

)
− xk,j (15)

where F ∈ [0, 1] and F is a generalization factor. dyj and dzj are dynamic boundaries, and
can be formulated as in (16)

dyj = min
(

xk,j

)
, dzj = max

(
xk,j

)
(16)

However, the consequent opposite can exceed the search boundaries [yk, zk]. To solve
this problem, a random value is assigned to the transferred individual in [yk, zk], as in (17)

x̆k,j = rand
(
yj + zj

)
, i f x̆k,j < yj ‖ x̆k,jzj (17)

However, EOBL improves population diversity by generating a different population
from opposite solutions. Consequently, the exploration ability of the EOA is improved.

3.3. The Mutation Search Strategies (MSS)

The EOA employs various search mechanisms including both exploratory and ex-
ploitative ones to randomly change the solutions. The search agents represent the particles
with their concentrations, and the optimal results represent the equilibrium state. The con-
centrations are randomly updated, considering the best-so-far solutions, called equilibrium
candidates. This random updating, along with an accurate generation rate value, enhances
EOA’s exploratory behavior in the initial iterations and the exploitative search in the final
iterations, avoiding the search being trapped in local optima. In addition, balancing explo-
ration and exploitation provides an adaptive value for the control parameter, and thus will
reduce the magnitude of the motions of the particles. EOA depends on G to move from
exploration to exploitation and to select the current exploitation method. Additionally, G is
used to avoid the particles becoming trapped in local optima. However, G might quickly
change its convergence speed towards the optimal solution, which may cause the particles
to fall to a local optimum problem. [21]. In this subsection, we explain the proposed three
MSS that enhance both the global and local search in the EOA algorithm, and help avoid
being stuck in local optima, to some extent.

3.3.1. Mutation

The mutation method is used in GA to improve the diversity of the chromosome
population. The mutation factor is employed to avoid being trapped in local optima by
creating a more innovative and evolutionary solution to the problem. There are many types
of mutations that rely on the algorithm used and the designated problem. However, in
this study we applied a bit chain mutation that functioned by twisting features at arbitrary
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positions. For example, assuming X = (x1, x2, . . . , xD) is a location of the current particle’s,
then the bit chain mutation can be mathematically formulated as in (18)

MU (i) = |1− X(i)| (18)

where MU is the particle (solution) after utilizing bit chain mutation, I = 1, 2, . . . , D is
an array of randomly selected positions that twisted in solution X. Figure 1 shows an
example of solution X, where the third and sixth positions are twisted. Due to various
empirical observations and error tests, the mutation rate is randomly selected between
10% and 25% in the exploration phase, and between 1% and 9% in the exploitation phase.
EOA relies on the generation rate G to switch from exploration to exploitation search. The
ratio of G controls the selection of the global search when it is greater than 0.5, and the
exploitation phase when it is less than 0.5. Based on Equations (10) and (11), the value of G
is based on G0 and F, as in Equation (9). Therefore, in the first fifty percent of iterations, the
G value is varied between [0, 2], and in the second fifty percent it is fluctuated between
[0, 1]. Consequently, EOA can perform exploration and exploitation in the first part of the
iterations. However, in the second part, it can only perform exploitation.

In IEOA, we included the G value to select the number of features to be twisted.
Generally, in the global search, more features of the current best solution need to be
twisted to improve the power of the exploration. However, in the local search, the particles
are supposed to be closer to the equilibrium state (optimal solution). Therefore, fewer
features are twisted to improve the exploitation. Thus, the mutation rate is mathematically
formulated as in (19)

Mutationrate =


No o f Featuers ∗ 10 ∗ rand[1, 5]

100
i f G ≥ 1

No o f Featuers ∗ rand[1, 9]
100

i f G < 1
(19)

3.3.2. Mutation Neighborhood Method (MNM)

MNM was applied by Das et al. in 2009 [50] in order to balance between global
and local search in differential evolution. The idea of the neighborhood search is to use
the mutation operator to search a small region around the current best solution instead
of searching the whole population. In this proposed work, we applied MNM. MNM
search is monitored by the current best solution found by the mutation method. In other
words, whenever a mutation causes a change in the position of the current best solution
(equilibrium state), MNM will be applied. However, after the current best position is
mutated, the fitness value will be calculated again in every iteration. If the fitness value
of the new-found location is better than the current location, the current best solution is
replaced with the new mutated solution, and thus the MNM search is performed.

Essentially, the MNM considers two contiguous techniques of the switched feature.
First, in the forward switched technique, the right feature is mutated, and then fitness
values for the two solutions (the best solution with the current switched solution) are
evaluated. Second, in the backward switched technique, the same technique is applied
but the left feature is mutated. Consequently, two solutions are created, and the best value
is ranked as the best solution. Furthermore, the MNM circle is used, as the last feature is
connected to the first feature to have two contiguous neighbors on both sides. Figure 2
explains the technique of the MNM circle.
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Figure 2. An example of muted neighborhood method (MNM) applied forward switch and back-
ward switch.

