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Abstract: In this article a sincere effort has been made to address the origin of the incommensu-
rability/irrationality of numbers. It is folklore that the starting point was several unsuccessful
geometric attempts to compute the exact values of

√
2 and π. Ancient records substantiate that more

than 5000 years back Vedic Ascetics were successful in approximating these numbers in terms of
rational numbers and used these approximations for ritual sacrifices, they also indicated clearly
that these numbers are incommensurable. Since then research continues for the known as well as
unknown/expected irrational numbers, and their computation to trillions of decimal places. For the
advancement of this broad mathematical field we shall chronologically show that each continent of
the world has contributed. We genuinely hope students and teachers of mathematics will also be
benefited with this article.
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1. Introduction

Almost from the last 2500 years philosophers have been unsuccessful in providing
satisfactory answer to the question “What is a Number”? The numbers 1, 2, 3, 4, · · · , have
been called as natural numbers or positive integers because it is generally perceived that
they have in some philosophical sense a natural existence independent of man. We will
never know if there existed a genius who invented or introduced these natural numbers,
but it is generally accepted that these numbers came down to us, ready-made, from an
antiquity most of whose aspects are preserved in folklore rather than in historical docu-
ments. For primitive man and children natural number sense is an inherent ability. There
are several recorded incidences of birds, animals, insects, and aquatic creatures who show
through their behavior a certain natural number sense. While natural numbers are primar-
ily used for counting finite collections of objects, there is hardly any aspect of our life in
which natural numbers do not play a significant-though generally hidden-part. In fact,
natural numbers are building blocks of all sciences and technologies. Number Theory which
mainly deals with properties and relationships of natural numbers for their own sake
has been classified as pure mathematics. Since antiquity, number theory has captivated
the best minds of every era. An important feature of number theory is that challenging
problems can be formulated in very simple terms; however, hidden within their simplicity
is complexity. Some of these problems have been instrumental in the development of large
parts of mathematics. Amateurs and professionals are on an almost equal footing in this
field. The set of all natural numbers is denoted as N .

A positive rational number is defined as the exact ratio/fraction/quotient of two
positive integers p/q, where q 6= 0. It is very likely that the notion of rational numbers
also dates to prehistoric times. Around 4000 BC, rational numbers were used to measure
various quantities, such as length, weights, and time in the Indus river valley (which was
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home to more than five million people). Thus, then rational numbers were sufficient for
all practical measuring purposes. The Babylonians used elementary arithmetic operations
for rational numbers as early as 2000 BC. We also find ancient Egyptians texts describing
how to convert general fractions into their special notation. Classical Greek and Indian
mathematicians made studies of the theory of rational numbers, as part of the general
study of number theory, see Euclid’s Elements (300 BC) and Sthananga Sutra (around 3rd
century). The set of all positive rational numbers is denoted as Q+.

Throughout the ancient history negative solutions of linear and quadratic equations
have been called as absurd solutions. First systematic use of negative numbers in mathemat-
ics for finding the solutions of determinate and indeterminate systems of linear equations
of higher order with both positive and negative numbers appeared in Chinese work much
before Han Dynasty (202 BC–220 AD). In appreciation, the historian Jean-Claude Martzloff
(1943–2018, France) theorized that the importance of duality in Chinese natural philosophy
made it easier for the Chinese to accept the idea of negative numbers. Brahmagupta (born
30 BC, India) in his treatise Brahmasphutasiddhanta treated negative numbers in the sense
of ‘fortunes’ and ‘debts’, he also set rules for dealing with negative numbers. Most impor-
tantly, he treated zero as a number in its own right, and attempted to define division by
zero. For a long history of zero, its role in life, and mathematics, see Sen and Agarwal [1].
Unfortunately, in Britain pessimistic attitude towards negative numbers continued till 18th
century, in fact, William Frend (1757–1841, England) took the view that negative numbers
did not exist, whereas his contemporary Francis Maseres (1731–1824, England) in 1759
wrote that negative numbers “darken the very whole doctrines of the equations and make
dark of the things which are in their nature excessively obvious and simple”. He came
to the conclusion that negative numbers were nonsensical. However, in the 19th century
negative numbers received their relevance logically across the world. The set of integers
including positive, negative, and zero is denoted as Z , and the set of all rational numbers
is represented by Q.

Numbers which cannot be expressed as ratios of two integers are called incommensu-
rable or irrational (not logical or reasonable). The earliest known use of irrational numbers is
in the Indian Sulbasutras. For ritual sacrifices there was a requirement to construct a square
fire altar twice the area of a given square altar, which lead to find the value of

√
2 (in the

literature it has been named as Pythagoras number). Indian Brahmins also needed the value
of π (the ratio of the circumference to the diameter of a circle). They were successful in
finding reasonable rational approximations of these numbers, keeping in mind the success
of ritual sacrifices depending on very precise mathematical accuracy. In Sulbasutras there
is also a discussion that these numbers cannot be computed exactly. Thus, the concept of
irrationality was implicitly accepted by Indian Brahmins. We also find approximations of√

2 in Babylonians tablets using sexagesimal fractions. In Greek geometry, two magnitudes
a and b of the same kind were called commensurable if there is another magnitude c of
the same kind such that both are multiples of c, that is, there are numbers p and q such
that pc = a and qc = b. If the two magnitudes are not commensurable, then they are called
incommensurable. While decimal fractions and decimal place value notation, a gift from
India to whole world, has a long history, decimal fraction approximations of

√
2 and π

appeared during 200–875 AD, in the Jain School of Mathematics (India). In terms of decimal
expansions unlike a rational number, an irrational number never repeats or terminates.
In fact, it is only the decimal expansion which immediately shows the difference between
rational and irrational numbers. Irrational numbers have also been defined in several
other ways, e.g., an irrational number has nonterminating continued fraction whereas
a rational number has a periodic or repeating expansion, and an irrational number is
the limiting point of some set of rational numbers as well as some other set of irrational
numbers. In what follows, we will correct the speculations that incommensurability of√

2 was proved by Pythagoras himself (and for all nonsquare integers by Theodorus),
by reveling that the first (fully geometric) proof appeared in the Meno (Socratic dialogue by
Plato). Here we will see an infinite process arise in an attempt to understand irrationals.
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Since then over the period of 2400 years many different proofs of the irrationality of
√

2
have been given, we will demonstrate few of these, and furnish several algorithms to find
its rational approximations. The proof of the irrationality of π had to wait almost two
millennia, it was proved only in 1768 by Johann Heinrich Lambert (1728–1777, Switzer-
land). In 1683 another important number e was introduced by Jacob Bernoulli (1654–1705,
Switzerland), whose irrationality was proved by Leonhard Euler (1707–1783, Switzerland)
in 1748. Thus, the numbers

√
2, π, and e have infinite number of decimal places. Since the

invention of computer technology, these numbers have been approximated to trillions of
decimal places, we shall report these accomplishments. It is to be noted that such extensive
calculations besides human desire to break records, have been used to test supercomputers
and high-precision multiplication algorithms, the occurrence of the next digit seems to be
random, and the statistical distribution expected to be uniform. We list here first 100 digits
of these numbers, which are more than sufficient (in fact, not even first twenty) for each
and every real world problem.

√
2 = 1.4142135623, 7309504880, 1688724209, 6980785696, 7187537694, 8073176679, 7379907324,

7846210703, 8850387534, 3276415727
π = 3.1415926535, 8979323846, 2643383279, 5028841971, 6939937510, 5820974944, 5923078164,

0628620899, 8628034825, 3421170679
e = 2.7182818284, 5904523536, 0287471352, 6624977572, 4709369995, 9574966967, 6277240766,

3035354759, 4571382178, 5251664274

The set of all irrational numbers is denoted as Q′. The union of the sets of all rational
and irrational numbers make up the set of real numbers denoted as IR. Thus, this large set
contains all decimal representations of numbers terminating, repeating, nonterminating,
and nonrepeating.

Euler in his work noted that e is of a different kind of irrational number, which lead
to transcendental numbers (not the roots of nonzero polynomials with rational coefficients).
While the existence of transcendental numbers have been proved to be uncountable, only
for very few numbers their transcendence (one by one) has been established. As it stands,
even to prove irrationality of a number no general method exists, proving transcendence
(or otherwise) of a number is considered as life’s great achievement. We shall provide a
detailed account of this field.

From the 9th century, Arabic mathematicians started treating irrational numbers as
algebraic objects, and initiated the idea of merging the concepts of number (algebra) and
magnitude (geometry) into a more general idea of real numbers. Specially, in the 10th
century they provided a geometric interpretation of rational numbers, on a horizontal
straight line. This work was completed for all real numbers only in the 19th century, which
is now known as Dedekind-Cantor axiom.

2. Sulbasutras

The meaning of the word sulv is to measure, and geometry in ancient India came to be
known by the name sulba or sulva. The Sulbasutras are the appendices to four Vedas (means
wisdom, knowledge or vision): Rigveda, Samaveda, Yajurveda, and Atharvaveda. Sulbasutras
were codified by Krishna Dwaipayana or Sage Veda Vyasa (born 3374 BC) along with his
disciples Jaimani, Paila, Sumanthu, and Vaisampayana. Only seven Sulbasutras are extant,
named for the sages who wrote them: Apastamba, Baudhayana (born 3200 BC), Katyayana,
Manava, Maitrayana, Varaha, and Vidhula. The four major Sulbasutras, which are mathe-
matically the most significant, are those composed by Baudhayana, Manava, Apastamba,
and Katyayana. These Sulbasutras contain a large number of geometric constructions
for squares, rectangles, parallelograms and trapezia; the problem of solving quadratic
equations of the form ax2 + bx + c = 0; several examples of arithmetic and geometric
progressions; a method for dividing a segment into seven equal parts; solutions of first
degree indeterminate equations; and (without any proofs) remarkable approximations
of
√

2 (the sign √ was introduced by Christoff Rudolff 1499–1545, Austria) and π (the
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ratio of the circumference of a circle to its diameter), the Greek symbol π was used first by
the Welshman William Jones (1675–1749, UK, in 1706). In three Sulbasutras Baudhayana,
Apastamba, and Katyayana for the approximation of

√
2 the recipe is “increase the measure

by its third and this third by its own fourth less the thirty-fourth part of that fourth. This is
the value with a special quantity in excess”. If we take 1 unit as the dimension of the side
of a square, then this in modern terms can be written as

