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Abstract: In Systems Biology, the complex relationships between different entities in the cells are
modeled and analyzed using networks. Towards this aim, a rich variety of gene regulatory network
(GRN) inference algorithms has been developed in recent years. However, most algorithms rely solely
on gene expression data to reconstruct the network. Due to possible expression profile similarity,
predictions can contain connections between biologically unrelated genes. Therefore, previously
known biological information should also be considered by computational methods to obtain more
consistent results, such as experimentally validated interactions between transcription factors and
target genes. In this work, we propose XGBoost for gene regulatory networks (XGRN), a supervised
algorithm, which combines gene expression data with previously known interactions for GRN
inference. The key idea of our method is to train a regression model for each known interaction of
the network and then utilize this model to predict new interactions. The regression is performed by
XGBoost, a state-of-the-art algorithm using an ensemble of decision trees. In detail, XGRN learns
a regression model based on gene expression of the two interactors and then provides predictions
using as input the gene expression of other candidate interactors. Application on benchmark
datasets and a real large single-cell RNA-Seq experiment resulted in high performance compared
to other unsupervised and supervised methods, demonstrating the ability of XGRN to provide
reliable predictions.

Keywords: gene regulatory networks; gene expression; XGBoost; regression

1. Introduction

A main direction in the Systems Biology field is detecting and studying the complex
relationships between different molecules in the cell. For this, network modeling has
been extensively used to analyze the interactions between genes, mRNAs, proteins or
metabolites [1], as well as other entities, such as diseases [2,3] or drugs [4,5]. This approach
has generated the Network Medicine field, where complex diseases are analyzed, which
can concurrently affect many genes [6–8]. To study cell mechanisms, an abundance of large-
scale gene expression experiments were conducted using microarray or RNA sequencing
(RNA-Seq) techniques, and data are available via publicly accessible databases. The gene
regulatory network (GRN) inference problem refers to reconstructing a network consisting
of interactions between transcription factors (TFs) and their target genes. TFs are proteins
that bind to DNA and regulate the expression of the genes, i.e., they can activate or inhibit
the transcription.

Substantial research interest has attracted the de novo GRN inference, namely, to con-
struct a network based only on gene expression data. Towards this, a plethora of algorithms
has been developed utilizing various mathematical and computational methods in the
last two decades. Initial efforts focused on finding expression similarities via correlation
(e.g., WGCNA [9]) or mutual information (MI) (e.g., ARACNE [10], CLR [11]) and more
recently, other variations of them, such as sparse correlation [12], conditional MI [13,14]
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and partial information decomposition [15]. Several studies tried to model the gene tran-
scription process using linear [16,17] or non-linear [18,19] ordinary differential equations
or stochastic differential equations [20]. Other approaches used Boolean networks [21],
statistical/probabilistic methods, for instance, Gaussian graphical models [22], Bayesian
networks [23–26], and regression analysis (such as linear regression [27], Lasso regres-
sion [28,29], least angles regression [30]). Another category is relying on machine learning
methods, for example, support vector machines (SVM) (e.g., SIRENE [31]), random forest
(e.g., GENIE3 [32], Jump3 [33]), XGBoost [34,35] and neural networks [36]. Finally, methods
for more specific problems have been developed, such as a method using deep neural
networks on microscopy images recording spatial gene expression [37] or a method to
jointly learn GRNs in different species using orthology and Bayesian inference [38]. Several
reviews are available on the topic [39–42], showing that each method makes different
assumptions and takes advantage of different biological characteristics. Thus it can be most
effective on specific data or problems. In [42], an extensive comparison was performed,
and it was concluded that the performance is highly variable on different data, confirming
the “no free lunch theorem”.

Moreover, the GRN reconstruction algorithms can be categorized based on two inter-
esting characteristics, locality and supervision [41]. Regarding locality, algorithms can be
characterized as global if the same approach is applied on all genes and as local if specific
characteristics of each node are taken into account. An example of locality improving net-
work inference results is the pair of unsupervised algorithms ARACNE [10] and CLR [11].
In ARACNE, first, pair-wise MI is calculated, and then a network pruning step follows
to eliminate indirect connections, while in CLR, an adaptive background correction step
is performed before pruning to keep interactions that are important for both connected
nodes. Another widely used local GRN algorithm is GENIE3 [32], which handles each
gene separately. Specifically, for each target gene, considering all other genes as candidate
regulators (or a subset of genes if a list of TFs is given), a random forest is trained using
the target’s expression as output and regulators’ expression as input, and subsequently,
the variable importance measure of the trained model is used to evaluate the rank of the
potential regulators for the target gene.