3.3.3. Backup Method (BM)

Mutation is a powerful strategy that can effectively improve the exploration and
exploitation process. However, it might change the direction of the optimization algorithm
and lead to a local optimum. Generally, local optima are one of the common challenges
for optimization algorithms. Therefore, BM is included in the proposed IEOA. BM is a
straightforward and functional method. In BM, if the new mutated solution has a better
fitness value than the current solution, it will not be immediately considered as the current
best solution. It will be tentatively saved as a possible solution for the next iteration. If
the EOA results at the next iteration achieved a better solution, the current best solution is
also modified. Then, the possible solution (BM solution) is compared with the current best
solution, and at this round the higher solution value is considered to be the best current
best solution. However, MSS accepts the new location resulting from mutation or MSM if
it maintains the best fitness value for two consecutive iterations.

4. Improved Equilibrium Optimization Algorithm (IEOA)

This section introduces IEOA, which is an improved version of EOA. The IEOA utilizes
the powers of EOA and tunes it for the FS problem. Particularly, two main improvements
for EOA were introduced. The first improvement involves employing the EOBL method at
the initialization phase. This improvement enhances the diversity of the population. The
second improvement involves employing enhanced MSS. This improvement strengthens
the search abilities of the algorithm in both local and global search. In IEOA, the feature
subset in the FS problem is considered a binary value consisting of “1” and “0”. The
value of “1” indicates the corresponding feature is selected, while “0” indicates that the
corresponding feature is not selected, as in Equation (13). The framework of the proposed
IEOA using EOBL and MMS strategies is illustrated in Figure 3. The steps of the proposed
IEOA algorithm are illustrated as follows:

1. In the first step: the particle population C is initialized using the random generation
function with the size N, as defined in Equation (2) and the equilibrium candidate’s
fitness is assigned with a large number. In this step, each generated particle (search-
agent) is regarded as a possible solution, which includes a random set of features
from the complete set of features.

2. In the second step: compute the fitness value of each solution and find the elite
position from the initial population. After that, the EOBL method creates the opposite
elite solutions, as defined in Equation (15), then selects the best N solution.

3. In the third step: the EOA algorithm is executed to update the location of each particle
in the population and to find the best current location based on the best fitness value,
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as defined in Equation (13). IEOA works based on KNN classification accuracy and
the feature selection is based on the wrapper mode.

4. In the fourth step: MSS strategies are employed to improve the current location. Here,
a potential best solution is considered; if the fitness value of a new location is better
than the current one, then the MNM is executed for further improvement.

5. The next iteration of EOA is executed and the current best solution compared with
the potential solution in the fifth step. Here, the BM strategy is used if the current
best solution is better than the potential location. Otherwise, the current best location
is changed to be equal to the potential solution

6. In the sixth step: The proposed solution proceeds with the iterations until the stopping
criteria is met. The pseudocode of the proposed IEOA is illustrated in Algorithm 1.

Figure 3. The framework of the proposed IEOA using EOBL and MMS strategies.
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Algorithm 1. Pseudo code of IEOA Algorithm.

Input: Initialize the particle’s population randomly Ci (i = 1, 2, . . . , N), T: the maximum number of
iterations.
Output: The equilibrium state and its fitness value.
Apply EOBL method to find the best N opposite solutions, then select the fittest N solutions, according to
Equations (14)–(16)
Assign free parameters a1 = 2; a2 = 1; GP = 0.5;
While (Maximum iteration not reached (Iter < T)) do
Calculate the fitness of the particle locations.
For i = 1 : number o f particles (n)

I f f it(Ci) < f it
(
Ceq1

)
Replace Ceq1 with Ci and f it

(
Ceq1

)
with f it (Ci)

Elsei f f it(Ci) > f it
(
Ceq1

)
& f it(Ci) < f it

(
Ceq2

)
Replace Ceq2 with Ci and f it

(
Ceq2

)
with f it(Ci)

Elsei f f it(Ci) > f it
(
Ceq1

)
& f it(Ci) > f it

(
Ceq2

)
& f it(Ci) < f it

(
Ceq3

)
Replace Ceq3 with Ci and f it

(
Ceq3

)
with f it(Ci)

Elsei f f it(Ci) > f it
(
Ceq1

)
& f it(Ci) > f it

(
Ceq2

)
& f it(Ci) > f it

(
Ceq3

)
& f it(Ci) < f it

(
Ceq4

)
Replace Ceq4 with Ciand f it

(
Ceq4

)
with f it (Ci)

End(I f )
End(For)
Cave =

Ceq1+Ceq2+Ceq3+Ceq4
4 f rom Equation (3)

Ceq.pool =
{

Ceq(1) , Ceq(2) , Ceq(3) , Ceq(4) , Ceq(ave)

}
f rom Equation (4)

Assign t =
(

1− Iter
T

)(a2
Iter
T )

f rom Equation (6)
For i = 1 : number o f particles (n)
Constract F = a1 sin(r− 0.5)

[
e−λt − 1

]
f rom Equation (8)

Constract G = G0.F f rom Equation (9)
Constract G0 = GCP

(
Ceq − λC

)
f rom Equqtion (10)

Constract GCP =

{
0.5r1 r2 ≥ GP
0 r2 < GP

f rom Equation (11)

C = Ceq +
(
C− Ceq

)
. F + G

λV (1− F) f rom Equation (16)
End(For)
For (i = 1 to 8) do % MSS

I f ( f itness Cpotential < f itness CBest sloution (Iter+1)
then = CBest solution = Cpotential

Else CBest solution = CBest solution (iter+1) % BM
Apply mutation strategy to current best location CBest solution
using Equations (17) and (18)

I f current location (Cmutation < CBest solution )
then Apply MNM search on Cmutation
Set Cpotential = Cmutation

Return the best location (CBest solution)
Iteration = Iter + 1
End While

5. Experiments
5.1. Platform

The performance of IEOA was evaluated and compared with the original EOA and
some popular and new optimization algorithms, including the GOA, GA, PSO, ALO, WOA,
BOA, and SMA algorithms. All the experiments were executed using MATLAB R2020b 9.9
(Natick, MA, USA), and operated on a PC running with an Intel Core i7-8550U, 1.80 GHz,
16 GB of RAM, and Windows 10 version 20H2 operating system.

