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Abstract: Thermal ablation is a minimally or noninvasive cancer therapy technique that involves
fewer complications, shorter hospital stays, and fewer costs. In this paper, a thermal-ablation bioheat
model for cancer treatment is numerically investigated, using a porous media-based model. The
main objective is to evaluate the effects of a variable blood volume fraction in the tumoral tissue (i.e.,
the porosity), in order to develop a more realistic model. A modified local thermal nonequilibrium
model (LTNE) is implemented including the water content vaporization in the two phases separately
and introducing the variable porosity in the domain, described by a quadratic function changing
from the core to the rim of the tumoral sphere. The equations are numerically solved employing
the finite-element commercial code COMSOL Multiphysics. Results are compared with the results
obtained employing two uniform porosity values (ε = 0.07 and ε = 0.23) in terms of coagulation zones
at the end of the heating period, maximum temperatures reached in the domain, and temperature
fields and they are presented for different blood vessels. The outcomes highlight how important is to
predict coagulation zones achieved in thermal ablation accurately. In this way, indeed, incomplete
ablation, tumor recurrence, or healthy tissue necrosis can be avoided, and medical protocols and
devices can be improved.

Keywords: bioheat transfer; hyperthermia; thermal ablation; porous media; variable porosity;
numerical simulations

1. Introduction

Thermal ablation is increasingly recognized as an important alternative in cancer
treatments, for which the most common procedures applied are surgery, chemotherapy,
and radiotherapy. Nevertheless, these common techniques pose critical issues such as they
are too invasive for the human body, can reveal serious side effects, and are expensive in
terms of financial costs for the national health service. Thermal ablation of tumors, instead,
is a minimally invasive treatment option for cancer, which presents some advantages such
as minor side effects, shorter hospital stays, and consequently lower costs [1–3]. It consists
of focusing an energy source (commonly radiofrequency or microwave) in the target zone
(the tumoral tissue) by means of a probe that causes the tissue destruction. Generally, the
complete necrosis of tissue happens instantaneously at temperatures over about 60 ◦C, but
lower temperatures with longer exposure times can be achieved [4]. The most common
approach is a percutaneous treatment performed with the aid of imaging techniques. On
the other hand, the main shortcoming of performing a thermal ablation is not achieving
complete tissue ablation; therefore, the risk of a tumor recurrence is increased. In this
context, in-depth knowledge of thermal therapy physics has a key role in modeling heat
transfer in thermal therapies in order to develop increasingly accurate bioheat models
for clinical applications [5], predicting the final necrotic tissue diameters and volumes.
Over the years, various bioheat models have been proposed by the researchers, since 1948,
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when H. Pennes developed the first bioheat equation [6], which is still widely used for its
simplicity but which reveals critical shortcomings due to the assumptions made, such as
the perfusion rate is uniform in the tissue, the blood flow direction, and the artery–vein
countercurrent arrangements are neglected, the arterial blood is considered at a constant
temperature of about 37 ◦C, while the venous blood is in thermal equilibrium with tissue.