Supervision refers to the inclusion of prior knowledge to improve modeling. Hence
algorithms can be divided into supervised and unsupervised. Considering that human
gene expression data contain measurements of about 20,000 genes, usually in few hundreds
of samples, this consists of a “large p small n” problem. Thus inferring a biologically mean-
ingful GRN relying solely on gene expression data is an extremely hard computational task.
Therefore, supervised methods have emerged, which can provide more accurate results
since embedding a priori knowledge in the form of experimentally validated interactions
can lead to the exclusion of spurious interactions between biologically unrelated genes,
despite possible expression profile similarity [43]. Examples include [44], where functional
associations were used as priors to solve an optimization problem, and [45], which used
network motifs to learn probabilistic graphical models. Of great interest is the machine-
learning category because, by their nature, these methods are based on supervised learning
algorithms. A characteristic example is the SVM-based method SIRENE [31], which solves
a classification problem separately for each TF to determine if a gene is its target a or not.
The operation of SIRENE requires as input a list of known TFs and their targets as positive
examples, while due to the absence of negative examples, a cross-validation scheme is used
on the unknown genes, considering a data subset as non-interacting examples. Finally,
classification is performed using the expression of the unknown genes to predict their
category (targets or non-targets).

Focusing on ensemble tree methods, i.e., random forest and XGBoost, they have been
successfully applied in a wide range of Systems Biology problems, but in most cases, in an
unsupervised mode. In detail, random forest models have been trained in order to obtain
variable importance measurements and select the most discriminative variables; for in-
stance, to rank single-nucleotide polymorphisms (SNPs) [46] or microRNAs [47] according
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to the relationship with a disease, to detect differentially expressed pathways between two
conditions [48] and for GRN in GENIE3 method [32] as previously described. Similarly, XG-
Boost has been used to classify subpathways and select the most discriminative ones with
variable importance [49]. For GRN, in GRNBoost2 [34], the same approach with GENIE3 is
followed simply by replacing random forest with XGBoost, while in BiXGBoost [35], the
same concept is used in two directions to select both the best regulators and targets for each
gene. However, from a machine learning perspective, there are two distinct phases, model
training on some labeled data and prediction on new unlabeled data. In the aforementioned
applications, models are trained to obtain the variable importance measurement, but they
are not used for prediction. Therefore, the machine-learning algorithms are not exploited to
their full potential. A notable exception where the trained regression random forest model
is utilized is predicting new gene targets of microRNAs [50].

Since in GRN inference, we are interested in prediction, this motivated us to create an
appropriate training and testing approach to benefit from the generalization abilities of
machine-learning methods. In this study, we present a local supervised method named
XGBoost for gene regulatory networks (XGRN), aiming to model a biological network’s
interactions and predict new similar interactions utilizing gene expression profiles. Specifi-
cally, each previously known interaction is represented with a regression XGBoost model
built on the expression profiles of the two interactors. Using the trained model, we predict
the gene expression of the second interactor with other genes as input, and then we com-
pare the prediction with the actual values to infer if similar patterns are obtained. Thus
these other genes could be possible interactors. In the case of GRN reconstruction, based
on some known TF-target gene interactions, our method predicts other possible target
genes of the TFs. The proposed method was applied on benchmark microarray data and a
real single-cell RNA-Seq (scRNA-Seq) dataset with very high performance compared to
other methods.

2. Materials and Methods
2.1. Extreme Gradient Boosting (XGBoost)

Extreme gradient boosting (XGBoost) [51] is a novel classifier based on an ensemble of
classification and regression trees, which are optimized using gradient boosting. Boosting
is an ensemble learning algorithm that trains a (weak) model and then sequentially trains
an enhanced model, which attempts to improve the errors made by the predictor in the
previous iteration. To achieve this, the new model in each iteration is built to fit the
residuals of the previous model. In the gradient boosting technique, the gradients of the
optimization function are used with a learning rate [52].