The displayed Equations (20)–(23) are the computation methods of the average value
classification accuracy, the average fitness value, and the average of the selected feature,
respectively.
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Avg_acc =
1

30

30

∑
i=1

acci (20)

Avg_acc is the average classification accuracy scored by running the algorithm inde-
pendently for 30 iterations, acci symbolizes the classification accuracy scored from each
iteration. acci is computed as in (21)

acci =
1
N

N

∑
c=1

match(CLc , ALc) (21)

where N symbolizes the total number of test cases. CLc is the class label of the expected
class data, ALc is the existing class in the labeled data. In addition, match(CLc, ALc) is a
discrimination function. When CLc and ALc are equal, match(CLc, ALc) = 1, if not match(CLc,
ALc) = 0.

Avg_ f itness =
1

30

30

∑
i=1

f itnessi (22)

Avg_fitness is the average fitness value acquired by running the algorithm for 30
iterations, and fitnessi represents the best fitness value acquired from each run.

Avg_ f eature =
1

30

30

∑
i=1

f eaturei (23)

where Avg_feature is the average value of the selected feature acquired by running the
algorithm for 30 iterations, and fi is the value of the selected number of features acquired
from each run.

5.2. Benchmark Datasets

To validate the efficiency of the proposed IEOA algorithm, the experiments were
conducted on 21 benchmark medical datasets from the UCI repository. The selected
datasets were utilized to determine the capabilities of the IEOA algorithm. In addition, to
confirming the solidity of IEOA, two feature dimensionalities were used, including average
and high dimensionality. The selected datasets have been used in many feature selection
problems, such as [37,51,52]. Table 1 presents the details of the selected datasets.

Table 1. UCI Medical Datasets Details.

Dataset Features Sample Dimensionality

Primry_Tumer 17 339 Average
Hepatitis 20 155 Average

Lymphography 19 148 Average
Breast_Cancer 10 699 Average

Echocardiogram 12 132 Average
Fertility 10 100 Average

Leaf 16 340 Average
Lung_Cancer 57 32 Average

Diabetic 20 1151 Average
ILPD 11 583 Average

Cortex_Nuclear 82 1080 High
Epileptic_Seizure 179 11,500 High

Promoter-gene 58 116 High
WDBC 31 569 High

Cervical cancer 36 858 High
Arrhythmia 279 452 High

Dermatology 35 366 High
Heart Disease 75 303 High

HCV 29 1385 High
Parkinson 29 1040 High

HCC 50 165 High
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5.3. Algorithms and Experiment Parameter Setting

In this work, the parameters were set after many experimental observations and similarly
to [32]. Additionally, it has been noted that adjusting the control parameter can improve the
performance of the algorithm. Therefore, the random parameter settings are very important
and should be chosen carefully. In this experiment, the K-nearest-neighbors (KNN) classifier
(wrapper mode) with 10-fold cross-validation was used to evaluate the performance of the
algorithms. The validation of the dataset was divided into ten equal parts (fold). Nine-folds
were used in the training phase, and the final fold was used for the testing.

Furthermore, in order to ensure the fairness of the comparison, the maximum number
of iterations of each algorithm was set to 50 iterations. Moreover, the experiments were
repeated 30 times and considering the settings used in [12,37]. Therefore, the results were
obtained from an average of 30 runs. The parameter settings for the proposed IEOA are
presented in Table 2. In addition, the general parameter settings for the baseline algorithms
are displayed in Table 3.

Table 2. IEOA Parameter Setting.

Parameter Value

Population size 10
Number of iterations 50

Dimension Number of Feature
Number of runs for each method 30

α 0.99
β 0.01

Table 3. Parameter Settings of Optimization Algorithms.

Algorithm Parameters Reference

PSO

Inertia Weight value 0.9
Inertia Weight Damping

Ratio 0.4
Accelerating-constant

values are C1 = 2, C2 = 2

[53]

GA Crossover Ratio 0.9
Mutation Rate 0.2 [54]

WOA A [2, 0] [21]

GOA cMax = 1
cMin = 0.00004 [26]

ALO K = 500 [55]

SMA z = 0.03 [56]

BOA
Probability-switch 0.8
Power exponent = 0.1

Sensory modality = 0.01
[57]

5.4. Computational Complexity

The computational complexity of IEOA relies on the number of particles (N), the
number of dimensions (D), the number of iterations (T), and the cost of function evaluation
and MSS solution (C). This complexity is modelled by a function that relates the running
time of the algorithm to the input size of the problem. Accordingly, Big –O-Notation is
used here as a popular term, as in (24)