Thus, different models applied to thermal therapies have been developed trying to
overcome these limitations, and they have been resumed in various review studies [7–10].
Furthermore, other thermodynamic approaches to cancer cell behaviors have been devel-
oped, such as the application of the constructal law [11,12]. According to a comparison
made among the principal bioheat models [13], the most promising that combines good
accuracy and acceptable complexity is the porous media-based [14] local thermal nonequi-
librium model (LTNE), which was developed in 1997 by Xuan and Roetzel [15] and then
modified during the years by different authors in order to take into consideration different
vascular arrangements, tissue properties, and thermal treatments applications. Khaled
and Vafai [16] discussed different diffusive applications and momentum transport by con-
vection in porous media and concluded that the theory of porous media for heat transfer
in biological tissues is the most appropriate since it contains fewer assumptions, com-
pared to different bioheat models. Khanafer and Vafai [17] analyzed the development
of the diffusion equation using local volume-averaging technique and the evaluation of
the applications associated with the diffusion equation, such as works associated with
magnetic resonance imaging and drug delivery. The aim was to develop new porous
media-based models in biomedical applications. Nakyama and Kuwahara [18] developed
a general set of bioheat transfer equations for blood flows and its surrounding biologi-
cal tissue employing the volume averaging theory in the field of fluid-saturated porous
media. They extended the two-energy equation model to a three-energy equation model
in order to include the countercurrent heat transfer between closely spaced arteries and
veins in the circulatory system and its effect on the peripheral heat transfer. Keangin
and Rattanadecho [19,20] analyzed the heat transport on local thermal nonequilibrium in
the porous liver and developed a two-layered porous model to study heat transfer and
blood flow in an ex vivo liver tissue treated with microwave ablation. They compared
two different antennas, (one slot vs. two slots), predicting numerically the temperature
profiles, blood velocity, and coagulation zones, concluding that using a double slot antenna
provides a wider region in porous liver than the single slot one. Dombrovsky et al. [21,22]
developed a combined thermal model for transient temperature field during laser heating
of embedded gold nanoparticles. They coupled a modified two-flux approximation model
for the radiative heat transfer and a local thermal equilibrium equation for the temperature
field. The authors concluded that the required uniform heating can be achieved even
without gold nanoshells or other invasive procedures for some superficial tumors. Finally,
Andreozzi et al. [23] developed a novel local thermal nonequilibrium model for biological
tissue applied to multiple-antenna configurations for thermal ablation, using a porous
media-based model modified in order to include water vaporization in tissue and blood
separately based on their different water content.

According to the porous media theory, the biological medium can be divided into two
different phases coexisting in the same domain, namely, the “tissue phase” and the “blood
phase,” respectively. The first consists of cells and interstitial spaces among them, while
the second one represents the blood vessels that infiltrate throughout the tissue. Moreover,
the porosity is the blood volume fraction in the entire biological tissue domain, and it is a
relevant parameter, especially when large vessels are considered.

In this work, in the following Material and Methods Section, a modified LTNE model
is implemented in order to include the water content vaporization in the two phases
separately and to introduce a variable porosity in the domain, described by a quadratic
function based on the in vivo experimental measures made by Stewart et al. [24] in a
rabbit liver tumor model. In the Results and Discussion Section, the results in terms of
temperature fields and final coagulation diameters obtained are shown, comparing the
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variable-porosity model to the same model implemented employing uniform porosity
values in the domain. The outcomes show very similar coagulation zones achieved for
the two smallest blood vessels, whereas for the two largest vessels, the variable porosity
model produces about the same results of using the smallest uniform porosity value,
while the differences between the variable porosity model and the largest porosity yield
bigger deviations as larger blood vessels are taken into account. The goal is to appreciate
differences among the models, highlighting the key role of developing increasingly realistic
bioheat models in thermal ablation of tumoral tissues in order to predict the coagulation
zones achieved accurately.

2. Materials and Methods

The computational domain of tumoral tissue is represented by two concentric spheres
displayed in Figure 1. The external sphere radius r1 = 3.10 cm defines the tissue boundary,
while the inner sphere radius r2 = 0.620 cm is the heating volume; hence, the total heating
volume is equal to 1 cm3.
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Figure 1. Geometry of the physical domain.

Moreover, a 2D axisymmetric configuration can be employed as shown in Figure 2;
indeed, on the one hand, the computational time is small such as for a 1D case, and
therefore, the computational time can be reduced, compared to a 3D configuration. On
the other hand, the aim of building a 2D axisymmetric model is to obtain a general model
that can be applied to more complicated cases in the future plans, such as irregular tumor
shapes, nonuniform properties, the inclusion of the effect of a single large vein near the
tumor, etc.
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A modified porous media model is used to evaluate the heat transfer in the biological
domain. This is based on the porous media theory [13], according to which the biological
medium can be divided into two different phases coexisting in the same domain. The first
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one is the tissue phase, which includes cells and interstitial spaces, and the second one is the
blood phase, represented by the blood vessels that permeate in the tissue. Moreover, a local
thermal nonequilibrium model is implemented and modified to include the vaporization
of the two distinct phases water contents separately, as in [23]. Therefore, two different
equations can be written for the two phases as follows.