√
2 ' 1 +

1
3
+

1
3 · 4 −

1
3 · 4 · 34

=
4
3
+

1
12
− 1

408
=

17
12
− 1

408
=

577
408

(1)

and, similarly, if we take the radius of the circle as 1 unit, then the approximation formula
for π is

π ' 18(3− 2
√

2) =
(

6
2 +
√

2

)2
. (2)

These approximations were used for the construction of altars, particularly,
√

2 in an
attempt to construct a square altar twice the area of a given square altar. For a successful
ritual sacrifice, the altar had to conform to very precise measurements, so mathematical
accuracy was seen to be of the utmost importance. Bibhutibhushan Datta (1888–1958,
India) in his most trusted treatise [2] on Sulbas on page 27 writes “The reference to the
sacrificial altars and their construction is found as early as the Rigveda (before 3000
BC). ... It seems that the problem of the squaring of the circle and the theorem of the
square of the hypotenuse are as old in India as the time of Rigveda. They might be
older still”. Approximation (1) gives

√
2 ' 1.414215686, which is correct to five decimal

places. Perhaps the approximation (1) was used in π ' 18(3 − 2
√

2), to obtain π '
105/34 ' 3.088235294. George Gheverghese Joseph (born 1928, India) in his book [3]
mentions about his correspondence with Takao Hayashi (born 1949, Japan) who pointed
out that the approximation of

√
2 could also be used for constructing a right-angled triangle

and a square. To show (1), Datta on pages 193,194, and subsequently by several others,
e.g., Joseph on pages 235,236 have provided the following reasoning which is in line with
Sulbasutra’s geometry. Consider two squares, ABCD and PQRS, each of 1 unit as the side
of a square (see Figure 1). Divide PQRS into three equal rectangular strips, of which the
first two are marked as 1 and 2. The third strip is subdivided into three squares, of which
the first is marked as 3. The remaining two squares are each divided into four equal strips
marked as 4 to 11. These eleven areas are added to the square ABCD as shown in Figure 1,
to obtain a larger square less a small square at the corner F. The side of the augmented
square AEFG is

1 +
1
3
+

1
3 · 4 .

The area of the shaded square is [1/(3 · 4)]2, so that the area of the augmented square
AEFG is greater than the sum of the areas of the original squares, ABCD and PQRS, by
[1/(3 · 4)]2.

1 
 

 

Figure 1. Sulbasutras Method for
√

2.
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Now to make the area of the square AEFG approximately equal to the sum of the
areas of the original squares ABCD and PQRS, imagine cutting off two very narrow strips,
of width x, from the square AEFG, one from the left side and one from the bottom. Then

2x
(

1 +
1
3
+

1
3 · 4

)
− x2 =

(
1

3 · 4

)2
. (3)

Simplifying the above expression and ignoring x2, an insignificantly small quantity, gives

x ' 1
3 · 4 · 34

.

The diagonal of each of the original squares is
√

2, which can be approximated by the
side of the new square as just calculated, i.e., (1).

A commentator on the Sulbasutras, Rama (perhaps Rama Chandra) Vajapeyi, who
lived in the middle of the fifteenth century AD in India, gave an improved approximation
to (1) by adding two further terms to the equation, i.e.,

√
2 ' 1 +

1
3
+

1
3 · 4 −

1
3 · 4 · 34

− 1
3 · 4 · 34 · 33

+
1

3 · 4 · 34 · 34
=

647393
457776

, (4)

which gives 1.414213502 a value correct to seven decimal places.
In Sulbasutras we also find approximation of

√
3, which can be written as

√
3 ' 1 +

2
3
+

1
3 · 5 −

1
3 · 5 · 52

=
5
3
+

1
3 · 5 −

1
3 · 5 · 52

=
26
15
− 1

3 · 5 · 52
=

1351
780

. (5)

Approximation (5) gives
√

3 ' 1.732051282, which is correct to five decimal places.
In (Datta [2], pp. 194–195), a geometric construction similar to that of (1) for (5) is also given.
A simple algebraic method to get (5) is to take 5/3 as an approximation of

√
3 and put√

3 = (5/3 + x), where x is unknown. Now square both sides of this expression, neglect x2,
and solve the resulting linear equation for x, to get x = 1/3 · 5, thus the new approximation
of
√

3 is 26/15. Repeating this procedure once more, we find x = −1/3 · 5 · 52 and the new
approximation of

√
3 as 1351/780.

For (1) several other descriptions have been proposed, e.g., Radha Charan Gupta
(born 1935, India), in [4] uses linear interpolation to obtain the first two terms of (1), he
then corrects the two terms so obtaining the third term, then correcting the three terms
obtaining the fourth term.

In Manava Sulbasutra the following approximate identities have been used to calculate
approximate values of

√
2

402 + 402 ' 562

42 + 42 '
(

5
2
3

)2
.

(6)

The first indentity gives
√

2 ' 7/5 = 1.4, whereas the second gives
√

2 ' 17/12 =
1.41666666 · · · .

For an excellent detailed discussion of
√

2 up to 2006, see the book of Flannery [5].
Bonnell and Nemiroff on the Website https://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil
(accessed on 4 March 2021) have posted one million digits of

√
2, and in 2009 five million

digits, see Bonnell and Nemirof [6]. Other records are by Yasumasa Kanada (1949–2020,
Japan) in 1997 to 137,438,953,444 decimal places; Shigeru Kondo (born 1959, Japan) in 2010
to one trillion decimal places; Alexander Yee in 2012 to two trillion; Ron Watkins in April,
2016 to five trillion, and in June 2016 to ten trillion.

In Sulvasutras, the priests gave the following procedure for finding a circle whose area
was equal to a given square. In the square ABCD, let M be the intersection of the diagonals
(Figure 2). Draw the circle with M as center and MA as radius, let ME be the radius of the

https://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil
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circle perpendicular to the side AD and cutting AD in G. Let GN = 1
3 GE. Then MN is the

radius of the desired circle. If AB = s and 2MN = d, then from the Pythagoras theorem it
follows that

MN = MG + GN = MG +
1
3

GE = MG +
1
3
(ME−MG) =

2
3

MG +
1
3

ME =
2
3

s
2
+

1
3

√
2s
2

,

and hence

MN =

(
2 +
√

2
6

)
s.

This gives

π(MN)2 ' π

(
2 +
√

2
6

)2

s2 = s2,

which leads to

π '
(

6
2 +
√

2

)2
= 18(3− 2

√
2),

which is the same as (2).

with M as center and MA as radius, let ME be the radius of the circle perpendicular to the side AD and
cutting AD in G. Let GN = 1

3GE. Then MN is the radius of the desired circle. If AB = s and 2MN = d,
then from the Pythagoras theorem it follows that

MN = MG+GN = MG+
1

3
GE = MG+

1

3
(ME −MG) =

2

3
MG+

1

3
ME =

2

3

s

2
+

1

3

√
2s

2
,

and hence

MN =

(
2 +

√
2

6

)
s.

This gives

π(MN)2 ≃ π

(
2 +

√
2

6

)2

s2 = s2,

which leads to

π ≃
(

6

2 +
√
2

)2

= 18(3− 2
√
2),

which is the same as (2).

Figure 2. Area of a Circle Equal to a Square

A D

B C

M

G

E
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For the converse problem, that of squaring the circle, we are given the following rule: If you wish to turn
a circle into a square, divide the diameter into 8 parts, and again one of these 8 parts into 29 parts; of these
29 parts remove 28, and moreover, the sixth part (of the one left) less the eighth part (of the sixth part).
The meaning is: side of the required square is

7

8
+

1

8× 29
− 1

8× 29× 6
+

1

8× 29× 6× 8
=

9785

11136

times the diameter of given circle. It gives the value of π = 3.088326491.

All the Sulbasutras contain a method to square the circle. It is an approximate method based on
constructing a square of side 13/15 times the diameter of the given circle as in the Figure 3. This corresponds
to taking the value of π as

π = 4× (13/15)2 = 676/225 = 3.00444.

6

Figure 2. Area of a Circle Equal to a Square.

For the converse problem, that of squaring the circle, we are given the following rule:
If you wish to turn a circle into a square, divide the diameter into 8 parts, and again one of
these 8 parts into 29 parts; of these 29 parts remove 28, and moreover, the sixth part (of
the one left) less the eighth part (of the sixth part). The meaning is: side of the required
square is

7
8
+

1
8× 29

− 1
8× 29× 6

+
1

8× 29× 6× 8
=

9785
11136

times the diameter of given circle. It gives the value of π = 3.088326491.
All the Sulbasutras contain a method to square the circle. It is an approximate method

based on constructing a square of side 13/15 times the diameter of the given circle as in
Figure 3. This corresponds to taking the value of π as

π = 4× (13/15)2 = 676/225 = 3.00444.
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Figure 3. Approximation of π

O
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It is worth noting that many different values of π appear in the Sulbasutras, even several different
ones in the same text. This is not surprising that whenever an approximate construction is given some
value of π is implied. The authors thought in terms of approximate constructions, not in terms of exact
constructions with π but only having an approximate value for it. For example, in Baudhayana Sulbasutra
the different values of π are given as 676/225, 900/289, and 1156/361. In other Sulbasutras the values
2.99, 3.00, 3.004, 3.029, 3.047, 3.088, 3.1141, 3.16049 and 3.2022 can all be found. Particularly, in the
Mayana Sulbasutra, see Gupta [23], the value of π ≃ 25/8 ≃ 3.125, also see interesting work of Kak [25] and
Kulkarni [29]. For an extensive history of π (calculating up to ten trillion decimal places) till the year 2013,
see Agarwal, et. al. [2]. In 2019, a Google cloud developer Emma Haruka Iwao from Japan set a new world
record for calculating π to 31.4 trillion decimal places. She used the same software as her successor (Peter
Trueb-22.4 trillion, 2016) but had the advantage owing to her access to Google servers. The calculation took
over twenty-five cloud-based computers and a hundred and twenty one days to complete. On 29th January
2020, Timothy Mullican of USA has broken all previous records by calculating π to 50 trillion digits.