O (EOA) = O(Problem de f inition) + O(Initilization)
+O(t( f unction evaluation) ) + O(t(Memory saving))
+O(t(Concentration update))

(24)
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Moreover, the computational complexity of utilizing the MSS strategy can be com-
puted as O(T*I*M), where I is the number of MSS iterations, and M is the MSS search
strategies, together with mutation and MNM. Consequently, the computational complexity
of IEOA is presented in (25)

O(IEOA) = O(1 + ND + TCN + TN + TND + TIM) ∼= O(TND + TCN) (25)

6. Results and Analysis

This section demonstrates the effectiveness of the proposed IEOA by performing two
main experiments. The first experiment included the comparison of the proposed IEOA
with the standard EOA. The second experiment involved the comparison of IEOA with
state-of-the-art algorithms, such as GOA, GA, PSO, ALO, WOA, BOA, and SMA. In all
conducted experiments, each algorithm was utilized on all the datasets to verify the solidity
of the algorithm within feature dimensionalities. Additionally, the reported results are
based on computing the average of 30 runs for every experiment.

6.1. Comparison of EOA and IEOA

This section includes the proposed IEOA in comparison with the original EOA. The
comparison is based on four metrics, which are the average classification accuracy, the
average number of selected features, average fitness value, and p-value (Wilcoxon test) as a
statistical test. Table 4 demonstrates the experimental results of the IEOA in comparison
with the original EOA, the best results are underlined. For the statistical tests, if the p-value
was lower than 0.05, then the improvement was considered to be significant; otherwise, it
was not significant. The p-value was utilized to determine if the classification accuracy of
IEOA improved significantly.

According to the results, IEOA outperformed EOA for the majority of the datasets in
terms of classification accuracy, while it provided similar accuracy to EOA in two datasets.
Consequently, it is obvious that the use of EOBL and MSS improve the performance of
IEOA. In terms of the number of selected features, IEOA outperformed the standard EOA
by decreasing the number of selected features in 15 datasets, while it was comparable
with EOA in two datasets, and EOA was better in six datasets. In terms of fitness value,
IEOA outperformed EOA in all datasets. Statistically, the p-value shows that the IEOA
significantly outperformed EOA in 15 datasets. Therefore, IEOA significantly improved
the classification accuracy, feature selection, and fitness value across the different dataset’s
dimensions.

In addition, it can be observed from the stated results in Table 4, that the use of EOBL,
achieved using Equation (15), improved the choice of solutions, instead of using the random
methods in the original EOA. The possible reason is that the EOBL chose the best obtainable
solutions. Thus, compared with solutions produced by random methods, there are fewer
opportunities to choose weak solutions. Furthermore, the use of the MSS method improves
the algorithm’s capabilities in balancing exploration and exploitation. The algorithm uses
the current best location to update the positions of the other search agents. Therefore, the
use of the proposed MSS enhanced the algorithm’s exploration capability when looking
for promising areas. Moreover, by using the mutation methods in Equations (18) and (19),
the algorithm avoided dropping into a local solution. Furthermore, both the proposed
mutation method and the MNM search increased the algorithm’s exploitation capability,
searching for the best solution in a specified local area. Consequently, the superiority
of IEOA was demonstrated in three main aspects: the number of selected features, the
classification accuracy, and the fitness value.
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Table 4. The Experimental Results of the IEOA in Comparison to the Original EOA in Terms of Classification Accuracy,
Number of Selected Features, and Fitness value and p-value, the best results are underlined.

Dataset
Classification Accuracy Selected Feature Fitness

EOA p-Value
EOA IEOA EOA IEOA EOA IEOA

Primry_Tumer 0.85556 0.88604 6.3667 6.8667 0.14675 0.11686 0.0398
Hepatitis 0.86319 0.89514 3.3 3.1 0.13717 0.10587 0.00203
Lymphography 0.74192 0.79155 6.8333 5.0333 0.25874 0.20972 0.0624
Breast_Cancer 0.98476 0.98714 3.3 3.1667 0.018308 0.016247 0.296
Echocardiogram 0.90586 0.9185 1.9 1.1 0.028925 0.016475 0.0474
Fertility 0.72333 0.74667 1.7667 2.1 0.077863 0.055133 0.0541
Leaf 0.78373 0.81634 5.1333 5.1333 0.21753 0.18558 0.0112
Lung_Cancer 0.53611 0.55833 1.4 1.1 0.0305 0.008446 0.0384
Diabetic 0.99697 0.99697 7.1 5.5333 0.004268 0.003988 0.146
ILPD 0.55061 0.55119 25 26.7333 0.4463 0.44605 0.912
Cortex_Nuclear 0.98152 1 6.8 6.4667 0.019493 0.001135 0.0189
Epileptic_Seizure 0.96895 0.97539 3.1333 3.0333 0.03178 0.025379 0.0966
Promoter-gene 0.97475 0.98096 2.9333 2.9333 0.022737 0.017753 0.27
WDBC 0.99635 1 8.4333 6.9667 0.006098 0.002966 0.00898
Cervical cancer 0.90494 0.91975 3.4667 3.5 0.096778 0.082137 0.357
Arrhythmia 0.34425 0.35914 4.4333 4.4 0.65086 0.63621 0.0211
Dermatology 1 1 1.0333 1 0.000369 0.000357 0.334
Heart Disease 0.76492 0.78154 54 54.9333 0.23467 0.21861 0.0252
HCV 0.7482 0.77193 5.1333 5.0333 0.25199 0.24217 0.00302
Parkinson 0.78403 0.80118 2.9333 3.1333 0.21674 0.19997 0.0684
HCC 0.8826 0.90882 5 3.8667 0.11725 0.091054 0.0771