For the blood phase:

εvar(ρc)b

(
∂〈Tb〉

∂t
+ β〈u〉 · ∇〈Tb〉

)
= εvarkb∇2〈Tb〉+ hca(〈Tt〉 − 〈Tb〉) + εvarQext (1)

For the tissue phase:

(1− εvar)(ρc)t
∂〈Tt〉

∂t
= (1− εvar)kt∇2〈Tt〉 − hca(〈Tt〉 − 〈Tb〉) + (1− εvar)Qext (2)

where εvar is the variable porosity in the tumoral tissue, namely, the blood volume fraction
in the entire tissue volume, and it will be described in the following paragraph, ρ is
the density, c the specific heat, Tt and Tb are the tumoral tissue and blood temperatures,
respectively, t is the time, u is the blood velocity vector, hc is the interfacial heat transfer
coefficient, and a is the volumetric transfer area between tissue and blood, evaluated from
the hydraulic diameter definition in porous media as

a =
4εvar

d
(3)

where d is the blood vessel diameter. In this work, four different blood vessels’ dimensions
are considered, using the results from the work of Crezee and Lagendijk [25]. Thus, the
focus is on a wide range of diameters and corresponding blood velocities, from capillaries
and terminal arteries to terminal branches and tertiary branches.

As regards the porosity, the novelty of the developed model is to consider a variable
porosity function that changes from the core to the rim of the tumoral sphere, according
to the experimental in vivo measures made by Stewart et al. [24] in a rabbit liver tumor
model. The function takes into account the minimum and maximum blood volume fraction
measured values in the core and in the rim of tumoral tissue, respectively, 16 days after
the initial tumor detection. A quadratic law is assumed to describe the function behavior
as follows:

εvar =

(
εmax − εmin

r1
2

)
· r2 + εmin +

(
εmax − εmin

r1
2

)
· z2 + εmin (4)

where εmin = 0.07 and εmax = 0.23. In Figure 3 the variable porosity field in a slice of the
spherical domain is displayed. From the figure it is clear the increase of porosity from
the very small values in the core to the larger values in the rim, highlighting the different
vascularization between the two zones. In the next Results Section, the variable porosity
case will be compared to uniform porosities set equal to 0.07 and 0.23, and therefore, the
minimum and maximum values of the experimental measures range.

As regards the value used for the interfacial heat transfer coefficient hc, it is assumed
to be constant and equal to 170 W m−2 K−1, as in Yuan [26]. Table 1 summarizes all the
blood velocities with the related investigated blood vessel diameters.

Table 1. The investigated blood vessel diameters and consequent blood flow velocities.

d (µm) u (cm s−1)

Capillaries 8 0.07
Terminal arteries 30 0.40

Terminal branches 50 2.00
Tertiary branches 140 3.40
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Furthermore, Qext in Equations (1) and (2) represents a generic external power density
applied to the tumoral tissue during the treatment, and the symbol <> means that the
volume-averaged quantity of a generic variable is considered. Concerning the fluid phase,
a uniform blood velocity is assumed in all directions in order to reproduce a more realistic
in vivo vessel network.

Moreover, in order to include the effects of tumoral tissue coagulation as the treatment
advances, the blood velocity is assumed to become zero as the tissue is completely dam-
aged, and therefore, the β coefficient is inserted into Equation (1), and it assumes the two
values 0 or 1 depending on the thermal damage function Ω defined by using the Arrhenius
model [27]. According to this model, the damage is obtained from an exponential relation-
ship between tissue exposure temperature, time, and parameters generally provided by
experimental studies on cells survivability as follows:

Ω(ttot) =

ttot∫
0

Ae−
∆E

RTt(t) dt (5)

where A and ∆E are the frequency factor and the activation energy for the irreversible damage
reaction, respectively, and R is the universal gas constant. In this work, A = 3247 × 1043 s−1

and ∆E = 2814× 105 J mol−1, as in [28]. These parameters are available for different tissues,
and they have been obtained fitting known exposure times and temperatures with cell
surviving probabilities. In the Arrhenius model, if Ω = 1, a 68% of cell death probability
is achieved; hence, to have a more accurate prediction of the coagulation zone dimensions,
thermal damage is evaluated using the D99 thermal damage contour, considering the isoline
at Ω = 4.6, which fits for obtaining the 99% cell death probability. Thus, the β coefficient will
be 1 for Ω < 4.6 and 0 for Ω = 4.6.