In 1875, George Thibaut (1848–1914) translated a large portion of the Sulvasutras, which showed that
the Indian priests possessed significant mathematical knowledge. Thibaut was a Sanskrit scholar and his
principal objective was to make the mathematical knowledge of the Vedic Indians available to the learned
world. He firmly believed that Hindus had knowledge of irrationality, in particular, of

√
2. In fact, in

Apastamba there is a discussion of the irrationality of π. According to Datta [14, p 195] and several other
Sanskrit scholars such as Leopold von Schroeder (1851-1920, Germany) in 1884 and 1887, Bürk Richard
Garbe (1857-1927, Germany) in 1899, Edward Washburn Hopkins (1857-1932, American) in 1895, and
Arthur Anthony Macdonell (1854-1930, born in British-India) in 1900, have claimed that irrationality of

√
2

was first discovered by ancient Hindus.

3. Aryabhata’s Method for Extracting Square and Cube Roots. The legacy of this Indi-
an genius (born 2765 BC) continues to baffle mathematicians and astronomers, for details of his astonishing
contributions, see Agarwal and Sen [3] and Keller [27]. Although, Aryabhata does not provide details to find
square and cube roots, it has been concluded that his method is based on decimal place-value system, and the
equalities (ab)2 = (10a+b)2 = (10a)2+[2(10a)+b]b and (ab)3 = (10a+b)3 = (10a)3+[3(10a)2+3(10a)b+b2]b.
An important feature of his method is that it finds each digit of the root successively, from left to right. His
method is still taught in schools. We shall summarize his method in simplified terms through the following
examples.

To find the square root of 625, we group it in two’s from right to left as 6 25. Now search largest possible
integer a such that a2 ≤ 6, which is obviously a = 2. This will be the first digit of the required square root.
The next step is to find 6 − a2 = 6 − 22 = 2, and with this adjoin 25, i.e., 225. Now find largest possible
integer b such that [2(10a) + b]b = (40 + b)b ≤ 225, which is obviously b = 5. This will be the next digit of

7

Figure 3. Approximation of π.

It is worth noting that many different values of π appear in the Sulbasutras, even
several different ones in the same text. This is not surprising that whenever an approxi-
mate construction is given some value of π is implied. The authors thought in terms of
approximate constructions, not in terms of exact constructions with π but only having
an approximate value for it. For example, in Baudhayana Sulbasutra the different val-
ues of π are given as 676/225, 900/289, and 1156/361. In other Sulbasutras the values
2.99, 3.00, 3.004, 3.029, 3.047, 3.088, 3.1141, 3.16049 and 3.2022 can all be found. Partic-
ularly, in the Mayana Sulbasutra, see Gupta [7], the value of π ' 25/8 ' 3.125, also see
interesting work of Kak [8] and Kulkarni [9]. For an extensive history of π (calculating up
to ten trillion decimal places) till the year 2013, see Agarwal, et al. [10]. In 2019, a Google
cloud developer Emma Haruka Iwao from Japan set a new world record for calculating π to
31.4 trillion decimal places. She used the same software as her successor (Peter Trueb-22.4
trillion, 2016) but had the advantage owing to her access to Google servers. The calculation
took over twenty-five cloud-based computers and a hundred and twenty one days to
complete. On 29 January 2020, Timothy Mullican of USA has broken all previous records
by calculating π to 50 trillion digits.

In 1875, George Thibaut (1848–1914) translated a large portion of the Sulvasutras,
which showed that the Indian priests possessed significant mathematical knowledge.
Thibaut was a Sanskrit scholar and his principal objective was to make the mathematical
knowledge of the Vedic Indians available to the learned world. He firmly believed that
Hindus had knowledge of irrationality, in particular, of

√
2. In fact, in Apastamba there

is a discussion of the irrationality of π. According to Datta ([2], p. 195) and several other
Sanskrit scholars such as Leopold von Schroeder (1851-1920, Germany) in 1884 and 1887,
Bürk Richard Garbe (1857–1927, Germany) in 1899, Edward Washburn Hopkins (1857–1932,
American) in 1895, and Arthur Anthony Macdonell (1854–1930, born in British-India) in
1900, have claimed that irrationality of

√
2 was first discovered by ancient Hindus.

3. Aryabhata’s Method for Extracting Square and Cube Roots

The legacy of this Indian genius (born 2765 BC) continues to baffle mathematicians
and astronomers, for details of his astonishing contributions, see Agarwal and Sen [11]
and Keller [12]. Although, Aryabhata does not provide details to find square and cube
roots, it has been concluded that his method is based on decimal place-value system,
and the equalities (ab)2 = (10a + b)2 = (10a)2 + [2(10a) + b]b and (ab)3 = (10a + b)3 =
(10a)3 + [3(10a)2 + 3(10a)b + b2]b. An important feature of his method is that it finds each
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digit of the root successively, from left to right. His method is still taught in schools. We
shall summarize his method in simplified terms through the following examples.

To find the square root of 625, we group it in two’s from right to left as 6 25. Now
search largest possible integer a such that a2 ≤ 6, which is obviously a = 2. This will be
the first digit of the required square root. The next step is to find 6− a2 = 6− 22 = 2, and
with this adjoin 25, i.e., 225. Now find largest possible integer b such that [2(10a) + b]b =
(40 + b)b ≤ 225, which is obviously b = 5. This will be the next digit of the required square
root. Since 225− (45)5 = 0, it follows that

√
625 = 25.

To find the square root of 474721, we group it in two’s from right to left as 47 47 21.
Search largest possible integer a such that a2 ≤ 47, which is 6. Now, we find 47− a2 =
47− 62 = 11, and with this adjoin 47, i.e., 1147 and find largest possible integer b such
that [2(10a) + b]b = (120 + b)b ≤ 1147, which is 8. Next, we find 1147 − 128 × 8 =
1147− 1024 = 123. Finally, with this we adjoin 21, i.e., 12321 and find largest possible
integer c such that [2(10ab) + c]c ≤ 12321, i.e., (1360 + c)c ≤ 12321, which is 9, and the
equality holds. Thus,

√
474721 = 689.

Francois Viéte (1540–1603, France) noted that if one needs to calculate the square root
of 2 to a high degree of accuracy, one should add as many zeros as necessary, and calculate
the square root of, for example, 20, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000. That
root he shows to be 141, 421, 356, 237, 309, 505, and thus the square root of 2 is approximately

1
41, 421, 356, 237, 309, 505

100, 000, 000, 000, 000, 000
.

We note that Aryabhata’s Method explained above for 625 and 474721, combined with
Viéte’s observation easily computes the same approximation of

√
2, except instead of the

last digit 5, we get 4; however, if we compute one more digit (which is 8) and then round it,
then it is indeed 5.

To find the cube root of 1728, we group it in three’s from right to left as 1 728. We
search largest possible integer a such that a3 ≤ 1, which is 1. This will be the first digit of
the required cube root. Since 1− 13 = 0, for the next digit we consider 728 and find largest
possible integer b such that [3(10a)2 + 3(10a)b + b2]b ≤ 728, which is 2, and the equality
holds. Thus, 3

√
1728 = 12.

To find the cube root of 12977875, we group it in three’s from right to left as 12 977 875.
We search largest possible integer a such that a3 ≤ 12, which is 2. This will be the first digit
of the required cube root. Now, we find 12− a3 = 12− 23 = 4, and with this adjoin 977,
i.e., 4977 and find largest possible integer b such that [3(10a)2 + 3(10a)b + b2]b ≤ 4977,
which is 3. This will be the second digit of the required cube root. Next, we calculate
4977 − [3(10a)2 + 3(10a)b + b2]b = 4977 − 4167 = 810, and with this we adjoin 875,
i.e., 810875. Finally, we find largest possible integer c such that [3(10ab)2 + 3(10ab)c+ c2]c ≤
810875, which is 5, and the equality holds. Thus, 3

√
12977875 = 235.

To find the cube root of 961504803, we group it in three’s from right to left as
961 504 803. We search largest possible integer a such that a3 ≤ 961, which is 9. This
will be the first digit of the required cube root. Now, we find 961− a3 = 961− 93 = 232,
and with this adjoin 504, i.e., 232504 and find largest possible integer b such that [3(10a)2 +
3(10a)b + b2]b ≤ 232504, which is 8. This will be the second digit of the required cube
root. Next, we calculate 232504− [3(10a)2 + 3(10a)b + b2]b = 232504− 212192 = 20312,
and with this we adjoin 803, i.e., 20312803. Finally, we find largest possible integer c such
that [3(10ab)2 + 3(10ab)c + c2]c ≤ 20312803, which is 7, and the equality holds. Thus,
3
√

961504803 = 987.
As for the square root, we can add as many zeros as necessary, and calculate the cube

root with desired accuracy.
To find an approximate value of π, Aryabhatta gives the following prescription: Add

4 to 100, multiply by 8 and add to 62,000. This is “approximately” the circumference of a
circle whose diameter is 20,000. This means π = 62,832/20,000 = 3.1416. It is important to
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note that Aryabhatta used the word asanna (approaching), to mean that not only is this an
approximation of π, but that the value is irrational.

4. Great Pyramid at Gizeh and Rhind Mathematical Papyrus

From the dimensions of the Great Pyramid (erected around 2600 BC) it is possible
to derive the two irrational numbers, namely, π, and the ‘Golden Number’ or ‘divine
proportion’ Φ = (1 +

√
5)/2 ' 1.61803398 · · · . A golden rectangle is a rectangle whose

sides are in the ratio of Φ, it has dimensions pleasing to the eye and was used for the
measurements of the facade of the Parthenon and other Greek temples, for details, see Sen
and Agarwal [13]. Rhind Mathematical Papyrus (scribed 1650 BC) was scribed by Ahmes
(1680-1620 BC, Egypt). It contains 87 problems, in particular, problem number 50 states
that a circular field with a diameter of 9 units in area is the same as a square with sides of 8
units, i.e., π(9/2)2 = 82, and hence

π = 4×
(

8
9

)2
= 3.16049 · · · .

