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Abstract: The sugar industry is of great importance to the Thai economy. In general, the government
sets sugarcane prices at the beginning of each harvesting season based on type (fresh or fired),
sweetness (sugar content) and gross weight. The main aim of the present research is to use optimal
control to find optimal sugarcane harvesting policies for fresh and fired sugarcane for the four
sugarcane producing regions of Thailand, namely North, Central, East and North-east, for harvesting
seasons 2012/13, 2013/14, 2014/15, 2017/18 and 2018/19. The optimality problem is to determine the
harvesting policy which gives maximum profit to the farmers subject to constraints on the maximum
amount that can be cut in each day, where a harvesting policy is defined as the amount of each
type of sugarcane harvested and delivered to the sugar factories during each day of a harvesting
season. The results from the optimal control methods are also compared with results from three
optimization methods, namely bi-objective, linear programming and quasi-Newton. The results
suggest that discrete optimal control is the most effective of the five methods considered. The data
used in this paper were obtained from the Ministry of Industry and the Ministry of Agriculture and
Co-operatives of the Royal Thai government.

Keywords: discrete optimal control; continuous optimal control; bi-objective; linear programming;
quasi-Newton methods; optimal sugarcane harvesting

1. Introduction

The main aims of this paper are: (1) to use two optimal control methods to determine
optimal harvesting policies for sugarcane in Thailand, where an optimal harvesting policy
is defined as the amount of sugarcane harvested each day during a crop year that gives
maximum profit to farmers; (2) To compare the efficiency and results of the two optimal
control methods with three optimization methods. The two optimal control methods we
consider are based on the discrete and continuous Pontryagin maximum principles (see,
e.g., [1–3]). The three optimization methods we consider are the bi-objective ε-constraints
method (see, e.g., [4]), a quasi-Newton optimization method (see, e.g., [5–7]) and linear
programming (see, e.g., [8]). We use the five optimal control and optimization methods to
determine optimal harvesting policies for the two types of sugarcane (fresh and fired) in
the four regions (North, Central, East and North-east) of Thailand for crop years 2012/13,
2013/14, 2014/15, 2017/18 and 2018/19. We use data obtained from the Ministry of Indus-
try and the Ministry of Agriculture and Co-operatives of the Royal Thai government [9–13].
The present paper is an extension of a previous paper [14] in which bi-objective and quasi-
Newton methods were used to find optimal harvesting policies for the crop years 2012/13,
2013/14 and 2014/15. For these two optimization methods, it was necessary to divide

Computation 2021, 9, 36. https://doi.org/10.3390/computation9030036 https://www.mdpi.com/journal/computation

https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-1642-3222
https://orcid.org/0000-0003-2984-4621
https://orcid.org/0000-0001-8794-5944
https://orcid.org/0000-0002-6328-8633
https://doi.org/10.3390/computation9030036
https://doi.org/10.3390/computation9030036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computation9030036
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation9030036?type=check_update&version=1


Computation 2021, 9, 36 2 of 18

a harvesting season into 15-day periods and to assume that there was zero growth of
sugarcane during a season.

Although there have been few, if any, applications of optimal control to sugarcane
harvesting, there have been applications of optimal control to similar types of problems
in other areas which could be adapted to sugarcane farming [3]. For example, in 2011,
Kiataramkul et al. [15] studied an optimal control problem for optimal nutritional intake
for fetal growth in sheep. In 2014, Dine, Lenhart and Behncke [16] investigated discrete-
time optimal harvesting of fish populations with age structure with the two objectives of
maximizing the profit of fishing by finding the optimal harvesting strategy for each age
class and of finding the optimal net size. In 2015, Kiataramkul and Matkhao [17] studied
the optimal control problem of food intake of swine during the post weaning period with
the objective of minimizing the amount of food fed to the swine and achieving an optimal
weight at time of sale. In 2016, Puengpo et al. [18] applied continuous and discrete optimal
control models to find optimal methods for sheep and swine feeding problems.

In contrast to optimal control, there have been a number of applications of optimiza-
tion methods to sugar production. Some examples of applications of optimization methods
to sugarcane harvesting and sugar production include the following. In 2012, Gomes [19]
studied a bi-objective mathematical model for choosing sugarcane varieties in Brazil which
have a harvest biomass residual that could be used in electricity generation. The bi-objective
optimization model aimed to minimize the cost of harvesting the residual biomass and to
maximize the revenue from sale of the generated electricity. In 2016, Sungnul et al. [20] stud-
ied a bi-objective optimization model to find an optimal time of harvesting for sugarcane
growers in the North-east region of Thailand. The aim of this work was to help farmers to
find the optimal harvesting time in order to maximize the revenue and to minimize the cost.
Sungnul et al. used the ε-constraints method [4] to find the optimal cutting pattern by using
the revenue as the objective function and the costs as constraints. In 2017, Sungnul et al. [21]
extended the work in [20] to find the optimal harvesting times for all of the four regions of
Thailand. Quasi-Newton optimization methods are well-known methods of optimization
that have been used for many years to find optimal solutions for problems in many areas
of science, finance and industry (see, e.g., [5–7]). In 2019, Pornprakun et al. [14] used the
bi-objective and quasi-Newton optimization methods (see, e.g., [5–7]) to determine optimal
harvesting policies for sugarcane in Thailand in order to maximize the total revenue and
minimize harvesting cost for crop years 2012/13, 2013/14 and 2014/15.