As previously mentioned, the LTNE model is modified to include the water content
vaporization in both blood and tissue phases separately by employing the enthalpy method
shown by Abraham and Sparrow [29]. Manipulating the equations, the term (ρc) referred
to blood and tissue in Equations (1) and (2) becomes

(ρc)b,t =


ρlcl 0 ◦C < Tb,t ≤ 99 ◦C

h f gCw
∆Tb,t

99 ◦C < Tb,t ≤ 100 ◦C
ρgcg Tb,t > 100 ◦C

(6)

where the subscript l is used for properties values at the temperature below 100 ◦C (liquid
phase), the subscript g indicates that properties values are referred to as the temperature
above 100 ◦C (gas phase), hfg is the product of water latent heat of vaporization and water
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density at 100 ◦C (2.17 × 109 J m−3), and Cw is the water content inside the tumoral liver
tissue (81%) or in the blood (79%), as found in the literature [30,31]. The temperature
difference ∆Tb,t is assumed to be 1 ◦C [29].

As regards the initial conditions, the temperature value is assumed to be uniform
throughout the domain and equal to 37 ◦C for both tissue and blood. As regards boundary
conditions, for t > 0, temperature is fixed at 37 ◦C on the external contour since the
dimensions of the domain are large enough to neglect boundary effects from surroundings,
while the adiabatic condition is maintained on the symmetry axis because of the axial
symmetry of the model.

Thermal properties are supposed to be isotropic in the domain, and their values are
taken from Zhang et al. [28] and Trujillo et al. [32], as shown in Table 2.

Table 2. Tumoral tissue and blood thermal properties.

ρ (kg·m−3) c (J·kg−1·K−1) k (W·m−1·K−1)

Tumor 1045 3760 0.600
Blood 1000 3639 0.502

The provided power density value is Qext = 5 × 106 W m−3 with a heating time of
100 s, and hence, the resulting total energy provided to the tissue is 500 J.

The LTNE equations are numerically solved employing the finite-element commercial
code COMSOL Multiphysics. An 8768-elements triangular mesh is used, and the grid
convergence is verified on the maximum temperatures obtained for the lowest porosity
and blood velocity in order to consider the highest values of temperature. From Table 3
below, negligible temperature differences are shown. PARDISO direct solver is employed
to solve governing equations, and second-order Lagrangian elements are used to discretize
equations. Moreover, the absolute tolerance chosen for the transient solver is 0.0001, while
the time-stepping method is the intermediate backward differentiation formulas (BDF) with
initial and maximum steps of 0.001 s and 0.1 s, respectively. As for the grid convergence,
the effect of different time steps is verified on the maximum temperatures achieved for the
lowest porosity and blood velocity, and in Table 4, the results confirm the choice made.

Table 3. Maximum tissue temperatures evaluated for different triangular elements of the mesh.

Number of Triangular Elements Maximum Tissue Temperature

2192 99.101 ◦C
4384 99.100 ◦C
8768 99.098 ◦C

17536 99.097 ◦C

Table 4. Maximum tissue temperatures evaluated for different maximum time steps employed.