5. Babylonians Tablet YBC 7289

There are numerous examples suggesting that Babylonians assembled large number
of tables consisting of squares and square roots, and cubes and cubic roots. It has been
suggested by several historians of mathematics, e.g., Victor Joseph Katz, (born 1942, USA)
in his book [14] that “when square roots are needed in solving problems, the problems are
arranged so that the square root is one that is listed in a table and is a rational number.
However, where an irrational square root is needed, in particular, for

√
2, the result is

generally written as 1; 25
(
= 1 5

12
)
”. On a fascinating tablet from Yale Babylonian Collection

(YBC) number 7289 (around 1800-1600 BC), there is a scatter diagram of a square with side
indicated as 30 and two numbers, see Figure 4,

1; 24, 51, 10 =
1
1
+

24
60

+
51
602 +

10
603 =

30547
21600

= 1.41421296 · · · (7)

and
42; 25, 35 = 42 +

25
60

+
35
602 =

30547
720

= 42.42638888 · · ·

87 problems, in particular, problem number 50 states that a circular field with a diameter of 9 units in area
is the same as a square with sides of 8 units, i.e., π (9/2)2 = 82, and hence
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30

1;24,51,10

42;25,35

The product of 30 by 1; 24, 51, 10 is exactly 42; 25, 35. Therefore, it is justifiable to presume that the number
42; 25, 35 represents the length of the diagonal and the number 1; 24, 51, 10 is

√
2. This confirms that Baby-

lonians had enormous computational skills. The mathematical significance of this tablet was first recognized
by the historians Otto Eduard Neugebauer (1899-1990, USA) and Abraham Sachs (1915-1983, USA). This
tablet provides the correct value of

√
2 to six decimal digits. For further details, see Fowler and Robson [18].

The same Babylonian approximation of
√
2 was used later by Alexandrian Claudius Ptolemaeus, Ptolemy in

English, (around 90-168 AD, Greek) in his Almagest, but he did not mention from where this approximation
came, perhaps it was well known by his time. Carl Benjamin Boyer (1906-1976, USA) in his book [10] writes
1; 24, 51, 10 ≃ 1.414222, which actually corresponds to 1; 24, 51, 12.

As in Sulbasutras there is no record how Babylonians obtained the approximations 1; 25 or 1; 24, 51, 10,
of

√
2; however, definitely they must have realized that the exact value of

√
2 cannot be achieved. Thus, the

methods which have been suggested by the historians are merely speculative. For example, Katz [26] believes
that Babylonians used the algebraic identity (x + y)2 = x2 + 2xy + y2, which they might have perceived
geometrically. Mathematically, the problem is for a given square of area N, we need to find its side

√
N. For

this, as a first step we select a regular number (evenly dividable of powers of 60) a close to, but less than,

9

Figure 4. Babylonians Tablet YBC 7289.



Computation 2021, 9, 29 10 of 49

The product of 30 by 1; 24, 51, 10 is exactly 42; 25, 35. Therefore, it is justifiable to
presume that the number 42; 25, 35 represents the length of the diagonal and the number
1; 24, 51, 10 is

√
2. This confirms that Babylonians had enormous computational skills.

The mathematical significance of this tablet was first recognized by the historians Otto
Eduard Neugebauer (1899–1990, USA) and Abraham Sachs (1915–1983, USA). This tablet
provides the correct value of

√
2 to six decimal digits. For further details, see Fowler and

Robson [15]. The same Babylonian approximation of
√

2 was used later by Alexandrian
Claudius Ptolemaeus, Ptolemy in English, (around 90–168 AD, Greek) in his Almagest,
but he did not mention from where this approximation came, perhaps it was well known
by his time. Carl Benjamin Boyer (1906–1976, USA) in his book [16] writes 1; 24, 51, 10 '
1.414222, which actually corresponds to 1; 24, 51, 12.

As in Sulbasutras there is no record how Babylonians obtained the approximations
1; 25 or 1; 24, 51, 10, of

√
2; however, definitely they must have realized that the exact

value of
√

2 cannot be achieved. Thus, the methods which have been suggested by the
historians are merely speculative. For example, Katz [14] believes that Babylonians used the
algebraic identity (x + y)2 = x2 + 2xy+ y2, which they might have perceived geometrically.
Mathematically, the problem is for a given square of area N, we need to find its side

√
N.

For this, as a first step we select a regular number (evenly dividable of powers of 60) a close
to, but less than,

√
N (a good guess). Letting b = N − a2, the next step is to find c so that

2ac + c2 is as close as possible to b, see Figure 5. If a2 is “close enough” to N, then c2 will
be small in relation to 2ac, so c can be chosen equal to b/2a, that is,

√
N =

√
a2 + b ' a +

b
2a

= a +
N − a2

2a
=

1
2

(
a +

N
a

)
. (8)

A similar argument shows that if a is greater than
√

N, then

√
N =

√
a2 − b ' a− b

2a
= a− a2 − N

2a
=

1
2

(
a +

N
a

)
. (9)

√
N (a good guess). Letting b = N − a2, the next step is to find c so that 2ac + c2 is as close as possible

to b, see Figure 5. If a2 is “close enough” to N, then c2 will be small in relation to 2ac, so c can be chosen
equal to b/2a, that is,

√
N =

√
a2 + b ≃ a+

b

2a
= a+

N − a2

2a
=

1

2

(
a+

N

a

)
. (8)

A similar argument shows that if a is greater than
√
N, then

√
N =

√
a2 − b ≃ a− b

2a
= a− a2 −N

2a
=

1

2

(
a+

N

a

)
. (9)

Figure 5. Approximation of
√
N

a2

ac c2 ac

ac

b

For
√
2, we begin with a = 1; 20 (= 4/3) <

√
2, (see (1)), to obtain a2 = 1; 46, 40 (= 16/9), b =

0; 13, 20 (= 2/9) and b/2a = 0; 05 (= 1/12). Thus, from (8) it follows that
√
2 ≃ √

1; 46, 40 + 0; 13, 20 ≃ 1; 20
+0; 05 = 1; 25 (= 17/12) >

√
2, (see (1)). Similarly, if we choose a = 3/2 >

√
2, then (9) also gives√

2 ≃ 17/12. Now we choose a = 17/12 and apply (9), to get

√
2 ≃

√(
17

12

)2

− 1

144
≃ 17

12
− 1/144

34/12
=

17

12
− 1

408
=

577

408
,

which is same as (1). Thus, we get all steps for
√
2 given in (1). Next, since 577/408 >

√
2, we again use

(9), to obtain
√
2 ≃ 665857

470832
= 1.4142135623746 · · · , (10)

which is correct to 11 decimal places.

Now since (
√
N − a)2 = N + a2 − 2a

√
N > 0, (equality holds only when

√
N = a), it follows that

(a+N/a)/2 >
√
N. Thus, when we choose a <

√
N, after applying (8), for further improvement we have to

proceed to (9). Having this in mind, and looking (8) and (9), we can write the following algorithm (a process
or set of rules to be followed in calculations) to compute

√
N, also see [Boyer 10], and [Ernst Sondheimer

and Alan Rogerson 37]:

an+1 =
1

2

(
an +

N

an

)
, n ≥ 0 (11)

10

Figure 5. Approximation of
√

N.

For
√

2, we begin with a = 1; 20 (= 4/3) <
√

2, (see (1)), to obtain a2 = 1; 46, 40 (=
16/9), b = 0; 13, 20 (= 2/9) and b/2a = 0; 05 (= 1/12). Thus, from (8) it follows that√

2 ' √1; 46, 40 + 0; 13, 20 ' 1; 20 +0; 05 = 1; 25 (= 17/12) >
√

2, (see (1)). Similarly,
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if we choose a = 3/2 >
√

2, then (9) also gives
√

2 ' 17/12. Now we choose a = 17/12
and apply (9), to get

√
2 '

√(
17
12

)2
− 1

144
' 17

12
− 1/144

34/12
=

17
12
− 1

408
=

577
408

,

which is same as (1). Thus, we get all steps for
√

2 given in (1). Next, since 577/408 >
√

2,
we again use (9), to obtain

√
2 ' 665857

470832
= 1.4142135623746 · · · , (10)

which is correct to 11 decimal places.
Now since (

√
N − a)2 = N + a2 − 2a

√
N > 0, (equality holds only when

√
N = a),

it follows that (a + N/a)/2 >
√

N. Thus, when we choose a <
√

N, after applying (8),
for further improvement we have to proceed to (9). Having this in mind, and looking
(8) and (9), we can write the following algorithm (a process or set of rules to be followed
in calculations) to compute

√
N, also see (Boyer [16]), and (Ernst Sondheimer and Alan

Rogerson [17]):

an+1 =
1
2

(
an +

N
an

)
, n ≥ 0 (11)

where a0 > 0 is any number (greater than or smaller than
√

N), known as the initial approx-
imation. Today algorithm (11) is derived by using Isaac Newton’s (1642–1727, England)
method: With appropriate x0 the iterative scheme

xn+1 = xn −
f (xn)

f ′(xn)
, n ≥ 0 (12)

converges quadratically to a root of the general equation f (x) = 0. In our case the equation
is f (x) = x2 − N = 0. For N = 2 this is perhaps one of the oldest known algorithms.
Historians Neugebauer and Sachs believed that the Babylonians obtained this algorithm
for N = 2 based on the following principle: Suppose a is a guess which is too small (large),
then 2/a will be a guess which is too large (small). Hence, their average (a + 2/a)/2 is a
better approximation. This assumption that “divide and average” seems to be a general
procedure of Babylonians for approximating square roots.

In the literature the algorithm (11) is also known as Heron’s method after Heron of
Alexandria (about 75 AD, perhaps an Egyptian) who gave the first explicit description of the
method in his treatise Metrica which was discovered as recently as 1896 in Constantinople
in a manuscript (the very word manuscript comes from the Latin words meaning ‘written
by hand’) form dating from the eleventh or twelfth century. Heron used the formula (9),
i.e.,
√

N =
√

a2 − b ' a− (1/2)b(1/a) to calculate the square roots: “Since 720 has not
a rational root, we shall make a close approximation to the root in this manner. Since
the square nearest to 720 = N is 729 = a2, having a root a = 27, divide 27 into 720,
i.e., N/a the result is N/a = 26 2

3 ; add a = 27, the result is N/a + a = 53 2
3 . Take half of

this, i.e., 1
2

(
N
a + a

)
= 1

2 (a2 − b + a2)/a = a − (1/2)b(1/a); the result is 26 5
6 . Therefore

the square root of 720 will be very nearly 26 5
6 . For 26 5

6 multiplied by itself gives 720 1
36 ;

so that the difference is 1/36. if we wish to make the difference less than 1/36, instead of
729 we shall take the number now found 720 1

36 , and by the same method we shall find an
approximation differing by much less than 1/36”. Heron also found approximate square
root of 63 also. The algorithm (11) generates a sequence {an}, for which the concept of
convergence was not existing even during the time of Heron. For the convergence of the
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sequence {an} the following result is well-known, for example, see Agarwal et al. [18]: For
the sequence {an} the following hold

an −
√

N
an +

√
N

=

(
an−1 −

√
N

an−1 +
√

N

)2

= · · · =

(
a0 −

√
N

a0 +
√

N

)2n

(13)

and the fact that |a0 −
√

N|/|a0 +
√

N| < 1. The convergence (quadratic) of this sequence
to
√

N immediately follows from (13). From (13), we also note that an −
√

N > 0 for all
n ≥ 1. It also follows directly from the arithmetic-geometric mean inequality, in fact, for all
n ≥ 1, we have

an =
1
2

(
an−1 +

N
an−1

)
≥
√

an−1 ·
N

an−1
=
√

N,

with equality if and only if a2
n−1 = N. Hence, the sequence {an} is bounded below by

√
N.