2. Mathematical Models

We used the following mathematical model as the basic model for maximizing profit
from sugarcane harvesting.

max
u

J[u] =
∫ t f

t0

P(t, x(t), u(t))dt,

subject to
dx(t)

dt
= rx(t)

(
1 − x(t)

K

)
− u(t),

0 ≤ u(t) ≤ umax, x(t) ≥ 0, x(t0) = a, x(t f ) = 0,

(1)

where J[u] is the profit functional to be maximized by selecting the control variable u(t),
which is the rate (tonnes/day) of cutting sugarcane at time t. Also, P(t, x(t), u(t)) is the
profit for sugarcane cut at time t (baht/day),

P(t, x(t), u(t)) is the profit for sugarcane cut at time t (baht/day),
x(t) is the total amount of sugarcane (tonnes) on the farms in a region at time t,
umax is the maximum rate of cutting sugarcane (tonnes/day),
t0 is the initial time at start of harvesting season (day),
t f is the final time at end of harvesting season (day),
a is the total amount of sugarcane on farms at the initial time t0 (tonnes),



Computation 2021, 9, 36 3 of 18

rx(t)
(

1 − x(t)
K

)
is a logistic growth function for the rate of increase in weight of

sugarcane (tonnes per day) on the farms in a region at time t, where r is a specific
growth rate (1/day), and K is a constant which represents the carrying capacity of the
farms in the region (tonnes).

We also considered the following discrete version of (1).

max
u

J[u] =
N−1

∑
k=0

P(tk, xk, uk),

subject to xk+1 = xk + rxk

(
1 − xk

K

)
− uk,

0 ≤ uk ≤ umax, xk ≥ 0, x0 = x(t0) = a, xN = x(tN) = 0,

(2)

where xk = x(tk) and uk = u(tk) and tk, k = 0, 1, 2, . . . , N − 1 are N periods of a cutting
season and tN is the end of the cutting season. For the optimal control methods, we used
1-day periods, for the bi-objective and quasi-Newton methods we found it necessary to assume
15-day periods, and for linear programming we considered both 1-day and 15-day periods.

3. Optimization and Optimal Control Methods

In this section, we give details of the three optimization and two optimal control
methods that we used to obtain optimal policies for sugarcane harvesting in Thailand.

3.1. Bi-Objective Optimization

For the bi-objective optimization problem, we separated the profit P(tk, xk, uk) per
15-day period into a revenue term R(tk, xk, uk) and a cost term C(tk, xk, uk) and assumed
that r = 0, that is, no growth during the harvesting season. We then used the ε-constraints
method [4,14] to solve the bi-objective optimization problem

max
u

R(u) =
N−1

∑
k=0

R(tk, xk, uk),

subject to C(u) =
N−1

∑
k=0

C(tk, uk, xk) ≤ εr,

xk+1 = xk − uk,

0 ≤ uk ≤ umax, xk ≥ 0, x0 = a, xN = 0,

(3)

where the εr are a set of values of costs between a minimum and a maximum value of the
cost for a feasible cutting pattern.

3.2. Quasi-Newton Optimization

As in the previous paper [14], we used the constrained optimization function fmincon
in Matlab with the “active-set” algorithm based on quasi-Newton method [5–7] to find the
optimal cutting patterns to maximize the profit in (2) for 15-day periods and we assumed
that there was no growth during the harvesting season.

3.3. Linear Programming

We used the Matlab program linprog with the “dual-simplex” algorithm based on
linear programming [8] to solve the optimization problem in (2) for both 15-day periods
and daily periods. We again assumed that there was no growth during the harvesting
season because growth would make the optimization problem a nonlinear problem.

The results of three optimization methods for the years 2012/13, 2013/14 and 2014/15
have been published in [14] and the results for 2017/18, 2018/19 are included in this paper.
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3.4. Pontryagin Maximum Principle for Continuous Optimal Control

For a given type, region and harvesting season, the continuous optimal control prob-
lem is of the form given in (1). We used the continuous Pontryagin maximum principle to
solve this continuous optimal control problem (see, e.g., [1–3]). It should be noted that the
optimal control problem for sugar harvesting has state variable constraints on the amount
that can be cut each day and on the total amount that is available for cutting.

The first step is to define a Hamiltonian

H(t, x(t), u(t), λ(t)) = P(t, x(t), u(t)) + λ(t)T f (t, x(t), u(t)), (4)

where f (t, x(t), u(t)) = rx(t)
(

1 − x(t)
K

)
− u(t) and the λ(t) are called costate variables.

Then, the equations for the state variables x(t) and costate variables λ(t) are given by

State:
dx
dt

= f (t, x(t), u(t)) =
∂H(t, x(t), u(t), λ(t))

∂λ(t)
, (5)

Costate:
dλ

dt
= −∂H(t, x(t), u(t), λ(t))

∂x(t)

= −∂P(t, x(t), u(t))
∂x(t)

− λ(t)T ∂ f (t, x(t), u(t))
∂x(t)

.
(6)

Since the boundary conditions on the state variables in (1) are given values at fixed
initial and final times, the appropriate boundary conditions on the state and costate
equations are

State: x(t0) = a, x(t f ) = 0 given. Costate: λ(0), λ(t f ) free. (7)

Then, the Pontryagin maximum principle states that the optimal control u∗(t) is
obtained by finding the maximum of H(t, x∗(t), u(t), λ∗(t)) with respect to u(t), where the
x∗(t), λ∗(t) are the solutions of the state and costate equations for u∗(t).