Let the output of a tree be
f (xi) = wq(xi) (1)

where x is the input vector and wq is the value of the corresponding leaf q. The output of
the ensemble of K trees is

yi =
K

∑
k=1

fk(xi) (2)

Of note, the output is the summary of the output of all models, instead of the more
common mean used, e.g., in random forest.

The XGBoost algorithm defines the following objective function J for minimization:

J(t) =
N

∑
i=1

L
(

yi, ŷt−1
i + ft(xi)

)
+

t

∑
i=1

Ω( fi) (3)

where t is the step, the first summary is over the train loss function L (such as mean
squared error—MSE) between real class y and output ŷ for the N samples, and the second
summary is the regularization term, which controls the complexity of the model and helps
to avoid overfitting.
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In XGBoost, the complexity in the second term of Equation (3) is defined as:

Ω( f ) = γT +
1
2

λ
T

∑
j=1

w2
j (4)

where T is the number of leaves, γ is a dataset-specific pseudo-regularization hyperparam-
eter, and λ is the L2 norm for leaf weights.

The loss function L can be approximated with Taylor expansion using second-order
gradients. For a leaf node i, let gi = ∂ŷt−1 L(y, ŷt−1) and hi = ∂2

ŷt−1 L(y, ŷt−1) be the first
and second-order gradients of the loss function, respectively. Then, the optimal weights
can be found for this tree:

w∗i =
∑i∈I gi

∑i∈I hi + λ
(5)

where I is the set of leaf nodes. Finally, the optimal value of the objective function is:

J(t) = −1
2

T

∑
j=1

(∑i∈I gi)
2

∑i∈I hi + λ
+ γT (6)

The value of the objective function is used as a score to evaluate the current tree
structure and thus is used to select the best split at each step.

2.2. GRN Reconstruction

Briefly, in XGRN, given an expression dataset and a set of known interactions, we
model each interaction between two genes with a regression XGBoost model. Thus, this
model can learn from the respective expression profiles the function governing this pair of
regulator and target. Then, this trained model can be tested on expression values from a
different gene to examine if its behavior could be explained by the model learned for this
regulator. The workflow of the proposed method is summarized in Figure 1.

Figure 1. The workflow of the XGRN method. (a) The input consists of known interactions and
a gene expression dataset. Next, using the directed A–B interaction, we predict a score for the
A–D interaction. (b) An XGBoost regression model is trained for each known interaction using
the corresponding expression profiles. As input is set, the target’s expression and as output the
regulator’s expression. (c) Using the trained model with the expression of gene D as input, a score is
provided for interaction A–D based on R2 measurement comparing the predicted gene expression A’
and the actual gene expression A.
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In detail, for each interaction, in the form of “gene A interacts with gene B”, we train
an XGBoost regressor using gene’s B expression profile as input and A’s expression profile
as output variable. Then, this trained model is used on other gene profiles to determine if
they could be potential interactors with gene A. Specifically, the expression profile of each
other gene is set as input, and a prediction of A’s profile is obtained as output. Finally, the
prediction and the actual profile are compared using some metrics, such as mean squared
error (MSE), mean absolute error (MAE) or R2. A low error indicates that the samples in
testing show similar patterns as in training. Intuitively, we attempt to learn the function
“B is regulated by A”, thus as A, we will use profiles of TFs and as B the target genes.
Since a TF usually has more than one known target, we train several models (one for each
interaction), and hence we obtain multiple prediction values for a candidate target. We
combine them by keeping the minimum error (for MSE or MAE) or the maximum value
for R2 as the final prediction score.

XGRN was implemented in Python 3.8.3 and is available at https://github.com/
geodimitrak/XGBoost-GRN (accessed on 19 April 2021).

2.3. Data

The DREAM project organizes annual challenges in Systems Biology, with tasks such
as GRN reconstruction, providing benchmark expression datasets along with the true
structure of the network for evaluation, i.e., a list of interacting gene pairs. The proposed
method was evaluated on the datasets of the DREAM 4 “In Silico Network Challenge” [53]
(five small networks) and DREAM 5 “Network Inference Challenge” [54] (four networks
of different sizes). The data consist of preprocessed gene expression profiles and a list
indicating which genes are possible TFs. From DREAM 4, the steady-state data were used.