Further, since

an+1 − an =
1

2an
(N − a2

n) < 0

the sequence {an} is decreasing. Thus, the sequence {an}, in fact, converges monotonically.
Jöran Friberg (born 1934, Sweden) in his book [19] mentions that Babylonian tablets

(such as MS 3051) contain computations of areas of hexagons and heptagons, which involve
the approximation of more complicated algebraic numbers (zeros of polynomials with
integer coefficients) such as

√
3. The answer given there leads to the simple approximation√

3 ' 7/4. This does not mean they could not have calculated better approximations.
In Table 1, we use (11) to compute first three iterates for

√
2 and

√
3.

Table 1. Monotone Convergence.

n N = 2 N = 2 N = 3 N = 3 N = 3

0
4
3

3
2

2
5
3

3
2

1
17
12

17
12

7
4

26
15

7
4

2
577
408

577
408

97
56

1351
780

97
56

3
665857
470832

665857
470832

18817
10864

3650401
2107560

18817
10864

From Table 1 it is clear that the algorithm (11) gives both Sulbasutras approximations
(1) and (5) of

√
2 and

√
3. It also gives Babylonian approximation

√
3 ' 7/4. Unfortunately,

from (11) we cannot get the Babylonians approximation (7) of
√

2. In fact, reversing a step
in (11) leads to the equation

30547
21600

=
1
2

(
x +

2
x

)
i.e. 10800x2 − 30547x + 21600 = 0,

which has only complex roots. Another simple explanation is 30547/21600 <
√

2, whereas
an >

√
2, n ≥ 1. We also note that Boyer in his book [16] has made a false assertion that

a2 with a0 = 3/2 for
√

2 gives (7). In conclusion, Babylonians obtained (7) by some other
unknown technique rather than (11), as has been claimed. A probable explanation for
(7) is that Babylonians from their tables of n2 and 2n2, n ≥ 1 noticed that 933119209 =
(30547)2 ' 2(21600)2 = 933120000.
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Algorithm (11) at n-th iteration requires division by an, to avoid this we consider the
equation f (x) = (1/x2)− N = 0 and apply Newton’s method (12), to get

xn+1 =
3
2

xn −
N
2

x3
n, n ≥ 0

which converges to 1/
√

N. We multiply this by N and let an = Nxn, to obtain

an+1 =
an

2N
(3N − a2

n), n ≥ 0

which converges quadratically to
√

N. For N = 2 with a0 = 3/2 the above scheme gives
a1 = 45/32, a2 = 185355/131072. These approximations of

√
2 are different from the

corresponding entries in Table 1.
Problem xviii from the combined Babylonian tablet fragments BM 96957 and VAT

6598 gives two methods for calculating the diagonal d of a rectangle with sides of length
a = 40 and b = 10 units. The first leads (in specific numbers) to the approximation

d ' a +
2ab2

3600
, (14)

and the second method to the approximation is

d ' a +
b2

2a
. (15)

From Pythagorean Theorem d =
√

402 + 102 = 41.231056 · · · . Formulas (8), (9), (14)
and (15), respectively, give the approximations

√
412 + 19 = 41 +

19
2× 41

= 41.231707 · · ·
√

422 − 64 = 42− 64
2× 42

= 41.238095 · · ·
√

402 + 102 = 40 +
2× 40× 102

3600
= 42.222222 · · ·

√
402 + 102 = 40 +

102

2× 40
= 41.25

The so-called Cairo Mathematical Papyrus, unearth in 1938 and first examined in 1962,
dating from the early Ptolemeic dynasties (founded in 305 BC), contains 40 problems of
mathematical nature. The problem particularly interesting in modern terms is to find the
solution of the system of equations

x2 + y2 = 225, xy = 60.

The scribe’s method of solution amounts to adding and subtracting 2xy = 120 from
the equation x2 + y2 = 225, to get

(x + y)2 = 345, (x− y)2 = 105

or equivalently,
x + y =

√
345, x− y =

√
105.

Furthermore, now employing (8), to obtain the approximations

x + y =
√

345 =
√

182 + 21 ' 18 +
21
36

= 18 +
1
2
+

1
12
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and
x− y =

√
105 =

√
102 + 5 ' 10 +

5
20

= 10 +
1
4

.

In an old Babylonian tablet (about 2000 BC) found in 1936 in Susa (Iraq), for the
irrational number π the following expression appears

3
π

=
57
60

+
36

(60)2 ,

which yields π = 3 1/8 = 3.125. Babylonians were also satisfied with π = 3.

6. Shatapatha Brahmana

It means Priest manual of 100 paths (about 900 BC) is one of the prose texts describing
the Vedic ritual. It survives in two recensions, Madhyandina and Kanva, with the former
having the eponymous 100 brahmanas in 14 books, and the latter 104 brahmanas in 17
books. In these books π is approximated by 339/108 = 3.138888 · · · .

7. Pythagoreans (Followers of Pythagoras) Crisis of Incommensurability

Pythagoras (around 582-481 BC, Greece) is one of the most unexplained personalities in
the history. He is among those individuals given the status of becoming a myth/omnipotent
in his own lifetime. Since he followed typical oriental tradition (the knowledge was passed
from one generation to the next mainly by word to mouth) whatever little we know
about them is from the imaginations and a great many anecdotal fables thrown in by the
historians who wrote (frequently contradict one another) and painted his picture hundreds
of years after him, which continues even today. He has been called as mystic philosopher,
master among masters, blend of genius and madness, mysterious, divinity, god-like figure,
whereas some have shown doubt that such a person ever existed. In the book India in
Greece, John J Griffin & Company, England, 1852, by the Greek historian Edward Pococke
reports that Pythagoras, who taught Buddhist philosophy, was a great missionary. His
name indicates his office and position; Pythagoras in English is equivalent to putha–gorus
in Greek and Budha–guru in Sanskrit, which implies that he was a Buddhist spiritual leader.
Note that Lord Gautama Buddha was during (1887–1807 BC), historians have misled the
world by claiming that he flourished around (450 BC). Pythagoras is also considered to be a
remarkably significant figure in the advancement of mathematics, science, and pre-Socratic
philosophy (the study of the fundamental nature of knowledge, reality, and existence,
the word philosophy is due to Socrates, around 469–399 BC), even though we know
comparatively little about his mathematical achievements. In any case, for his many
accomplishments in mathematics for which he is being credited, in recent years it has been
shown that these were already known several centuries before him. For example, for the
origin of Pythagorean Theorem (which made Pythagoras immortal) and Pythagorean
Triples see Agarwal [20,21]. Still, the Pythagorean legacy lasted well over more than two
and a half millenniums, and continues to be present in the modern day, starting from high
school students. His philosophy appeared suddenly and unexpectedly in Albert Einstein’s
(1879–1955) formulation of the general theory of relativity. Today, Pythagoras is revered as
a prophet by the Ahl-al-Tawhid or Druze (a concept, upon which a Muslim’s entire faith
rests) along with Greek philosopher Plato of Athens (around 427–347 BC). Plato (meaning
broad) is a nickname, his real name was Aristocles, he died at a wedding feast.

Pythagoras gave ‘divine significance’ to most natural numbers, and attempted to
find mathematical explanations for everything in the universe in terms of rational num-
bers “possibly the most mischievous misreading of nature in the history of human error”
(Eric Temple Bell, 1883-1960, USA, Britain). He paid homage to every numerical rela-
tionship such as equation and inequality (arithmetic then). His motto was All is Number,
“numbers Rules the Universe”, “number is the ruler of forms and ideas and the cause of
gods and demons”. He identified some human attribute to most numbers, such as even
numbers he regarded as feminine, pertaining to the earthly; odd numbers as masculine,
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partaking of celestial nature. However, the hypotenuse of a most obvious right-angle
triangle with the same legs lead to the the number

√
2, which Pythagoreans could not

write as a rational number. The discovery of incommensurability of
√

2 caused tremendous
crisis/confusion/devastation/surprise/shattering effect among the Pythagoreans, for it
challenged the adequacy of their basic philosophy that number was the essence of every-
thing. In fact, in the numerical sense, the universe was seen to be irrational. This logical
calamity enforced them to maintain the pledge of strict secrecy. To incommensurable
numbers they named as “the unutterable”, (Greeks used the term logos, meaning word
or speech, for the ratio of two integers, when incommensurable lengths were described
as alogos, the term carried a double meaning: not a ratio and not to be spoken) as it was
a dangerous secret to possess. According to a legend, Hippasus of Metapontum (about
500 BC, Greece), a Pythagorean was murdered-thrown off a ship to drown at sea by fanatic
Pythagoreans, because he uttered the unutterable to an outsider (some historians have
speculated that Hippasus had first proof of the existence of irrational numbers), whereas
others say he lost his fortune and tried to recoup his losses by teaching the doctrine of irra-
tional numbers. Anyway it is hard to keep a secret in science. This revelation/achievement
of Pythagoreans, that not all numbers are rational marked, is considered one of the most
fundamental discoveries in the entire history of science (it evolved the number concept
by filling the gaps which were there between rationals). Historians have also argued that
this major discovery also helped in the development of deductive reasoning. However,
it seems to be inexplicable as we have noted in Section 2 that irrationality of

√
2 was

already conjectured in Sulbasutras, and several later Sanskrit scholars decisively claimed
that irrationality of

√
2 was first discovered by ancient Hindus. In fact, from the following

quotes it confirms that Pythagoras learnt about the irrationality of
√

2 in India.
Francois Marie Arouet Voltaire (1694–1778), one of the greatest French writers and

philosophers: “I am convinced that everything has come down to us from the banks of
Ganga–Astronomy, Astrology, and Spiritualism. Pythagoras went from Samos to Ganga
2600 years ago to learn Geometry. He would not have undertaken this journey had the
reputation of the Indian science had not been established before.”