Time Step Maximum Tissue Temperature

0.05 s 99.094 ◦C
0.10 s 99.098 ◦C
0.20 s 99.184 ◦C
0.40 s 99.187 ◦C

In order to validate the model, tissue temperature is evaluated at the center of the
sphere and compared with results obtained by Yuan [26] for two concentric cubic domains
having the same volumes of the used values in this work for the external sphere and
internally heated sphere; thus, the external power density does not change. In Figure 4, the
validation of the model is displayed, and the tissue temperature profiles are reported for
the two extreme heating conditions and porosities used by Yuan [26], taking into account
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three different blood velocities. It is clear from Figure 4 the agreement between the two
models in all the cases.
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3. Results and Discussion

The results achieved using a variable porosity function are compared with the results
obtained employing two uniform porosity values (ε = 0.07 and ε = 0.23) in terms of coagula-
tion zones at the end of the heating period, maximum temperatures reached in the domain,
and temperature fields. Moreover, the outcomes are presented for the different blood
vessels previously mentioned, namely, capillaries, terminal arteries, terminal branches, and
tertiary branches, which correspond to four different blood velocities and vessel diameters.
This kind of evaluation is relevant to investigate different behaviors between small vessels
and large vessels. Figure 5 displays the coagulation zones obtained considering the 99% of
cell death probability for the variable porosity and the two uniform porosity values.

The first result to highlight is that very similar coagulation zones are achieved for the
two smallest blood vessels, namely, capillaries and terminal arteries; indeed, the maximum
difference is about 4% for terminal arteries. However, for the two largest vessels, i.e.,
terminal branches and tertiary branches, the variable porosity model yields about the same
results of using the uniform porosity value ε = 0.07, with a maximum percentage difference
of about 3% for tertiary branches.

On the other hand, the uniform porosity value ε = 0.23 results in smaller coagulation
zones, compared to the other two cases, i.e., from about 3.9 mm smaller for terminal
branches to 1.16 cm smaller for tertiary branches, in which the complete cell death is not
reached for ε = 0.23.

In this case, indeed, the larger the porosity value, the larger the convective loss
contribution of the mass blood flux, and therefore, the removed heat from the tissue is
larger as well, and lower tissue temperatures are achieved. Comparing the results at
the same porosity values, a gradual decrease of coagulation diameter can be noticed as
the vessel diameters increase, due to the larger heat sink effect of blood, which causes
temperature decrease and consequently smaller coagulation zones. All the values of
coagulation diameters obtained in the different cases are resumed in Table 5.

As regards tissue temperature reached, the first result investigated concerns the
maximum tissue temperatures obtained in order to have a clear overview of the temperature
peaks. This is relevant, indeed, to prevent high-temperature peaks due to the shortcomings
that they involve, such as the continuous roll-offs in radiofrequency ablation [32], the steam
popping phenomenon [33], and the risk of damaging the surrounding healthy tissue or the
medical probes employed.
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Figure 5. Axisymmetric view of thermal damage percentage evaluated after 100 s of thermal treat-
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Table 5. Coagulation diameters obtained for the different porosity models.

Coagulation Diameter dc (cm)

ε = 0.07 ε = 0.23 εvar

Capillaries 1.40 1.40 1.40
Terminal arteries 1.40 1.32 1.40

Terminal branches 1.24 0.81 1.20
Tertiary branches 1.20 0.00 1.16

In Figure 6, the maximum tissue temperatures are displayed for all the cases. As
previously happened for the final coagulation diameter obtained, the temperature peaks
reached, considering a vascular network made up of capillaries or terminal arteries, i.e.,
very small vessels, are identical in all the cases. Considering larger blood vessels, instead,
the only difference between the variable porosity model and the uniform porosity ε = 0.07
is about 2.6 ◦C higher temperature for tertiary branches when the uniform porosity is
included, confirming the results shown for coagulation zones. Moreover, the uniform
porosity ε = 0.23 leads to completely different results, with lower temperature peaks than
the variable porosity model, of about 22.6 ◦C and 41.7 ◦C for terminal branches and tertiary
branches, respectively.