6.2. Comparison of IEOA Algorithm with Other Optimization Algorithms

The previous experiments proved the superiority of IEOA, especially in terms of
classification accuracy and fitness value over the original EOA. This superiority is a result
of improving the population diversity and achieving an appropriate balance between
exploration and exploitation for preventing the local optima. Therefore, to validate the
advantage of IEOA, an additional comparison was made between IEOA and highly citied
and recent optimization algorithms like GOA, GA, PSO, ALO, WOA, BOA, and SMA.
Here, we also used the four-evaluation indicators to evaluate the performance of IEOA
compared with the other optimization algorithms. First, the classification accuracy was
evaluated for the considered algorithms, as in Table 5. According to the results obtained,
IEOA outperformed the other algorithms for the selected datasets in terms of classification
accuracy, the significant results are underlined, whereas it gave a similar accuracy to WOA
in one dataset. The average accuracy of IEOA was 9.52% higher than GOA, 8.8% than BOA,
8.1% than SMA, 5.64% than GA, 5.14% than ALO, 5.04% than WOA, and 4.1% than PSO.
The classification accuracy results for IEOA and all algorithms are displayed in Table 5. The
Wilcoxon test was applied to verify the significance of classification accuracy, as displayed
in Table 6, the best results are underlined. Accordingly, the significant results were verified,
with a p-value < 0.05, for all algorithms and datasets except GA, PSO, and ALO. There
was no significance in only one dataset, which was Fertility. Therefore, these significant
results proved the superiority of IEOA over all the other algorithms. The results signify the
capability of IEOA to balance exploration and exploitation. Moreover, it has a better chance
of avoiding the trap of local optima, which ultimately led to a significant improvement in
the classification accuracy of IEOA.

The average number of the selected features is displayed in Table 7 for all algorithms
for 30 runs, the best results are underlined. It can be observed that IEOA outperformed all
the algorithms in terms of selected features. Moreover, IEOA ranked first by selecting fewer
features in 21 datasets, the average of IEOA’s selected features was 7.5, followed by WOA
with 9.85, then ALO with 12.03, then PSO with 16.59, and then GA with 19.003. GOA, SMA,
and BOA gave a lower performance for the selected features, respectively. These results
validate EOBL and MSM’s effectiveness for decreasing the number of selected features and
increasing the classification accuracy. In addition, IEOA concentrates on promising regions
in the search space to select the critical features and prevent irrelevant features. Table 8
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illustrates a comparison between IEOA and all optimization algorithms in terms of the
average fitness value. The results show the superiority of IEOA, as the IEOA outperformed
all the other algorithms in all datasets. The superiority in fitness values shows the reliable
capabilities of IEOA.

Table 5. The Classification Accuracy of IEOA and Other Optimization Algorithms.

Dataset IEOA GOA GA PSO ALO WOA BOA SMA

Primry_Tumer 0.88604 0.77302 0.8153 0.84878 0.81438 0.80945 0.78586 0.80059
Hepatitis 0.89514 0.73056 0.79181 0.81153 0.79222 0.80694 0.73264 0.76389
Lymphography 0.79155 0.57721 0.64861 0.68843 0.64447 0.66259 0.58146 0.60909
Breast_Cancer 0.98714 0.97143 0.98048 0.98238 0.98 0.98 0.97667 0.97667
Echocardiogram 0.9185 0.86282 0.89799 0.89267 0.88535 0.88516 0.86007 0.87766
Fertility 0.74667 0.69333 0.71 0.71333 0.70667 0.70667 0.70333 0.68667
Leaf 0.81634 0.68839 0.75952 0.7742 0.75276 0.7432 0.70144 0.7314
Lung_Cancer 0.55833 0.51667 0.525 0.50556 0.54722 0.54722 0.525 0.51667
Diabetic 0.99697 0.80606 0.90273 0.95 0.92485 0.93091 0.81515 0.81939
ILPD 0.55119 0.49977 0.51701 0.52188 0.52762 0.52696 0.49661 0.49919
Cortex_Nuclear 1 0.78848 0.87333 0.94364 0.91576 0.92667 0.81667 0.82606
Epileptic_Seizure 0.97539 0.95547 0.96192 0.95841 0.96426 0.9625 0.95605 0.95547
Promoter-gene 0.98096 0.9162 0.93019 0.93523 0.93406 0.93172 0.9201 0.92204
WDBC 1 0.96189 0.98448 0.99094 0.99089 0.98549 0.98181 0.98358
Cervical cancer 0.91975 0.79012 0.84691 0.87901 0.85926 0.85679 0.81852 0.81235
Arrhythmia 0.35914 0.29806 0.32258 0.32837 0.32376 0.32355 0.30884 0.30309
Dermatology 1 0.96218 0.99167 0.99647 0.9984 1 0.96538 0.97083
Heart Disease 0.78154 0.66622 0.70459 0.73192 0.70461 0.70283 0.65969 0.66047
HCV 0.77193 0.67662 0.71719 0.72008 0.70907 0.7053 0.68271 0.69169
Parkinson 0.80118 0.75471 0.76685 0.78117 0.7674 0.76858 0.75761 0.7479
HCC 0.90882 0.75784 0.81409 0.83284 0.82426 0.82488 0.75784 0.79387