Thomas Stearns Eliot (1888–1965), American-British poet, Nobel Laureate (1948): “I am
convinced that everything has come down to us from the banks of the Ganga—Astronomy,
Astrology, Spiritualism, etc. It is very important to note that some 2500 years ago at the
least Pythagoras went from Samos to the Ganga to learn Geometry but he would certainly
not have undertaken such a strange journey had the reputation of the Brahmins’ science
not been long established in Europe”.

In 2007, Borzacchini [22] has asserted that Pythagorean music theory is the origin
of incommensurability.

8. Democritus of Abdera (around 460–362 BC, Greece)

He traveled to Egypt, Persia, Babylon, India, Ethiopia, and throughout Greece. He
wrote almost seventy books, in mathematics, he wrote on numbers, geometry, tangencies,
mappings, and irrationals.

9. Theodorus of Cyrene (about 431 BC, Libya, Greece)

He is said to have been Plato’s teacher. From the dialogues of Plato, we know
that Theodorus demonstrated geometrically that the sides of squares represented by√

2,
√

3,
√

5,
√

6,
√

7,
√

8,
√

10,
√

11,
√

12,
√

13,
√

14,
√

15, and
√

17, are incommensurable
with a unit length. That is, he showed the irrationality of the square roots of nonsquare
integers from 3 to 17, ‘at which point’, says Plato, “for some reason he stopped”, see
Figure 6.
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Thomas Stearns Eliot (1888-1965), American-British poet, Nobel Laureate (1948): “I am convinced that
everything has come down to us from the banks of the Ganga–Astronomy, Astrology, Spiritualism, etc. It
is very important to note that some 2,500 years ago at the least Pythagoras went from Samos to the Ganga
to learn Geometry but he would certainly not have undertaken such a strange journey had the reputation
of the Brahmins’ science not been long established in Europe.”

In 2007, Borzacchini [9] has asserted that Pythagorean music theory is the origin of incommensurability.

8. Democritus of Abdera (around 460-362 BC, Greece). He traveled to Egypt, Persia, Babylon,
India, Ethiopia, and throughout Greece. He wrote almost seventy books, in mathematics, he wrote on
numbers, geometry, tangencies, mappings, and irrationals.

9. Theodorus of Cyrene (about 431 BC, Libya, Greece). He is said to have been Plato’s teacher.
From the dialogues of Plato, we know that Theodorus demonstrated geometrically that the sides of squares
represented by

√
2,
√
3,
√
5,
√
6,
√
7,
√
8,
√
10,

√
11,

√
12,

√
13,

√
14,

√
15, and

√
17, are incommensurable with

a unit length. That is, he showed the irrationality of the square roots of nonsquare integers from 3 to 17, ‘at
which point,’ says Plato, “for some reason he stopped,” see Figure 6.

Figure 6. Spiral of Theodorus

It has been speculated that Theodorus constructed his spiral based on right triangles with a common
vertex, where in each triangle the side opposite the common vertex has length 1. The hypotenuse of the
nth triangle then has length

√
n+ 1, follows immediately by Pythagorean Theorem. His spiral also suggest

possible reason Theodorus stopped at
√
17: On summing of the vertex angles for the first n triangles, we

have

tan−1

(
1

1

)
+ tan−1

(
1√
2

)
+ · · ·+ tan−1

(
1√
n

)
.

For n = 16 (which gives
√
17) this sum is 351.150, while for n = 17 the sum is 364.780. Thus for n > 16 his

spiral started to overlap itself (i.e., cuts the initial axis for the first time) and the drawing became “messy.”
Theaetetus (around 417–369 BC, Greece), who was a pupil of Theodorus and a member of Plato’s school in
Athens, extended the result, demonstrating that the square root of any nonsquare integer is irrational, and
the cube root of any number that is not a perfect cube is irrational. Of course, today, by induction one can
draw

√
n for any n. Also, if n is an odd integer, then

√
n can be represented by the leg of a right triangle

whose hypotenuse is (n+ 1)/2 and whose leg is (n− 1)/2, i.e., (
√
n)2 = [(n+ 1)/2]2 − [(n− 1)/2]2. Further,

if n is an even integer, then
√
n can be represented by half of the leg of a right triangle whose hypotenuse

is n + 1 and whose other leg is n − 1, i.e., (2
√
n)2 = (n + 1)2 − (n − 1)2. Plato himself also showed that a

rational number could be the sum of two irrationals. In Figure 7, we provide the construction of
√
5 and

√
6

geometrically.
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It has been speculated that Theodorus constructed his spiral based on right triangles
with a common vertex, where in each triangle the side opposite the common vertex has
length 1. The hypotenuse of the nth triangle then has length

√
n + 1, follows immediately

by Pythagorean Theorem. His spiral also suggest possible reason Theodorus stopped at√
17: On summing of the vertex angles for the first n triangles, we have

tan−1
(

1
1

)
+ tan−1

(
1√
2

)
+ · · ·+ tan−1

(
1√
n

)
.

For n = 16 (which gives
√

17) this sum is 351.150, while for n = 17 the sum is 364.780.
Thus, for n > 16 his spiral started to overlap itself (i.e., cuts the initial axis for the first
time) and the drawing became “messy”. Theaetetus (around 417–369 BC, Greece), who
was a pupil of Theodorus and a member of Plato’s school in Athens, extended the result,
demonstrating that the square root of any nonsquare integer is irrational, and the cube root
of any number that is not a perfect cube is irrational. Of course, today, by induction one
can draw

√
n for any n. Furthermore, if n is an odd integer, then

√
n can be represented

by the leg of a right triangle whose hypotenuse is (n + 1)/2 and whose leg is (n− 1)/2,
i.e., (

√
n)2 = [(n + 1)/2]2 − [(n− 1)/2]2. Further, if n is an even integer, then

√
n can be

represented by half of the leg of a right triangle whose hypotenuse is n + 1 and whose other
leg is n− 1, i.e., (2

√
n)2 = (n + 1)2 − (n− 1)2. Plato himself also showed that a rational

number could be the sum of two irrationals. In Figure 7, we provide the construction of√
5 and

√
6 geometrically.

Figure 7. Square Roots of 5 and 6
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10. Geometric Proof of Irrationality of
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2. Although there are speculations that incommensu-

rability of
√
2 was proved by Pythagoras himself and for all nonsquare integers by Theodorus, the first fully

geometric proof appeared in the Meno (Socratic dialogue by Plato).

Figure 8. Incommensurability of
√
2 in Meno

G

H

E

F

A B

D C

Following the Website http://mitp-content-server.mit.edu:18180/books/content/sectbyfn?collid=books p

ress 0&id=1043&fn=9780262661829 schh 0001.pdf, in the square ABCD we use a compass to cut off AF =
AD along the diagonal CA. At F draw the perpendicular EF (see Figure 8). Then the ratio of CE to CF
(hypotenuse to side) will be the same as the ratio of AC to AD, since the triangles CDA and EFC are
similar. Suppose that DC and CA were commensurable. Then there would be a segment δ such that both
DC and CA were integral multiples of δ. Since AF = AD, then CF = CAAF is also a multiple of δ.
Note also that CF = EF, because the sides of triangle EFC correspond to the equal sides of triangle CDA.
Further, EF = DE because (connecting A and E) triangles EDA and EFA are congruent. Thus, DE = CF
is a multiple of δ. Then CE = CDDE is also a multiple of δ. Therefore, both the side CF and hypotenuse
CE are multiples of δ, which therefore is a common measure for the diagonal and side of the square of side
CF. The process can now be repeated as follows: on EC cut off EG = EF and construct GH perpendicular
to CG. The ratio of hypotenuse to side will still be the same as it was before and hence the side of the square
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Figure 7. Square Roots of 5 and 6.
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10. Geometric Proof of Irrationality of
√

2

Although there are speculations that incommensurability of
√

2 was proved by
Pythagoras himself and for all nonsquare integers by Theodorus, the first fully geometric
proof appeared in the Meno (Socratic dialogue by Plato).

Following the Website http://mitp-content-server.mit.edu:18180/books/content/
sectbyfn?collid=books_press_0&id=1043&fn=9780262661829_schh_0001.pdf (accessed on
3 March 2021), in the square ABCD we use a compass to cut off AF = AD along the
diagonal CA. At F draw the perpendicular EF (see Figure 8). Then the ratio of CE to CF
(hypotenuse to side) will be the same as the ratio of AC to AD, since the triangles CDA
and EFC are similar. Suppose that DC and CA were commensurable. Then there would be
a segment δ such that both DC and CA were integral multiples of δ. Since AF = AD, then
CF = CA− AF is also a multiple of δ. Note also that CF = EF, because the sides of triangle
EFC correspond to the equal sides of triangle CDA. Further, EF = DE because (connecting
A and E) triangles EDA and EFA are congruent. Thus, DE = CF is a multiple of δ. Then
CE = CD − DE is also a multiple of δ. Therefore, both the side CF and hypotenuse CE
are multiples of δ, which therefore is a common measure for the diagonal and side of the
square of side CF. The process can now be repeated as follows: on EC cut off EG = EF and
construct GH perpendicular to CG. The ratio of hypotenuse to side will still be the same
as it was before and hence the side of the square on CG and its diagonal also share δ as a
common measure. Because we can keep repeating this process, we will eventually reach a
square whose side is less than δ, contradicting our initial assumption. Therefore, there is
no such common measure δ. The demonstration given here has been named as The Method
of Infinite Descent, and it has been credited to Pierre de Fermat (1601–1665, France). In fact,
in 1879, a paper was found in the library of Leyden, among the manuscript of Christiaan
Huygens (1629–1695, Netherlands), in which Fermat describes this method by which he
may have made many of his discoveries. The method is particularly useful in establishing
negative results, but often difficult to apply.
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AD along the diagonal CA. At F draw the perpendicular EF (see Figure 8). Then the ratio of CE to CF
(hypotenuse to side) will be the same as the ratio of AC to AD, since the triangles CDA and EFC are
similar. Suppose that DC and CA were commensurable. Then there would be a segment δ such that both
DC and CA were integral multiples of δ. Since AF = AD, then CF = CAAF is also a multiple of δ.
Note also that CF = EF, because the sides of triangle EFC correspond to the equal sides of triangle CDA.
Further, EF = DE because (connecting A and E) triangles EDA and EFA are congruent. Thus, DE = CF
is a multiple of δ. Then CE = CDDE is also a multiple of δ. Therefore, both the side CF and hypotenuse
CE are multiples of δ, which therefore is a common measure for the diagonal and side of the square of side
CF. The process can now be repeated as follows: on EC cut off EG = EF and construct GH perpendicular
to CG. The ratio of hypotenuse to side will still be the same as it was before and hence the side of the square
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Figure 8. Incommensurability of
√

2 in Meno.