Next, a scRNA-Seq dataset was downloaded from the NCBI Gene Expression Omnibus
database with accession number GSE86469 [55]. This study performed a scRNA-Seq
experiment with 638 islet cells from pancreas tissue, including 20,565 genes obtained
from non-diabetic (ND) and type 2 diabetes (T2D) human organ donors. The authors
detected significant differences between ND and T2D human islet samples, providing
useful insights into islet biology and diabetes pathogenesis. As the gold standard, a list of
6289 interactions between 280 TFs and 2287 target genes in a human was used obtained
from [56]. We limited our analysis only to the genes common in the gold standard and the
gene expression dataset. A logarithmic transformation was applied to data before analysis.
Additionally, during training and testing, we discarded samples with 0 values as dropouts.
A summary of the data details is provided in Table 1.

Table 1. Dataset information.

Dataset Samples Genes TFs Interactions 1 Organism

DREAM 4.1 (D41) 100 100 100 176 Synthetic
DREAM 4.2 (D42) 100 100 100 249 Synthetic
DREAM 4.3 (D43) 100 100 100 195 Synthetic
DREAM 4.4 (D44) 100 100 100 211 Synthetic
DREAM 4.5 (D45) 100 100 100 193 Synthetic
DREAM 5.1 (D51) 487 1643 178 4012 Synthetic
DREAM 5.2 (D52) 53 2810 38 515 S. aureus
DREAM 5.3 (D53) 487 4511 141 2066 E. coli
DREAM 5.4 (D54) 321 5950 114 3940 S. cerevisiae

GSE86469 638 2287 280 6289 Human
1 Note: true interactions were provided by DREAM in the respective datasets, while for GSE86469, a list of TF
and target genes was used from [56].

2.4. Evaluation

To assess the accuracy of our method, the area under receiver operator curve (AUROC)
was used, which is computed as the area under receiver operator curve (ROC), which in
turn is the plot of the true-positive rate versus the false-positive rate at various values

https://github.com/geodimitrak/XGBoost-GRN
https://github.com/geodimitrak/XGBoost-GRN
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of threshold. This way, there is no need to select a specific threshold to characterize a
predicted interaction as true or not since AUROC calculates a summary result taking into
account all possible thresholds.

3. Results

To better demonstrate the operation of XGRN, in Figure 2, we present an example of
gene expression profiles from D52. In Figure 2a, a regression model was trained using the
profiles of a TF and a known gene target to learn the relationship between them. Then it
was tested using the profile of another gene, which was an actual target of the same TF, and
the output was very similar to TF’s profile based on the R2 metric. Thus this interaction
was predicted as true. In Figure 2b, the same procedure was repeated, but in testing, the
gene was not a target of this TF. In this case, the output of regression had a low R2 value.
Thus this potential interaction was correctly considered false.

Figure 2. (a) An XGBoost regression model is trained based on a known TF-target gene interaction using the expression
profile of the target gene as input (blue) and the TF’s profile as output (orange). Then, the model was used in testing
with input the profile of a second candidate gene (green), which was a target of this TF. The prediction (red) matched the
profile of the TF (R2 = 0.81); thus, this gene was considered as a target. (b) Similarly, the same model was tested on another
candidate gene (green), which was not the target of this TF. The prediction (red) presented low similarity with TF (orange)
(R2 = 0.23); thus, this candidate interaction was considered false.

3.1. Parameter Selection

To test the robustness of results concerning parameter selection and to optimize
performance, before applying XGRN on large real datasets, we tried it on the small DREAM
4 datasets with varying values of parameters. We ranged the number of estimators (number
of trees) trained in the model from 10 to 100 and the learning rate (LR) from 0.01 to 0.5. The
results are shown in Figure 3a for the average of the five datasets. Regarding the number of
trees, with higher values, the performance was improved, as expected. Additionally, with a
higher learning rate, the results were improved. However, for LR ≥ 0.05, the performance
remained stable regardless of the number of trees. Therefore, to balance performance
and execution time, in subsequent results, we selected LR = 0.1 and 50 trees. The ROC
curves for these settings are shown in Figure 3b. The maximum depth parameter was also
examined but had a small effect on performance. For the selected values of LR = 0.1 and
50 trees, trying depth from 4 to 10, the results ranged from 0.79 to 0.81. Therefore, we set
the maximum depth to 5 for the following results (also in previous results in Figure 2, it
was set to 5). A higher depth, except the larger execution time, may lead the model to
overfit and subsequently to provide inferior predictions in testing. Thus we did not choose
a larger value, despite the slightly higher accuracy in the small datasets of DREAM 4. Other
XGBoost parameters were left to default values (γ = 0, λ = 1).
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Figure 3. (a) Performance in terms of AUROC of XGBoost when varying the number of estimators (trees) and the learning
rate (LR) parameters. The results are the average of the five DREAM 4 datasets. (b) ROC curves of DREAM 4 datasets using
XGBoost with LR = 0.05 and 50 trees.