Mean value (F-test) 0.840313 0.745098 0.783917 0.799373 0.788918 0.789877 0.752545 0.759456
Overall ranking 1 8 5 2 4 3 7 6

Table 6. p-Values for The Classification Accuracy Based on Wilcoxon Test.

Dataset GOA GA PSO ALO WOA BOA SMA

Primry_Tumer 4.64 × 10−8 4.92 × 10−5 3.92 × 10−3 1.01 × 10−5 1.80 × 10−5 8.41 × 10−9 3.51 × 10−5

Hepatitis 8.84 × 10−10 9.49 × 10−7 2.58 × 10−5 1.98 × 10−6 3.35 × 10−5 3.80 × 10−10 1.30 × 10−6

Lymphography 5.99 × 10−8 2.06 × 10−5 1.76 × 10−3 9.50 × 10−6 1.17 × 10−4 9.24 × 10−9 2.84 × 10−5

Breast_Cancer 5.29 × 10−6 1.71 × 10−2 6.59 × 10−2 2.18 × 10−2 2.01 × 10−2 3.41 × 10−4 5.00 × 10−2

Echocardiogram 2.85 × 10−6 1.77 × 10−3 3.83 × 10−3 1.77 × 10−3 1.02 × 10−2 2.10 × 10−6 3.62 × 10−3

Fertility 5.51 × 10−2 1.42 × 10−1 4.34 × 10−1 2.19 × 10−1 2.21 × 10−1 4.89 × 10−2 8.41 × 10−2

Leaf 3.00 × 10−7 1.40 × 10−3 2.65 × 10−2 1.14 × 10−3 3.27 × 10−4 6.73 × 10−6 5.59 × 10−3

Lung_Cancer 4.30 × 10−2 4.30 × 10−2 4.14 × 10−2 4.51 × 10−1 8.58 × 10−1 4.30 × 10−2 8.77 × 10−2

Diabetic 3.18 × 10−11 5.79 × 10−11 3.47 × 10−10 1.80 × 10−5 2.36 × 10−5 3.52 × 10−11 6.36 × 10−10

ILPD 4.07 × 10−11 2.67 × 10−9 8.88 × 10−10 4.44 × 10−7 1.36 × 10−7 3.02 × 10−11 5.59 × 10−9

Cortex_Nuclear 2.88 × 10−11 2.88 × 10−11 4.28 × 10−11 1.62 × 10−6 9.40 × 10−7 2.89 × 10−11 5.30 × 10−11

Epileptic_Seizure 4.61 × 10−7 7.50 × 10−6 3.69 × 10−6 1.72 × 10−4 8.14 × 10−4 9.90 × 10−7 2.74 × 10−6

Promoter-gene 1.91 × 10−8 1.10 × 10−6 3.45 × 10−5 2.03 × 10−5 6.04 × 10−5 5.65 × 10−9 6.10 × 10−6

WDBC 5.95 × 10−11 2.00 × 10−10 8.41 × 10−9 1.90 × 10−9 7.90 × 10−10 1.08 × 10−10 2.74 × 10−10

Cervical cancer 1.09 × 10−10 2.47 × 10−7 1.16 × 10−3 4.21 × 10−5 1.05 × 10−5 1.21 × 10−8 7.34 × 10−7

Arrhythmia 8.95 × 10−11 2.77 × 10−7 2.68 × 10−5 2.02 × 10−7 2.28 × 10−7 2.19 × 10−7 7.96 × 10−7

Dermatology 1.21 × 10−12 1.19 × 10−12 4.36 × 10−12 3.06 × 10−4 2.15 × 10−2 1.21 × 10−12 5.35 × 10−11

Heart Disease 9.83 × 10−8 7.20 × 10−5 5.08 × 10−3 3.83 × 10−5 2.13 × 10−4 9.06 × 10−8 9.53 × 10−5

HCV 3.45 × 10−10 4.42 × 10−7 1.38 × 10−5 2.10 × 10−7 8.81 × 10−7 2.15 × 10−10 2.06 × 10−7

Parkinson 2.93 × 10−5 7.04 × 10−4 2.49 × 10−2 7.43E × 10−4 9.42 × 10−3 2.75 × 10−5 4.03 × 10−4

HCC 6.65 × 10−10 2.55 × 10−7 1.63 × 10−5 9.74 × 10−6 3.06 × 10−6 2.58 × 10−10 1.21 × 10−7

Furthermore, applying the MSS methods accelerates the searching of a promising
region and the best solution. Moreover, as can be noticed from Tables 5 and 6, the datasets
have a plurality of local optima, which implies a challenge to all optimization algorithms.
Therefore, the ability of an algorithm to balance exploration and development can be
distinguished. For example, the classification accuracy of the “Cortex_Nuclear” dataset
displayed different results among the algorithms. The best accuracy “underlined” was
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accomplished by IEOA with 99%, followed by PSO with a 95% accuracy value, WOA with
93%, ALO with 92%, then with GA 90%, SMA and BOA gave a similar accuracy with
81%, and lastly, GOA with an 80% accuracy value. The proposed IEOA is an adaptable
algorithm that searches for new promising areas, which is achieved by using the mutations
method in Equation (18). This method prevents the algorithm from dropping into a local
optima state.