In general, the maximum of the Hamiltonian can occur at the minimum or maximum
values of the cutting constraints or at an internal point. For the problem in (1) the state
equation is a linear function of the control u. In this case, there is no internal optimal
value of u and the control is called a “bang-bang” control and the optimal values u∗(t) are
either the minimum u(t) = 0 or maximum u(t) = umax. However, as noted above, the
sugar harvesting problem has the extra complication that the constraints on the control
u∗(t) also depend on the values of the state variables x∗(t) because of the conditions
x∗(t) ≥ 0, x∗(t f ) = 0. We have included these conditions as explained in step 4 of the
following algorithm.

Continuous optimal control algorithm

The algorithm that we used for the solution of the continuous optimal control problem
is as follows.

1. Select an initial feasible cutting pattern u(tk), k = 0, 1, . . . , N − 1 such that x(t) ≥ 0
and x(t f ) = 0.

2. Solve the state and costate equations for this pattern to obtain values of x(tk) and λ(tk).
For reasons of numerical stability, the state equations must be integrated forwards in
time and the costate equations must be integrated backwards in time.

3. Compute the Hamiltonian values H(tk, x(tk), u(tk), λ(tk)) and the partial derivative

values
∂H(tk, x(tk), u(tk), λ(tk))

∂u(tk)
.

4. In our examples, we have found that all partial derivatives are positive. Therefore, if
there were no constraints on the state variables, the optimal cutting pattern would
be to cut the maximum amount available for cutting each day. In order to satisfy the
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state variable constraints x(t) ≥ 0 and x(t f ) = 0, we chose the optimal u(tk) values
as follows.

(a) Sort the derivatives
∂H(tk, x(tk), u(tk), λ(tk))

∂u(tk)
in decreasing order.

(b) Find the number of days M required to cut all available cane at the maximum
rate umax and select the times tk corresponding to the top M values of the
derivatives.

(c) If Mumax = a, set the new cutting pattern with u(tk) = umax at these M values
of tk and u(tk) = 0 at all other times. However, if Mumax > a, set u(tk) = umax
for the top M − 1 derivative values and
u(tk) = a − (M − 1)umax where tk is time of derivative M.
Note: A slight modification is required if growth can occur (r > 0).

5. Then, stop if the new cutting pattern is within a selected tolerance of the old cutting
pattern or return to step 2 and repeat if the new pattern is not within the selected
tolerance of the old.

3.5. Pontryagin Maximum Principle for Discrete Optimal Control

The discrete version of the continuous optimal control problem in (1) is as follows.

max
u

J[u] =
N−1

∑
k=0

P(tk, xk, uk),

subject to xk+1 = xk + rxk

(
1 − xk

K

)
− uk,

0 ≤ uk ≤ umax, x0 = x(t0) = a, xN = x(tN) = 0,

(8)

where xk = x(tk) and uk = u(tk).
As for the continuous case, the first step is to define a Hamiltonian

H(k, xk, uk, λk+1) = P(tk, xk, uk) + λT
k+1 f (k, xk, uk), (9)

where f (k, xk, uk) = xk + rxk
(
1 − xk

K
)
− uk.

Then, the equations for the state variables xk and costate variables λk are given by

State: xk+1 = f (k, xk, uk) =
∂H(k, xk, uk, λk+1)

∂λk+1
, (10)

Costate: λk =
∂H(k, xk, uk, λk+1)

∂xk

=
∂P(k, xk, uk)

∂xk
+ λT

k+1
∂ f (k, xk, uk)

∂xk
.

(11)

Since the boundary conditions on the state variables in (8) are given values at fixed
initial and final times, the appropriate boundary conditions on the state and costate
equations are

State: x0 = a, xN = 0 given. Costate: λ0, λN free. (12)

As for the continuous case, the optimal cutting pattern will be “bang-bang”. The
algorithm for finding the optimal cutting pattern for the continuous case can also be used
for the discrete case.

4. The Commercial Cane Sugar System (CCS) in Thailand

As details of the CCS system have been given in [14,22], we will only give a brief
review here. Thai farmers harvest two types of sugarcane, namely fresh and fired, where
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fired sugarcane is burnt to remove leaves before it is cut so that it can be cut manually
by workers, whereas fresh sugarcane is usually cut by machines which can remove the
leaves as the cane is cut. In the CCS system, the Royal Thai government sets the price of
fresh and fired sugarcane for each of the four sugarcane producing regions in Thailand,
namely North, Central, East and North-east. The price of the sugarcane is based on the
two main factors of weight and sweetness, where sweetness or CCS is the percentage of
sugar in the sugarcane. All data in this paper have been obtained from the Office of the
Cane and Sugar Board (OCSB), Ministry of Industry and the Ministry of Agriculture and
Co-operatives of the Royal Thai government [9–13]. The OCSB reports data for 15-day
periods of a harvesting season which typically starts around 15th November and ends
around 15th June of the following year.

In the following, we will use the notation, i = A for fresh and i = B for fired sugarcane.
For the four sugarcane-growing regions of Thailand, we will use the notation j = 1 for
North, j = 2 for Central, j = 3 for East, and j = 4 for North-east.

4.1. Price of Sugarcane

As stated above, the price of sugarcane is set on the basis of type, weight, and sweet-
ness (CCS) [14,20].