Finally, we compared the results using R2, mean squared error (MSE) and mean
absolute error (MAE) as the output of our method when comparing the predicted with the
actual expression (Table 2). R2 led to superior results, although the difference was small.
This can be explained by the fact that R2 has an upper limit of 1, making easier comparisons
among different models, while the magnitude of the other two metrics is affected by the
expression levels.

Table 2. Performance (AUROC) of regression evaluation methods.

Dataset R2 MSE MAE

D41 0.7949 0.8107 0.8098
D42 0.8406 0.8125 0.8191
D43 0.8023 0.7890 0.7979
D44 0.7767 0.7704 0.7692
D45 0.7747 0.7563 0.7562

Average 0.7978 0.7878 0.7905

3.2. GRN Inference Performance

To obtain a set of interactions for training, we randomly selected a percentage of the
ground truth interactions. We present the performance of XGRN based on 50% of known
interactions provided as input, while the effect of the supervision percentage is discussed
later. Finally, to compare our results, the supervised method SIRENE was used, as well
as the best performing unsupervised method per dataset among the participants in the
DREAM challenges [54], which are GENIE3 for D51, Pearson’s correlation coefficient for
D52, two-way ANOVA for D53 and a correlation-based meta-predictor for D54. Using the
same approach as with our method, SIRENE was given as input 50% of the ground truth
interactions. The other parameters of SIRENE were left to default values (SVM with radial
basis function (RBF) and cost parameter C = 1000). The performance of XGRN surpassed
SIRENE and other unsupervised methods in all datasets (Figure 4). The difference of
AUROC with unsupervised methods was very large in D51 (10%), D52 (19%), D54 (10%)
and slightly better in D53 (2%). Remarkably, SIRENE performed worse than unsupervised
methods in D52 and D53, almost the same in D51, and only in D54, it displayed higher
performance, equal to our method.

In the real scRNA-Seq dataset, the performance of XGRN was 72.3% using 10% super-
vision, increased to 80.9% with 30% supervision and reached 84.5% with 50% supervision.
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This shows that the proposed method is effective not only in microarray gene expression
but in RNA-Seq data as well, which are nowadays the standard methodology to measure
gene expression.

Figure 4. Performance of XGRN, SIRENE and unsupervised methods on DREAM 5 datasets. The
best unsupervised method was GENIE3 for D51, Pearson’s correlation coefficient for D52, two-way
ANOVA for D53 and a correlation-based meta-predictor for D54.

3.3. Effect of Prior Knowledge Percentage

Finally, we tested the effect on performance when using different percentages of
prior knowledge. Results are shown for the D51 dataset, which displayed the highest
performance between the benchmark datasets, but other datasets showed similar trends.
As can be observed in Figure 5, the performance increased as the prior knowledge increased.
This is expected since with more known data, more models are trained for each TF, and
there are higher chances to find other genes exhibiting similar patterns with known targets.
Most importantly, XGRN resulted in high performance even with a small percentage of
prior knowledge. Specifically, with only 10% of the known interactions available, the
AUROC was about 82%, which was close to the maximum obtained by SIRENE or other
unsupervised methods. This shows that our method can be applied and predict interactions
effectively even if a small fraction of the real network has been discovered.

Figure 5. Performance of XGRN concerning supervision percentage in D51.
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4. Discussion

In this study, we presented XGRN, a local supervised method with the aim to model
known interactions of a gene network and to predict new similar interactions. Specifi-
cally, exploiting gene expression data in combination with some known TF-target gene
interactions, other candidate target genes of each TF are predicted. We repeat that this is
performed by training an XGBoost regression model on TF and target gene expressions and
applying the trained models on other genes’ profiles to infer if these candidate target genes
result in similar patterns with the known target. In contrast to most unsupervised de novo
GRN reconstruction methods, where each gene-gene combination is examined resulting in
a N × N matrix (where N is the number of the genes), here previously validated biological
interactions are used, enabling us to focus only on TFs for model training, which are a
small percentage of the genes. It is important that our method is local and focuses on each
TF separately since it has been shown that GRN is sparse [57] and scale-free [58], namely
some TFs have many targets, while most of them have few specific targets. Therefore, we
can adapt to each TF’s characteristics. The independent modeling of each interaction is a
key characteristic for users, who would like to focus only on a specific interaction subset,
for example, a TF of interest or a specific pathway.