Table 7. The Average Number of Selected Features for IEOA and Other Optimization Algorithms.

Dataset IEOA GOA GA PSO ALO WOA BOA SMA

Primry_Tumer 6.3667 7.9 7.9667 7.4667 7.5 6.2667 9.9333 10.0333
Hepatitis 3.3 7.9333 6.7333 5.6333 4.4 4.7333 9.7333 9.5
Lymphography 6.8333 9.1333 8.3333 6.8667 7.5333 7.4 10.4333 10.3667
Breast_Cancer 3.3 4.3667 4 3.6 3.6 3.9333 5.4333 4.2
Echocardiogram 1.9 4.3667 3.4667 2.6667 2.6 2 4.2667 4.6
Fertility 1.7667 2.3333 2.0333 1.6667 1.9667 1.8333 2.8667 2.3667
Leaf 5.1333 7.5333 6.8 5.9667 7.6333 7.3 9.7 9.8
Lung_Cancer 1.4 13.6 10.1 6.7333 3.1 1.7333 14.7333 14.3667
Diabetic 7.1 24.8333 23.8333 17.9667 10.9 10.7333 31.3 27.1667
ILPD 25 86.5667 84 86.7333 28.7 20.1 94.4 92.1333
Cortex_Nuclear 6.8 26.7333 25.4 19.1667 10.8 10.3 33.1 30.9333
Epileptic_Seizure 3.1333 12.7 9.2667 6.7 9.1 5.9667 15.6 14.5333
Promoter-gene 2.9333 14.1 11.4 8.0667 5.6667 4.9333 16.1333 15.3667
WDBC 8.4333 16.9667 15.0667 11.4667 15.5333 14.3333 21.2 18.8667
Cervical cancer 3.4667 5.7 5.2 4.4667 4.1 3.4 6.9333 6.1333
Arrhythmia 4.4333 13.3 9 7.5333 6.9333 7.8 15.3 14.2
Dermatology 1.0333 12.9667 9.1333 5.7333 2.5333 1.3667 14.5333 15.0333
Heart Disease 54 133.5333 128.5 116.0333 100.1667 76.7667 167.2 153.5
HCV 5.1333 9.5333 7.6333 6.9667 8.3 7 11.5 9.9667
Parkinson 2.9333 4.6667 3.9 3.5333 3.5333 3.1 5.0667 5.0333
HCC 5 22.7667 17.3 13.5333 8.1667 6.0333 27.0667 24.7667

Mean value (F-test) 7.590467 21.0254 19.00317 16.59524 12.0365 9.858724 25.06825 23.46984

Overall ranking 1 6 5 4 3 2 8 7

Table 8. The Average of Fitness Function for IEOA and Other Optimization Algorithms.

Dataset IEOA GOA GA PSO ALO WOA BOA SMA

Primry_Tumer 0.11686 0.22935 0.18754 0.1541 0.18818 0.19233 0.21784 0.20331
Hepatitis 0.10587 0.27093 0.20966 0.18955 0.20802 0.19362 0.26981 0.23875
Lymphography 0.20972 0.42363 0.35251 0.31227 0.35616 0.33815 0.42015 0.39276
Breast_Cancer 0.016247 0.033138 0.023773 0.021443 0.0238 0.02417 0.029137 0.027767
Echocardiogram 0.016475 0.073777 0.038146 0.042677 0.049869 0.049505 0.076406 0.059303
Fertility 0.055133 0.10819 0.091359 0.087652 0.094585 0.094437 0.098885 0.11483
Leaf 0.18558 0.31352 0.24261 0.22752 0.24986 0.2591 0.30204 0.27245
Lung_Cancer 0.008446 0.051929 0.043054 0.061702 0.019804 0.01956 0.043881 0.052065
Diabetic 0.003988 0.19643 0.10056 0.052708 0.076346 0.070317 0.18859 0.18365
ILPD 0.44605 0.50009 0.48287 0.47821 0.46927 0.46944 0.50366 0.50098
Cortex_Nuclear 0.001135 0.21409 0.12986 0.059163 0.085295 0.074407 0.18731 0.17763
Epileptic_Seizure 0.025379 0.048316 0.040793 0.043411 0.038411 0.039114 0.048714 0.043717
Promoter-gene 0.017753 0.053989 0.039372 0.033431 0.033897 0.036003 0.05071 0.048573
WDBC 0.002966 0.042722 0.019792 0.012341 0.013587 0.018585 0.024247 0.021801
Cervical cancer 0.082137 0.21216 0.15556 0.12321 0.14249 0.14439 0.185 0.1905
Arrhythmia 0.63621 0.69967 0.67386 0.66761 0.67196 0.67247 0.68971 0.69501
Dermatology 0.000357 0.042073 0.011512 0.005538 0.002491 0.000488 0.03946 0.034244
Heart Disease 0.21861 0.33523 0.29706 0.26956 0.29603 0.29695 0.3429 0.34164
HCV 0.24217 0.32516 0.284 0.28079 0.29239 0.29543 0.32017 0.31047
Parkinson 0.19997 0.2475 0.23472 0.22017 0.23381 0.23221 0.24504 0.25462
HCC 0.091054 0.24438 0.18758 0.16825 0.17564 0.1746 0.24526 0.20912