1. Price based on weight: The basic price per weight of sugarcane (baht/tonne) is fixed
by the Royal Thai government for each crop year. This basic price is the same for all
regions. However, the actual price paid to farmers for fired sugarcane is 30 baht/tonne
less than the basic price. Then, at the end of harvesting for the year, factories in each
region will share the total amount of money deducted from fired sugarcane sales in
that region to farmers who sold fresh sugarcane at a rate not exceeding 70 baht/tonne
of fresh sugarcane delivered. We will use the notation Pw(i, j) to denote actual price
based on weight (baht/tonne) for type i in region j.
The actual prices per tonne based on weight for sugarcane for a given crop year are:

Fresh: Pw(A, j) = Pw +
30a(B, j)
a(A, j)

≤ Pw + 70, Fired: Pw(B) = Pw − 30, (13)

where Pw is the basic price, a(A, j) is the total amount of fresh sugarcane (tonnes)
harvested in region j and a(B, j) is the total amount of fired sugarcane (tonnes)
harvested in region j for a given year.

2. Price based on sweetness (CCS): Each year, the Royal Thai government sets a basic
price per tonne for sugarcane with 10 CCS, where CCS is the percentage by weight of
sugar in sugarcane. This price is the same for fresh and fired sugarcane and for all
regions. The actual price per tonne received by farmers is then adjusted if the CCS is
different from 10. For sugarcane harvested in period k in region j the actual price per
tonne for a given year is

Pc(k, j) = Pc(1 + 0.06y(k, j)), (14)

where Pc is the basic price per tonne for sugarcane with 10 CCS set by the government
for the year, and y(k, j) = CCS(k, j)− 10, where CCS(k, j) is the average CCS from
sugarcane harvested in period k in region j and the factor 0.06 is the rate of change of
price per 1 CCS from the base level of 10.

Therefore, the total prices to farmers (baht/tonne) for a given crop year are:

Fresh: P(k, A, j) = Pw(A, j) + Pc(k, j), Fired: P(k, B, j) = Pw(B) + Pc(k, j). (15)

The basic prices per weight Pw and for sweetness Pc set by the Royal Thai government
and the total amounts delivered to the factories are shown in Table 1. It can be seen from
this data that the amount of fresh sugarcane is appreciably less than the amount of fired in
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all regions in all crop years and that the amount of sugarcane was increasing from 2012/13
to 2017/18 and then decreased in 2018/19.

Table 1. The basic prices (Baht/tonne) set by the Royal Thai Government and the total amounts
(106 tonnes) of fresh and fired sugarcane delivered to the factories in each region in each crop year.

Type Year
Basic Price (baht) Total Amount (tonnes)

Pw Pc North Central East North-East

Fresh

2012/13 198.47 999.20 7.036 9.309 0.955 16.909

2013/14 194.67 958.31 7.076 9.600 1.235 20.013

2014/15 197.41 900.00 7.384 9.235 1.264 19.028

2017/18 141.00 880.00 11.399 11.735 1.741 20.623

2018/19 141.00 700.00 13.944 11.069 1.705 24.221

Fired

2012/13 140.00 999.20 17.562 21.189 3.731 23.311

2013/14 140.00 958.31 17.134 20.479 3.237 24.892

2014/15 140.00 900.00 17.999 18.766 3.946 28.338

2017/18 140.00 880.00 21.641 24.858 4.942 37.989

2018/19 140.00 700.00 19.163 20.468 4.174 36.226

The CCS values are shown in Tables 2 and 3 for 15-day periods for all regions for crop
years 2017/18 and 2018/19. Similar tables for the crop years 2012/13, 2013/14 and 2014/15
have been published previously in [14]. It can be seen that in 2017/18 the CCS value in all
regions reached a maximum in April and then decreased slightly, whereas in 2018/19 the
CCS value increased in all regions during the harvesting season.

Table 2. The Commercial Cane Sugar System (CCS) value in each region for crop year 2017/18.

Period North Central East North-East

(1) 1–15 December 2017 10.387 9.932 10.482 11.655
(2) 16–31 December 2017 10.726 10.262 10.807 12.009
(3) 1–15 January 2018 11.032 10.485 10.994 12.313
(4) 16–31 January 2018 11.378 10.856 11.367 12.596
(5) 1–14 February 2018 11.654 11.134 11.670 12.840
(6) 15–28 February 2018 11.856 11.328 11.911 13.021
(7) 1–15 March 2018 12.005 11.463 12.075 13.174
(8) 16–31 March 2018 12.120 11.586 12.211 13.291
(9) 1–15 April 2018 12.147 11.603 12.253 13.333
(10) 16–30 April 2018 12.139 11.595 12.265 13.337
(11) 1–15 May 2018 12.112 11.572 12.235 13.311
(12) 16–31 May 2018 12.101 11.564 12.189 13.298
(13) 1–15 June 2018 12.101 11.561 12.187 13.298

The total prices for the fresh and fired sugarcane are shown in Tables 4 and 5 for 15-day
periods for all regions for crop years 2017/18 and 2018/19. It can be seen that the prices in all
regions increase rapidly at the beginning of a crop year and then slowly at the end due to the
changes in CCS values. It can also be seen that the fresh prices are appreciably higher than the
fired prices due to the price adjustments discussed in Section 4.1.
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Table 3. The Commercial Cane Sugar System (CCS) value in each region for crop year 2018/19.