• The following inquisitive geometric proof of Apostol [23] (also for similar proofs see
earlier books by Kiselev [24], and Conway and Guy [25]) is in line with the above proof.
A circular arc with center at the uppermost vertex and radius equal to the vertical leg
of the triangle intersects the hypotenuse at a point, from which a perpendicular to
the hypotenuse is drawn to the horizontal leg (see Figure 9). Each line segment in
the diagram has integer length, and the three segments with double tick marks have
equal lengths. (Two of them are tangents to the circle from the same point). Therefore
the smaller isosceles right triangle with hypotenuse on the horizontal base also has
integer sides.

http://mitp-content-server.mit.edu:18180/books/content/sectbyfn?collid=books_ p ress_ 0&id=1043&fn=9780262661829_schh_ 0001.pdf
http://mitp-content-server.mit.edu:18180/books/content/sectbyfn?collid=books_ p ress_ 0&id=1043&fn=9780262661829_schh_ 0001.pdf
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on CG and its diagonal also share δ as a common measure. Because we can keep repeating this process,
we will eventually reach a square whose side is less than δ, contradicting our initial assumption. Therefore,
there is no such common measure δ. The demonstration given here has been named as The Method of Infinite
Descent, and it has been credited to Pierre de Fermat (1601-1665, France). In fact, in 1879, a paper was
found in the library of Leyden, among the manuscript of Christiaan Huygens (1629-1695, Netherlands), in
which Fermat describes this method by which he may have made many of his discoveries. The method is
particularly useful in establishing negative results, but often difficult to apply.

• The following inquisitive geometric proof of Apostol [7] (also for similar proofs see earlier books by Kiselev
[28], and Conway and Guy [13]) is in line with the above proof. A circular arc with center at the uppermost
vertex and radius equal to the vertical leg of the triangle intersects the hypotenuse at a point, from which
a perpendicular to the hypotenuse is drawn to the horizontal leg (see Figure 9). Each line segment in the
diagram has integer length, and the three segments with double tick marks have equal lengths. (Two of
them are tangents to the circle from the same point.) Therefore the smaller isosceles right triangle with
hypotenuse on the horizontal base also has integer sides.

Figure 9. Incommensurability of
√
2 by Apostol

11. Eudoxus of Cnidus (around 400-347 BC, Greece). He was the most celebrated mathematician.
His contributions include: a mathematical theory of “magnitudes”–such as lengths, areas, volumes; addition
of numerous results on the study of golden section; invention of a process known as the method of exhaustion;
and the theory of proportion, partly to place the doctrine of incommensurables upon a thoroughly sound
basis. The irrationality of the square root of two Eudoxus phrased as “a diagonal and a side of a square have
no common measure”. He realized that an irrational is known by the rational numbers less than it, and the
rational numbers greater than it. This task was done so well that Greek mathematicians made tremendous
progress in geometry and it survived as Book V of Euclid’s Elements. It still continues, fresh as ever, after
the great arithmetical reconstructions of Julius Wilhelm Richard Dedekind (1831-1916, Germany) and Karl
Theodor Wilhelm Weierstrass (1815-1897, Germany) during the nineteenth century.

12. Aristotle (around 384-322 BC, Greece). The first semi-geometric proof of the irrationality of
√
2 is

due to Aristotle which appeared in his Analytica Priora. He concludes that if the side and the diagonal are
assumed commensurable, then odd numbers are equal to even numbers. For this, he used the method of
contradiction: Suppose that the side EH and the diagonal HF, see Figure 10, are commensurable, i.e., each
can be expressed by the number of times it is measured by their common measure. Now it can be assumed
that at least one of these numbers is odd, if not there would be a longer common measure. Then the squares
HEFG and ABCD on the side and diagonal, respectively, represent square numbers. From the Figure 10,
it is clear that the area of the latter square is clearly double the former, thus it represents an even square
number. Consequently, its side AB = HF is also an even number, and thus the square ABCD is a multiple
of four. Finally, since HEFG is half of ABCD, it must be a multiple of two, i.e, it is also an even square.
Therefore its side EH must also be even. However, this contradicts the original assumption that one of

17
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11. Eudoxus of Cnidus (around 400–347 BC, Greece)

He was the most celebrated mathematician. His contributions include: a mathematical
theory of “magnitudes”—such as lengths, areas, volumes; addition of numerous results on
the study of golden section; invention of a process known as the method of exhaustion;
and the theory of proportion, partly to place the doctrine of incommensurables upon a
thoroughly sound basis. The irrationality of the square root of two Eudoxus phrased
as “a diagonal and a side of a square have no common measure”. He realized that an
irrational is known by the rational numbers less than it, and the rational numbers greater
than it. This task was done so well that Greek mathematicians made tremendous progress
in geometry and it survived as Book V of Euclid’s Elements. It still continues, fresh as
ever, after the great arithmetical reconstructions of Julius Wilhelm Richard Dedekind (1831–
1916, Germany) and Karl Theodor Wilhelm Weierstrass (1815–1897, Germany) during the
nineteenth century.

12. Aristotle (around 384–322 BC, Greece)

The first semi-geometric proof of the irrationality of
√

2 is due to Aristotle which
appeared in his Analytica Priora. He concludes that if the side and the diagonal are assumed
commensurable, then odd numbers are equal to even numbers. For this, he used the
method of contradiction: Suppose that the side EH and the diagonal HF, see Figure 10, are
commensurable, i.e., each can be expressed by the number of times it is measured by their
common measure. Now it can be assumed that at least one of these numbers is odd, if not
there would be a longer common measure. Then the squares HEFG and ABCD on the
side and diagonal, respectively, represent square numbers. From Figure 10, it is clear that
the area of the latter square is clearly double the former, thus it represents an even square
number. Consequently, its side AB = HF is also an even number, and thus the square
ABCD is a multiple of four. Finally, since HEFG is half of ABCD, it must be a multiple of
two, i.e, it is also an even square. Therefore its side EH must also be even. However, this
contradicts the original assumption that one of HF, EH is odd. In conclusion, the two lines
EH and HF are incommensurable. Thus, Aristotle in number theory succeeded in proving
the existence of irrationals.
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theory succeeded in proving the existence of irrationals.

Figure 10. Incommensurability of
√
2 in Analytica Priora

A E B

H F

D G C

From Figure 10, it is clear that the area of ABCD is the same as two times the area of HEFG. This
construction is due to Socrates (around 469-399, Greece) in the Meno. Socrates is considered as one of the
founders of Western philosophy, he was sentenced to death by the drinking of a mixture containing poison
hemlock, because he was found guilty of corrupting the minds of the youth of Athens and of impiety “not
believing in the gods of the state.”

13. Euclid of Alexandria (around 325-265 BC, Greece, Egypt). His masterpiece work The Elements
is divided into 13 books (each about the length of a modern chapter) and contains 465 propositions on plane
and solid geometry, and number theory. In compiling the Elements, Euclid organized deductively on the
basis of explicit axioms the experience and achievements of his predecessors of three centuries just past.
Euclid’s semi-geometrical demonstration by the method of contradiction of the irrationality of

√
2 is given in

Book 10, Proposition 27. Though it is less perspicuous than the strictly arithmetical proof current today, it
is more suggestive historically, and more precise than Aristotle’s proof, see Section 12. The argument goes
as follows: If the diagonal AC and side AB of the square ABCD (see Figure 10) have a common measure,
say δ, then there exist p, q ∈ IN satisfying AC = pδ, AB = qδ. The ratio of these segments is

AC

AB
=

p

q
. (16)

In what follows, we can assume that common factors of p and q have been cancelled, i.e., gcd(p, q) = 1. Thus,
at least one them is odd. Squaring the identity (16), we have

(AC)2

(AB)2
=

p2

q2
. (17)

Now in view of Pythagorean theorem in the triangle ABC, we find (AC)2 = 2(AB)2, so that (17) is the
same as

2 =
p2

q2
or p2 = 2q2. (18)

Now since 2q2 is an even integer, p2 must also be even. But, then p is also even, i.e., p = 2k. Substituting
this in the equation p2 = 2q2 gives q2 = 2k2. But then q2 and hence q is also an even number. In conclusion,
both p and q are even, which contradicts our initial assumption that they have no common factor, or one of
them is odd.

18

Figure 10. Incommensurability of
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From Figure 10, it is clear that the area of ABCD is the same as two times the area of
HEFG. This construction is due to Socrates (around 469–399, Greece) in the Meno. Socrates
is considered as one of the founders of Western philosophy, he was sentenced to death
by the drinking of a mixture containing poison hemlock, because he was found guilty of
corrupting the minds of the youth of Athens and of impiety “not believing in the gods of
the state”.