Regarding supervision, it was confirmed the statement that supervised methods could
help to increase performance [43]. Especially in D54, which is the largest dataset, the best
unsupervised method provided an AUROC of 54%, which is not useful as a prediction
since it is marginally higher than the chance level of 50%. Furthermore, it has been shown
that several older GRN methods do not perform well in scRNA-Seq data [59]. Hence it
is important to test a method not only on benchmark DREAM datasets but also on real
RNA-Seq experimental data.

The core concept of XGRN resembles the supervised learning performed by SIRENE
for GRN inference, where a binary classification problem is solved separately for each TF
to predict if a gene is its target or not, based on expression profiles of known targets [31].
The operation of SIRENE requires as input a set of TFs and their targets as positive
examples, while in the absence of negative examples, a cross-validation scheme is used on
the unknown genes. It is noted that in this approach, the regulator profile is not utilized.
An advantage of using regression instead of classification as in SIRENE is that we can
utilize both the target and the regulator expression profiles. Moreover, this scheme can
overcome the absence of negative examples, avoiding the hypothesis that the absence of
interaction in a dataset can be interpreted as a negative training example.

Interestingly, our method is a generic framework that can be implemented using any
regression method. However, XGBoost is a very recent, high-performing method, which
builds a complex regression model, able to capture various non-linear functions. We note
that gene expression experiments can contain inherent noise, therefore, we would like
to avoid overfitting a model [60]. Ensemble tree algorithms, such as random forest and
XGBoost, help towards building a more generalized model by selecting as parameters many
trees and a small maximum depth for each tree. In addition, machine-learning algorithms,
such as the tree-based, are purely data-driven and model-free. Namely, no assumptions are
made about the distribution of the variables or the relationships between them (which is
the case in regression methods based on a specific mathematical model [27–30]). Moreover,
tree-based regression is not affected by the absolute expression level (high or low). Finally,
there are few parameters to be fine-tuned, but they have a small effect on the quality of
results. Thus there is no need for an exhaustive search for optimal values, which in addition
may lead to overfitting to training data.

Noteworthy, the directionality of the interaction is taken into account by our method,
which is a desired characteristic in TF-target networks, as well as in other cases, such as
cellular pathways. If we switch the input and output, then we would model the relationship
“a gene is targeted by a TF” and would set as testing input the profiles of other TFs to
detect if they target this gene. Results were similar in this reverse case. Thus for clarity, we
presented here only the first direction. A limitation of our method is that we cannot predict
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new targets of TFs without any known gene targets. However, even if a small number
of relationships between TFs and target genes are known, we showed that the proposed
method could accurately recover the network structure. This is very important since we do
not know if biological networks are close to their complete form or not, especially for less
studied organisms.

In conclusion, XGRN can deliver reliable results from a biological point of view, pro-
viding output networks very similar to the ground truth. We confirmed that supervised
methods combining both expression data with network structure could outperform unsu-
pervised ones. The proposed approach to train regression models on known interacting
node pairs provided accurate predictions, proving its efficiency. The high-performance was
achieved by employing XGBoost for regression, a recent model-free method. In general, the
development of accurate computational tools cannot only help biological data analysis but
also can be used as a first step before designing an experiment to provide indicative results
for later experimental validation, reducing the cost by trying only the most promising
directions. Furthermore, we believe that a gene expression prediction approach can be
extremely valuable to various different applications beyond network reconstruction. In
the future, we plan to apply this method to other interaction data, such as protein–protein
interactions (PPIs) or pathways. Algorithms integrating these different information types
are very important for advanced comprehension of the cellular mechanisms. Finally, recent
research focus has been shifted on network-based differential gene expression, such as
pathways and subpathways [61–64]. Thus, we aim to adapt the proposed method for
differential gene expression detection by using in testing the expression profile of the same
gene in different conditions.
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