Period North Central East North-East

(1) 16–30 November 2018 9.760 9.752 - 11.530
(2) 1–15 December 2018 10.175 10.114 11.316 11.909
(3) 16–31 December 2018 10.486 10.322 11.641 12.163
(4) 1–15 January 2019 10.822 10.622 11.855 12.507
(5) 16–31 January 2019 11.182 10.961 12.176 12.819
(6) 1–14 February 2019 11.444 11.213 12.404 13.036
(7) 15–28 February 2019 11.639 11.419 12.599 13.179
(8) 1–15 March 2019 11.834 11.596 12.790 13.311
(10) 16–31 March 2019 11.986 11.654 12.858 13.427
(11) 1–15 April 2019 12.015 11.658 12.858 13.464
(12) 16–30 April 2019 12.015 11.658 - 13.481
(13) 1–15 May 2019 12.015 11.658 - 13.480

Note: The-means that no sugarcane was delivered to the mills in that period.

Table 4. The price (baht/tonne) of fresh and fired sugarcane in each region for crop year 2017/18.

Period
North Central East North-East

Fresh Fired Fresh Fired Fresh Fired Fresh Fired

(1) 1–15 December 2017 1041.45 989.76 1017.42 966.54 1046.47 994.60 1108.38 1054.40
(2) 16–31 December 2017 1059.32 1007.02 1034.82 983.35 1063.59 1011.14 1127.10 1072.48
(3) 1–15 January 2018 1075.49 1022.63 1046.63 994.76 1073.47 1020.68 1143.12 1087.96
(4) 16–31 January 2018 1093.77 1040.29 1066.19 1013.65 1093.16 1039.70 1158.09 1102.42
(5) 1–14 February 2018 1108.35 1054.37 1080.86 1027.82 1109.15 1055.15 1170.95 1114.83
(6) 15–28 February 2018 1118.99 1064.65 1091.12 1037.73 1121.90 1067.46 1180.48 1124.05
(7) 1–15 March 2018 1126.88 1072.27 1098.26 1044.62 1130.55 1075.82 1188.59 1131.87
(8) 16–31 March 2018 1132.94 1078.12 1104.74 1050.88 1137.74 1082.76 1194.75 1137.83
(9) 1–15 April 2018 1134.36 1079.49 1105.62 1051.74 1139.97 1084.91 1197.00 1140.00
(10) 16–30 April 2018 1133.94 1079.09 1105.23 1051.36 1140.58 1085.50 1197.20 1140.19
(11) 1–15 May 2018 1132.52 1077.72 1104.02 1050.19 1139.02 1084.00 1195.82 1138.86
(12) 16–31 May 2018 1131.96 1077.17 1103.56 1049.75 1136.59 1081.65 1195.14 1138.21
(13) 1–15 June 2018 - - 1103.43 1049.62 1136.46 1081.53 1195.14 -

Note: The-means that no sugarcane was delivered to the mills in that period.

Table 5. The price (baht/tonne) of fresh and fired sugarcane in each region for crop year 2018/19.

Period
North Central East North-East

Fresh Fired Fresh Fired Fresh Fired Fresh Fired

(1) 16–30 Nov 2018 830.94 780.37 830.57 780.02 - - 905.28 851.52
(2) 1–15 December 2018 848.33 797.02 845.77 794.57 896.29 842.92 921.17 866.73
(3) 16–31 December 2018 861.41 809.54 854.53 802.95 909.92 855.97 931.83 876.94
(4) 1–15 January 2019 875.51 823.03 867.13 815.01 918.92 864.58 946.27 890.76
(5) 16–31 January 2019 890.66 837.53 881.37 828.64 932.40 877.48 959.39 903.32
(6) 1–14 February 2019 901.66 848.06 891.93 838.75 941.96 886.63 968.51 912.05
(7) 15–28 February 2019 909.83 855.88 900.58 847.03 950.17 894.49 974.52 917.80
(8) 1–15 March 2019 918.04 863.74 908.04 854.16 958.17 902.15 980.06 923.10
(10) 16–31 March 2019 924.40 869.82 910.46 856.48 961.05 904.91 984.95 927.78
(11) 1–15 April 2019 925.61 870.99 910.66 856.67 961.05 904.90 986.50 929.26
(12) 16–30 April 2019 - - 910.66 856.67 - - 987.18 929.92
(13) 1–15 May 2019 - - - - - - 987.18 929.91

Note: The-means that no sugarcane was delivered to the mills in that period.

4.2. Costs of Production

The costs of production (baht/tonne) can be separated into cutting costs, transport
costs and maintenance costs. In this paper, we assume that the cutting and transport
costs are fixed costs that depend only on the amount cut in a given period, whereas the
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maintenance costs (baht/tonne) are variable costs that depend on the amount of uncut
sugarcane remaining on the farm after cutting in previous periods.

We assume that the total cost of sugarcane production (baht) of type i in period k in
region j in a given year is

C(i, j) =
N−1

∑
k=0

(Ch(i, j)uk(i, j) + Ct(i, j)uk(i, j) + Cm(i, j)xk(i, j)), (16)

where uk(i, j) is the weight of sugarcane (tonnes) cut in period k, xk(i, j) is the weight of
uncut sugarcane remaining on the farm in period k, Ch(i, j) is harvesting cost of sugarcane
(baht/tonne), Ct(i, j) is transport cost for delivering sugarcane to the mills (baht/tonne)
and Cm(i, j) is maintenance cost (baht/tonne) for sugarcane remaining on the farms.

The harvesting, transport and maintenance costs obtained from the OCSB are shown
in Table 6 for each region for each crop year. It can be seen that the harvesting costs
are lower in all regions for the years 2017/18 and 2018/19 for both fresh and fired cane,
whereas there is no clear pattern for the transport and maintenance costs.