Mean value (F-test) 0.12772 0.222204 0.183152 0.167205 0.177233 0.175966 0.215663 0.208247

Overall ranking 1 8 5 2 4 3 7 6
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Furthermore, the MNM strategy improved the local search of the IEOA by mining the
promising area and exploring for a superior solution. Figures 4 and 5 display graphical
representations of the convergence curves. The convergences curves also need to be con-
sidered to evaluate the convergence speed of IEOA and the other optimization algorithms.
In cases where the optimization algorithm cannot balance the exploration and exploitation
in all iterations, it likely to converge to the local optimum. It can be observed from the
convergence-curve results that IEOA accomplished a superior speed to all other algo-
rithms, which implies the superiority of IEOA in processing different dimension datasets.
Moreover, the effectiveness of the proposed MSS search strategies was notable, switching
from exploration to exploitation search in the midpoint of iterations (from iteration 25 to
the maximum iteration 50), and increasing the convergence speed in all cases. A brief
comparison of IEOA with the other algorithms by calculating the average classification
accuracy, selected features, and fitness value for all experiments is shown in Table 9.

Figure 4. Convergence curves for the improved IEOA in comparison with all baseline algorithms for 50 iterations.

Figure 5. Cont.
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Figure 5. Convergence curves for high dimensional feature datasets.

Table 9. Brief comparison of IEOA with all algorithms based on the average accuracy, features, and
fitness.

Algorithms Accuracy Features Fitness

EOA 1.69% 0.203% 1.59%
GOA 9.52% 13.43% 9.45%
GA 5.64% 11.41% 5.54%
PSO 4.09% 9.003% 3.95%
ALO 5.14% 4.44% 4.95%
WOA 5.04% 2.26% 4.82%
BOA 8.78% 17.47% 8.79%
SMA 8.09% 15.87% 8.05%

Average 6.00% 9.26% 5.89%

6.3. Limitations of the Proposed IEOA

Our proposed algorithm, IEOA, can solve high-dimensional and complex optimiza-
tion problems. It has an edge over the original EOA, and this includes improving the
classification accuracy and fitness value, and reducing the number of selected features.
However, similarly to other optimization algorithms, IEOA has some limitations. The main
limitation is the comparatively high-time consumption in comparison with the other algo-
rithms. Nonetheless, the high-time consumption originated from the original EOA, and
the proposed improvements had a marginal impact on the computational complexity of
IEOA. An additional limitation is associated with the number of iterations in the proposed
MSS. As such, we believe that the time complexity of IEOA can be reduced by replacing
ten iterations of MSS with a less complicated solution.

7. Conclusions and Future Work

The equilibrium optimization algorithm (EOA) is a novel population-based optimiza-
tion algorithm. EOA was inspired by the physics-based equation of mass balance. This
study introduces an improved version of EOA, named IEOA, which adds two main im-
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provements to the original EOA: (1) applying the EOBL method, and (2) employing MMS
search strategies, including the mutation method, mutation MNM search, and backup
strategies. These improvements significantly enhance the exploration and exploitation
searches of IEOA. In particular, the use of EOBL improves the population diversity, whereas
MMS strategies prevent trapping in local optima. Furthermore, IEOA maintains a good
balance when transferring between global and local search. We used 21 medical benchmark
datasets from the UCI repository to evaluate the performance of IEOA. In particular, ten
average-dimensional and eleven high-dimensional datasets were used. Furthermore, we
compared IEOA with well-regarded and recent optimization algorithms, such as GOA,
GA, PSO, ALO, WOA, BOA, and SMA. The comparison was conducted considering four
evaluation metrics: classification accuracy, fitness value, number of selected features, and
p-value. The experiment results confirmed the superiority of IEOA over all other algo-
rithms by these metrics. Furthermore, the results showed the capabilities of IEOA to
improve the computational accuracy and to speed up the convergence rate. Additionally,
the results proved the ability of IEOA to minimize the number of features selected for
the majority of the twenty-one datasets. These obtained results indicate that IEOA can be
employed as a capable technique for real-world feature selection datasets having average
and high-dimensional features. Additionally, IEOA has the ability to succeed in many
other fields, such as engineering problems, data science, data mining, and many more
implementations. For future work, there are several ways that the IEOA could be expanded
to deal with different real-world datasets, for example, using IEOA along with the filter
feature selection method. Additionally, the performance of IEOA could be developed
by utilizing other classifiers such as support vector machine (SVM) or artificial neural
networks (ANN). Additionally, improving the computational time can be considered in
future work. The proposed IEOA performance could be tested on the CEC 2017 and CEC
2020 benchmark problems [58]. Finally, EOBL and the proposed MSS techniques could be
applied to develop other optimization algorithms.
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