In this case, as regards larger blood vessels, the difference between the variable
porosity model and the largest porosity yields bigger deviations as larger blood vessels
are taken into account. This is because the larger the blood vessels and consequently the
blood velocities are, the larger the heat sink effect of blood and the smaller the tissue
temperature achieved. In order to have a clear overview of all the aforementioned aspects,
in Figure 7, temperature fields obtained at the end of the heating time are shown for
all the cases of porosities and blood vessel diameters. From Figure 7, it is clear that
the temperature decreases as the blood vessel diameters increase in all the cases. While
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the same temperature fields and coagulation diameters can be observed for all the cases
considering capillaries and terminal arteries, the uniform porosity ε = 0.23 yields very
lower temperatures and coagulation zones than uniform porosity ε = 0.07 and variable
porosity model when terminal branches and tertiary branches are included. However, the
uniform porosity ε = 0.07 results in slightly higher temperatures and coagulation diameters,
compared to the variable porosity model for the two largest blood vessels. Furthermore, the
symmetry of the coagulation zones along the r and z directions can be observed; therefore,
the evaluation of coagulation diameters does not differ in the two directions.
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4. Conclusions

A thermal-ablation bioheat model for tumoral tissue was numerically investigated. A
modified LTNE model was implemented in order to include the water content vaporization
in the two phases separately and to introduce a variable porosity in the domain, described
by a quadratic function that changes from the core to the rim of the tumoral sphere. The
mathematical model was solved employing the finite-element commercial code COMSOL
Multiphysics. The computational domain of tumoral tissue consists of two concentric
spheres; the external sphere defines the tissue boundary, while the inner sphere is the
heating volume.

Results were compared with the results obtained employing two uniform porosity
values (ε = 0.07 and ε = 0.23) in terms of coagulation zones at the end of the heating period,
maximum temperatures reached in the domain, and temperature fields and they have
been presented for different blood vessels, namely, capillaries, terminal arteries, terminal
branches, and tertiary branches, which correspond to four different blood velocities and
vessel diameters. Very similar coagulation zones are obtained for the two smallest blood
vessels, whereas for the two largest vessels, the variable porosity model produces about
the same results of using the uniform porosity value ε = 0.07. As regards the maximum
tissue temperature reached, they are identical in all the cases for capillaries or terminal
arteries. The only difference between the variable porosity model and the uniform porosity
ε = 0.07 is about 2.6 ◦C higher temperature for tertiary branches when the uniform porosity
is included. The uniform porosity ε = 0.23 leads to completely different results, with lower
temperature peaks than the variable porosity model. The difference between the variable
porosity model and the largest porosity yields bigger deviations as larger blood vessels
are taken into account. This is because the larger the blood vessels and consequently
the blood velocities are, the larger the heat sink effect of blood and the smaller the tissue
temperature achieved. These outcomes highlight the importance of developing increasingly
realistic bioheat models in thermal ablation of tumoral tissues in order to predict the
coagulation zones achieved accurately. In this way, the main risks of thermal ablations
such as incomplete ablation, tumor recurrence, or healthy tissue necrosis can be avoided.
Moreover, due to more accurate models, thermal ablation protocols and medical devices
can be improved and adapted to different organs and patient profiles.
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Nomenclature

a Volumetric transfer area (m−1)
A Frequency factor (s−1)
c Specific heat (J kg−1 K−1)
Cw Water content (%)
d Diameter of the blood vessel (m)
dc Coagulation diameter (m)
hc Interfacial heat transfer coefficient(W m−2 K−1)
hfg Product of water latent heat of vaporization and water density at 100 ◦C(J m−3)
k Thermal conductivity (W m−1 K−1)
Qext External power density (W m−3)
r Radial coordinate (m)
r1 Radius of the external sphere (m)
r2 Radius of the internally heated sphere (m)
R Universal gas constant (J mol−1 K−1)
t Time (s)
T Temperature (K)
u Blood velocity vector (m s−1)
x, y, z Spatial coordinates (m)
Greek symbols
β Coefficient (-)
∆E Activation energy (J mol−1)
ε Porosity (-)
ρ Density (kg m−3)
Ω(t) Degree of tissue death (-)
Subscripts
b Blood
max Maximum
min Minimum
t Tissue
tot Total
var Variable
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