Table 6. The average costs of sugarcane production (baht/tonne) in each region for each crop year.

Year Region Harvesting Cost Ch(i, j)
(baht/tonne)

Transport Cost Ct(i, j)
(baht/tonne)

Maintenance Cost Cm(i, j)
(baht/tonne)

2012/13

North 924.28 136.51 52.70
Central 872.95 147.66 94.24

East 836.25 148.89 92.51
North-east 765.18 141.97 56.30

2013/14

North 815.89 149.46 66.07
Central 781.41 147.04 86.59

East 912.61 165.66 106.01
North-east 875.84 151.64 59.55

2014/15

North 1061.42 182.36 79.38
Central 954.16 155.30 82.32

East 1024.71 194.89 94.30
North-east 987.00 140.12 91.71

2017/18

North 771.27 143.62 84.94
Central 771.91 137.22 84.83

East 848.51 146.21 102.43
North-east 871.78 150.74 66.80

2018/19

North 738.86 138.40 104.87
Central 754.86 138.24 83.26

East 768.63 157.68 75.48
North-east 775.09 149.58 59.69

4.3. Total Revenue and Total Profit

For each type i and region j, the total revenue for a given year is

R(u(i, j)) =
N−1

∑
k=0

P(k, i, j)uk(i, j), (17)

and the total profit is

J(u(i, j)) =
N−1

∑
k=0

(Pt(k, i, j)− Ch(i, j)− Ct(i, j))uk(i, j)−
N−1

∑
k=0

Cm(i, j)xk(i, j). (18)

4.4. Cutting Constraints

We assume that there are constraints umax(i, j) on the amount of sugarcane of type i
that can be cut each day in a given region j. These constraints could be due, for example, to
the number of machines available for cutting fresh sugarcane or the number of workers
avaiable for cutting fired sugarcane. In addition, there can be constraints due to the number
of trucks available for transporting the cut cane to the mill and the cutting capacities of the
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mills. We also add the constraints that 0 ≤ uk(i, j) ≤ xk(i, j) and that all sugarcane must be
cut, that is, xN(i, j) = 0 at the end of the harvesting season.

5. Results
5.1. Profits

Examples of the optimal profits computed from the three optimization and two
optimal control methods are shown in Table 7 for fresh sugarcane for the four regions of
Thailand for the crop year 2017/18. It can be seen that all optimization and optimal control
methods give the same results. A comparison of the theoretical results with the actual
profit show that the best agreement is for mcf = 1, that is, full maintenance cost with an
upper limit of approximately half of the total amount available cut each 15-day period. We
have obtained similar results for fresh and fired sugarcane for the four regions of Thailand
for the crop years 2012/13, 2013/14, 2014/15 and 2017/18.

Table 7. The total profit (×1010 Baht) of fresh sugarcane in each region in crop year 2017/18.

Region mcf P.O.C. Actual Profit
Total Profit (1010 Baht)

Bi-obj Lin prog. qn Disc. Cont.

North

0

0.2

0.11776

0.92808 0.92808 0.92808 0.92806 0.92806

0.4 0.92906 0.92906 0.92906 0.92906 0.92906

0.6 0.92929 0.92929 0.92929 0.92932 0.92932

0.8 0.92935 0.92935 0.92935 0.92939 0.92939

1.0 0.92940 0.92940 0.92940 0.92942 0.92942

0.25

0.2 0.38605 0.38609 0.38609 0.38598 0.38598

0.4 0.59645 0.59662 0.59662 0.60516 0.60516

0.6 0.66648 0.66657 0.66657 0.67816 0.67816

0.8 0.70163 0.70167 0.70167 0.71462 0.71462

1.0 0.73677 0.73677 0.73677 0.73652 0.73652

1

0.2 −1.06910 −1.06910 −1.06910 −1.06922 −1.06920

0.4 −0.16008 −0.16008 −0.16008 −0.12257 −0.12257

0.6 0.14270 0.14270 0.14270 0.19309 0.19309

0.8 0.29421 0.29421 0.29421 0.35062 0.35062

1.0 0.44573 0.44573 0.44573 0.44548 0.44548

Central

0

0.2

0.09694

0.93354 0.93354 0.93353 0.93353 0.93353

0.4 0.93447 0.93447 0.93445 0.93445 0.93445

0.6 0.93471 0.93471 0.93466 0.93466 0.93466

0.8 0.93475 0.93475 0.93472 0.93472 0.93472

1.0 0.93480 0.93480 0.93475 0.93475 0.93475

0.25

0.2 0.37482 0.37482 0.37463 0.37463 0.37463

0.4 0.59408 0.59418 0.60280 0.60280 0.60280

0.6 0.66786 0.66802 0.68011 0.68011 0.68011

0.8 0.70506 0.70535 0.71878 0.71878 0.71878

1.0 0.74269 0.74269 0.74186 0.74186 0.74186

1

0.2 −1.13210 −1.13210 −1.13228 −1.13228 −1.13230

0.4 −0.18941 −0.18941 −0.15079 −0.15079 −0.15079

0.6 0.12553 0.12553 0.17780 0.17780 0.17780

0.8 0.28342 0.28342 0.34185 0.34185 0.34185

1.0 0.44131 0.44131 0.44048 0.44048 0.44048
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Table 7. Cont.

Region mcf P.O.C. Actual Profit Total Profit (1010 Baht)

Bi-obj Lin prog. qn Disc. Cont.

East

0

0.2

0.00056

0.14925 0.14925 0.14925 0.14924 0.14924

0.4 0.14946 0.14946 0.14946 0.14946 0.14946

0.6 0.14950 0.14950 0.14950 0.14951 0.14951

0.8 0.14951 0.14951 0.14951 0.14952 0.14952

1.0 0.14952 0.14952 0.14952 0.14953 0.14953

0.25

0.2 0.05108 0.05108 0.05108 0.05105 0.05105

0.4 0.09044 0.09046 0.09046 0.09201 0.09201

0.6 0.10376 0.10379 0.10379 0.10596 0.10596

0.8 0.11047 0.11052 0.11052 0.11294 0.11294

1.0 0.11725 0.11725 0.11725 0.11710 0.11710

1

0.2 −0.21515 −0.21515 −0.21515 −0.21518 −0.21518

0.4 −0.04798 −0.04798 −0.04798 −0.04113 −0.04113

0.6 0.00794 0.00794 0.00794 0.01722 0.01722

0.8 0.03598 0.03598 0.03598 0.04635 0.04635

1.0 0.06401 0.06401 0.06401 0.06386 0.06386

North-east

0

0.2

0.14416

1.81221 1.81220 1.81220 1.81210 1.81210

0.4 1.81360 1.81360 1.81360 1.81370 1.81370

0.6 1.81406 1.81410 1.81410 1.81420 1.81420

0.8 1.81435 1.81440 1.81440 1.81440 1.81440

1.0 1.81464 1.81460 1.81460 1.81450 1.81450

0.25

0.2 0.71914 0.71913 0.71913 0.71892 0.71892

0.4 1.16030 1.16050 1.16050 1.17855 1.17850

0.6 1.30590 1.30620 1.30620 1.33030 1.33030

0.8 1.37813 1.37870 1.37870 1.40566 1.40570

1.0 1.45124 1.45120 1.45120 1.45090 1.45090

1

0.2 −2.26570 −2.26570 −2.26570 −2.26595 −2.26600

0.4 −0.39165 −0.39165 −0.39165 −0.31416 −0.31416

0.6 0.23166 0.23166 0.23166 0.33534 0.33534

0.8 0.54296 0.54296 0.54296 0.65904 0.65904

1.0 0.85427 0.85427 0.85427 0.85393 0.85393

Note: P.O.C. means the percentage of total available sugarcane that can be cut in a 15-day period.

5.2. Optimal Daily Cutting Patterns

In this section, we show the optimal daily cutting patterns that we obtained from
discrete optimal control. We found that continuous optimal control gave the same optimal
cutting patterns. Also, for the special case of zero growth, we found that linear program-
ming gave the same optimal daily cutting patterns. For comparison, optimal cutting
patterns computed from the bi-objective and quasi-Newton methods have been published
in [14] for 15-day cutting periods for the crop years 2012/13, 2013/14 and 2014/15.

The results in Figures 1 and 2 show the optimal cutting patterns for the crop year
2017/18 if prices, costs, and profits and an upper bound on the amount cut per day are the
main factors involved in determining the optimal profits of the farmers. We have computed
optimal daily cutting patterns for the crop years 2012/13, 2013/14, 2014/15, 2018/19 and
obtained similar results. For each type, region and year, we examined the effect of changing
the values of the upper bound on the maximum cutting per day umax (tonnes per day)
and the effect of reducing the maintenance costs by a factor mcf (0 ≤ mcf ≤ 1) of the actual
maintenance cost. It can be seen that the optimal cutting patterns are sensitive to changes in
the maintenance cost as they range from cutting all sugarcane as early as possible for mcf = 1
to cutting all sugarcane as late as possible for mcf = 0.
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Figure 1. Optimum cutting of fresh sugarcane in four regions of Thailand in year 2017/18 showing effects of changing
maintenance cost by fraction mcf of actual cost. North: (a–c), Central: (d–f), East: (g–i), North-east: (j–l).

Some examples of actual cutting patterns obtained from OCSB data [12,13] are shown
in Figures 3 and 4 for comparison with the theoretical optimal cutting patterns. It can
be seen that the actual cutting patterns for both fresh and fired sugarcane in 2017/18 are
similar to the cutting patterns for mcf = 0.01 in Figures 1 and 2 with a maximum cutting
of between 0.15–0.2 total available sugarcane in each region. As far as the authors are
aware, the actual cutting patterns are due to constraints on cutting on the farms and to the
capacities of the sugar mills.
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Figure 2. Optimum cutting of fired sugarcane in four regions of Thailand in year 2017/18 showing effects of changing
maintenance cost by fraction mcf of actual cost. North: (a–c), Central: (d–f), East: (g–i), North-east: (j–l).



Computation 2021, 9, 36 14 of 18

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210

Time (days)

0

1

2

3

4

5

6

A
ct

u
a
l 

cu
tt

in
g
 (

to
n

n
es

)

10
6

North

Central

East

North-east

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210

Time (days)

0

1

2

3

4

5

6

A
ct

u
a
l 

cu
tt

in
g
 (

to
n

n
es

)

10
6

North

Central

East

North-east

(a) Fresh (b) Fired

Figure 3. Actual cutting patterns for fresh and fired sugarcane for 2017/18.
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Figure 4. Actual cutting patterns for fresh and fired sugarcane for 2018/19.

5.3. Linear Progamming Dual Variables and Hamiltonian Derivatives

In the optimal control algorithms in Section 3, we used the maximum values of the

Hamiltonian derivatives
∂H(tk, xk, uk, λk)

∂uk
to find the optimal cutting patterns. It is also

well known in linear programming that nonzero values of dual variables λ correspond to
active constraints and that the values of dual variables correspond to the extra profit (baht)
if a cutting constraint can be increased by one unit (tonne). It is therefore expected that
maximum Hamiltonian derivative values should correspond to maximum λ values. As an
example, Figure 5 shows a plot of the Hamiltonian derivative values for fresh sugarcane for
the North-east region in 2017/18 and Figure 6 shows a similar plot for the dual variables
from linear programming.
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Figure 5. Example of
∂H(tk, xk, uk, λk)

∂uk
for fresh sugarcane in North-east region in 2017/18. Compare

optimal cutting plots in Figure 1d–f.
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Figure 6. Example of dual variables from linear programming for fresh sugarcane in North-east
region in 2017/18. Compare Hamiltonian derivative plots in Figure 5.

5.4. Computation Times

As we have seen, the three optimization methods and the two optimal control methods
all give similar optimal cutting patterns and profits. However, there is a big difference
in computation times between the different methods. As shown in Table 8, the linear
programming, discrete and continuous optimal control methods all give very fast compu-
tation times in the order discrete optimal control, linear programming, continuous optimal
control. However, the optimal control methods have the advantage that the objective
functions and constraints can be nonlinear. As shown in Table 9, the linear programming
again gives a fast computation time whereas the bi-objective and quasi-Newton methods
are much slower. However, both the bi-objective and quasi-Newton methods again have
the advantage that the objective functions and constaints can be nonlinear.

Table 8. CPU time (seconds) of fresh and fired sugarcane cutting in each day in crop year 2017/18
and 2018/19.

Crop Year Method mcf
Type of Sugarcane

Fresh Fired

2017/18

discrete

0

0.011 0.017

continuous 0.213 0.152

linear programming 0.037 0.041

discrete

1

0.010 0.013

continuous 0.167 0.157

linear programming 0.041 0.037

2018/19

discrete

0

0.010 0.010

continuous 0.171 0.162

linear programming 0.031 0.034

discrete

1

0.011 0.010

continuous 0.140 0.133

linear programming 0.036 0.036



Computation 2021, 9, 36 16 of 18

Table 9. CPU time (seconds) of fresh and fired sugarcane cutting in each 15-day period in crop year
2017/18 and 2018/19.

Crop Year Method mcf
Type of Sugarcane

Fresh Fired

2017/18

bi-objective

0

0.024 0.031

linear programming 0.019 0.016

quasi-Newton 83.743 72.457

bi-objective

1

5.226 5.385

linear programming 0.038 0.031

quasi-Newton 12.905 15.426

2018/19

bi-objective

0

0.023 0.023

linear programming 0.040 0.035

quasi-Newton 98.374 83.416

bi-objective

1

5.010 4.926

linear programming 0.033 0.036

quasi-Newton 13.042 15.668

6. Discussion and Conclusions

We have compared five different optimization and optimal control methods for opti-
mization of sugarcane harvesting in the four sugarcane growing areas of Thailand, namely,
North, Central, East and North-east regions for fresh and fired sugarcane for the crop years
2012/13, 2013/14, 2014/15, 2017/18 and 2018/19. To build the mathematical models, we
have used price and cost data from the Office of the Cane and Sugar Board [9–13].

For the bi-objective and quasi-Newton methods, we have assumed that there is no
growth in sugarcane during the crop year and have divided the crop year into 15-day
periods. For the discrete and continuous optimal control methods, we have allowed for
the possibility of growth during a crop year through a logistic function and have divided
the crop year into 1-day periods. We have also used linear programming to find optimal
cutting patterns for both 1-day and 15-day periods for a no-growth model.

As shown in Table 7, the profits obtained from the five different optimization methods
have been the same to at least 4-digit accuracy for both fresh and fired for all regions for the
crop year 2017/18. We have obtained similar results for both types of sugarcane for all four
regions of Thailand for the crop years 2012/13, 2013/14, 2014/15, 2017/18 and 2018/19.
It can also be seen from the table that the actual profits are within the range of computed
profits for mcf = 1 (full maintenance cost). It is also clear from the results that changes in
the maintenance cost are one of the main factors affecting the optimal cutting patterns,
with high maintenance costs suggesting cutting as early as possible and low maintenance
costs suggesting cutting later.

Although the bi-objective, quasi-Newton, linear programming and optimal control
methods give the same optimal cutting patterns and profits for the case of zero growth,
there is a big difference in computation times as shown in Tables 8 and 9 with the linear
programming and optimal control methods being orders of magnitude faster than the bi-
objective and quasi-Newton methods. Further, for the bi-objective, quasi-Newton methods,
we have considered 15-day cutting periods for a total of approximately 12 decision variables,
whereas for the linear programming and optimal control methods we have considered
daily cutting periods for a total of approximately 180 decision variables. However, linear
programming can only be used if the growth is zero and the profit function is a linear
function of the cutting patterns and the constraints. Finally, we have found that the
programming for the discrete optimal control is much simpler than for the continuous
optimal control and that the computation times are also shorter.

There are a number of important factors that have not been considered in this paper.
For example, there are likely to be changes in the harvesting and transport costs per
tonne as a function of amount cut per day and also changes in the costs of harvesting
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and transport during the cutting season. Including these effects would make the profit a
nonlinear function of control and change the solution from the bang-bang control observed
in the models in this paper. Unfortunately, we have not been able to obtain the cost data
that would be required to include these effects.
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