13. Euclid of Alexandria (around 325–265 BC, Greece, Egypt)

His masterpiece work The Elements is divided into 13 books (each about the length of a
modern chapter) and contains 465 propositions on plane and solid geometry, and number
theory. In compiling the Elements, Euclid organized deductively on the basis of explicit axioms
the experience and achievements of his predecessors of three centuries just past. Euclid’s
semi-geometrical demonstration by the method of contradiction of the irrationality of

√
2 is

given in Book 10, Proposition 27. Though it is less perspicuous than the strictly arithmetical
proof current today, it is more suggestive historically, and more precise than Aristotle’s proof,
see Section 12. The argument goes as follows: If the diagonal AC and side AB of the square
ABCD (see Figure 10) have a common measure, say δ, then there exist p, q ∈ IN satisfying
AC = pδ, AB = qδ. The ratio of these segments is

AC
AB

=
p
q

. (16)

In what follows, we can assume that common factors of p and q have been cancelled,
i.e., gcd(p, q) = 1. Thus, at least one them is odd. Squaring the identity (16), we have

(AC)2

(AB)2 =
p2

q2 . (17)

Now in view of Pythagorean theorem in the triangle ABC, we find (AC)2 = 2(AB)2,
so that (17) is the same as

2 =
p2

q2 or p2 = 2q2. (18)

Now since 2q2 is an even integer, p2 must also be even. However, then p is also even,
i.e., p = 2k. Substituting this in the equation p2 = 2q2 gives q2 = 2k2. However, then q2 and
hence q is also an even number. In conclusion, both p and q are even, which contradicts
our initial assumption that they have no common factor, or one of them is odd.

• In the above proof we can ignore all geometric arguments, and directly proceed
to algebraic Equation (18), where p and q are in its lowest term, and hence are of
different parity. Then, showing that

√
2 is irrational is equivalent to proving that (18)
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is impossible. For this, the Website http://www.cut-the-knot.org/proofs/sq_root.
shtmlcontains29proofs (accessed on 3March 2021),

• Joseph Louis Lagrange (1736–1813, French, Italian) in his Lectures on Elementary Math-
ematics of 1898 argues that if p and q are in its lowest terms, then p2 and q2 are also
in its lowest terms. Since fraction p2/q2 is built from the fraction p/q it cannot be a
whole number 2. A similar reasoning appeared in 1831 in the work of Augustus De
Morgan (1806–1871, British-India).

• Whittaker and Watson in their book [26] of 1920, and later Gardner [27], and Laczkovich [28]
in their books assume that in

√
2 = p/q the integer q is the smallest possible such

number. Their main argument is essentially to use the equality (2q− p)2 = 2(p− q)2

which is true if and only if (18) holds. Thus, it follows that

2 =
(2q− p)2

(p− q)2 or
√

2 =
2q− p
p− q

,

but 1 < p/q < 2 implies that q > p− q > 0. This contradicts the minimality of q.
It is interesting to note that

√
2 = (

√
2 + 1)− 1 =

1√
2− 1

− 1 =
1

p/q− 1
− 1 =

2q− p
p− 1

.

• Rademacher and Toeplitz in their book of 1957 ([29], Chapter 4) assert that (18) implies
p is even, so q must be odd. However, the square of an even number is divisible
by 4, which leads to conclude that q must be even. Thus, we have Aristotle type
contradiction.

Now to prove (18) we shall apply the Fundamental Theorem of Arithmetic (FTOA).
Euclid’s Elements Book VII, propositions 30, 31 and 32, and Book IX, proposition 14 substan-
tiate the statement and proof of the FTOA. Although Euclid felt that irrational numbers
simply did not belong in a work based on arithmetic, some authors claim that Euclid in
Book X, Proposition 117 uses FTOA to almost show the impossibility of (18), but most of
the English transactions of Elements have only 115 propositions. Fritz [30] indicates that the
early Greek mathematicians did not explicitly use the FTOA to prove the irrationality of

√
2.

In fact, on the Website http://people.math.harvard.edu/mazur/preprints/Eva.Nov.20.pdf,
accessed on 4 March2021, posted in 2005, Mazur claims that the explicit use of the FTOA
is post Karl Friedrich Gauss (1777–1855, Germany). We state the modern version of this
theorem in the following:

Fundamental Theorem of Arithmetic. Every integer n ≥ 2 is either prime or can
be expressed as a product of primes: that is, n = p1 p2 · · · pm, where p1, p2, · · · , pm are
primes. Furthermore, this factorization is unique except possibly for the order in which the
factors occur.

• By the FTOA, p and q can be factored uniquely into their prime factors, so let p =
p1 p2 · · · pr and q = q1q2 · · · qs. Putting this back in Equation (18), we get

(p1 p2 · · · pr)
2 = 2(q1q2 · · · qs)

2,

or
p1 p1 p2 p2 · · · pr pr = 2q1q1q2q2 · · · qsqs. (19)

Now among the primes pi and qi, the prime 2 may occur (it will occur if either p or
q is even). If it does occur, it must appear an even number of times on the left side
of Equation (19) (since each prime there appears twice), and an odd number of times
on the right side (because 2 already appears there once). However, then we have a
contradiction: since the factorization into primes is unique, the prime 2 cannot appear
an even number of times on one side of the equation and an odd number on the other.
Thus, Equation (18) is impossible.

http://www.cut-the-knot.org/proofs/sq_root.shtml contains 29 proofs
http://www.cut-the-knot.org/proofs/sq_root.shtml contains 29 proofs
http://people.math.harvard.edu/mazur/preprints/Eva.Nov.20.pdf


Computation 2021, 9, 29 21 of 49

• From the uniqueness of the factorization, one can argue directly that p2 has even num-
ber of prime factors, whereas 2q2 has odd number of prime factors, which is absurd.

• Some of the above illustrations can be extended to prove the result: If N ∈ IN, then√
N is a rational number if and only if

√
N is an integer.

First, we model its proof due to Gardner [27]. Clearly, if
√

N is an integer, then
√

N is
rational. Conversely, we assume that

√
N is rational, i.e., it can be written as

√
N = p/q,

where p, q ∈ IN and q is the smallest possible such integer. Let k = [
√

N], where [·] is
the usual greatest integer function. Then, it follows that k < p/q < k + 1, and therefore
0 < p− kq < q. Now note that the equality (Nq− kp)2 = N(p− kq)2 is true if and only if
p2 = Nq2 holds. Thus,

√
N =

Nq− kp
p− kq

,

but this contradicts the fact that q is the smallest.
Now we will apply FTOA. Again if

√
N is an integer, then

√
N is rational. Conversely,

we assume that
√

N is rational, i.e., it can be written as
√

N = p/q, where p, q ∈ IN and
gcd(p, q) = 1. Since p/q is not an integer, q ≥ 2. Again, we have p2 = Nq2. By FTOA, q
has a prime factor m. Thus, m|Nq2 and so m|p2, but then m|p. Hence, m|p and m|q, which
contradicts our assumption that gcd(p, q) = 1.

• Dedekind in his proof assumed that if N is not a square of an integer, then there exists a
positive integer λ such that λ2 < N < (λ + 1)2. Again, if N is rational, then there exist
p, q ∈ IN such that p2 − Nq2 = 0, where q is the least possible integer possessing the
property that its square multiplied by N is the square of p. Since λq < p < (λ + 1)q,
it follows that the integers s = p− λq and t = Nq− λp are positive, and we have
t2 − Ns2 = (λ2 − N)(p2 − Nq2) = 0, which contradicts the assumption on q.

• On the Website https://www.quora.com/If-p-is-a-natural-number-but-not-a-perfect-
nth-power-how-does-one-prove-that-the-nth-root-of-p-is-not-rational (accessed on
3 March 2021), Thomas Schürger (2019) has provided a very simple proof of the
following general result: The kth, k ∈ IN, k ≥ 2 root of a nonnegative integer N ≥ 2
is rational if and only if N is a perfect kth power. One direction of this statement is
clearly true: the kth root of a kth power is rational. Let us prove the other direction via
proof by contradiction. Let us assume that N is not a perfect kth power, and k

√
N is

rational, i.e.,
k√N =

p
q

for some p, q in IN such that p/q is in lowest terms. Since

N
1

=
pk

qk

and p/q is in lowest terms pk/qk is also in lowest terms, and N/1 is clearly in lowest
terms. It follows that pk = N and qk = 1, which is a contradiction since we assumed
that N is not a perfect kth power. Hence, k

√
N must be an irrational number.

• Some of the above arguments need slight modification to prove: If r and s are distinct
primes, then

√
rs and logr s are irrational. For example, to show logr s is irrational, we

assume contrary, i.e., logr s = p/q, where p, q ∈ IN. We can assume that gcd(p, q) = 1.
Then rp/q = s and so (rp/q)q = sq. Therefore, rp = sq. Since r|rp, it follows that r|sq

and so r|s, which is a contradiction.
• We shall follow Dov Jarden (1911-1986, Israel) work of 1953 to show that there exist

irrational numbers a and b such that ab is rational. Consider the irrational numbers a =

b =
√

2. If the number ab =
√

2
√

2
is rational, we are done. If

√
2
√

2
is irrational, we

consider the numbers a =
√

2
√

2
and b =

√
2 so that ab =

(√
2
√

2
)√2

=
√

2
√

2
√

2
=

https://www.quora.com/If-p-is-a-natural-number-but-not-a-perfect-nth-power-how-does-one-prove-that-the-nth-root-of-p-is-not-rational
https://www.quora.com/If-p-is-a-natural-number-but-not-a-perfect-nth-power-how-does-one-prove-that-the-nth-root-of-p-is-not-rational
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√
2

2
= 2 is rational. Note that in this proof we could not find irrational numbers a

and b such that ab is rational.

14. Archimedes of Syracuse (287–212 BC, Greece)

He is considered as one of three complete mathematicians world has so far produced
(the other two are Newton and Gauss). Archimedes developed a general method of ex-
haustion, specially to approximate the value of π. His method is based on the following
arguments: the circumference of a circle lies between the perimeters of the inscribed and
circumscribed regular polygons (equilateral and equiangular) of n sides, and as n increases,
the deviation of the circumference from the two perimeters becomes smaller. If an and
bn denote the perimeters of the inscribed and circumscribed regular polygons of n sides,
and C the circumference of the circle, then it is clear that {an} is an increasing sequence
bounded above by C, and {bn} is a decreasing sequence bounded below by C. Both of
these sequences converge to the same limit C. For simplicity, we choose a circle with the
radius 1, then from Figure 11 it immediately follows that

ab =

(√
2
√
2
)√

2

=
√
2
√
2
√
2
=

√
2
2
= 2 is rational. Note that in this proof we could not find irrational

numbers a and b such that ab is rational.
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an = n sin
π

n
and bn = n tan

π

n
. (20)

It is clear that limn→∞ an = π = limn→∞ bn. Further, b2n is the harmonic mean of an and bn, and a2n is
the geometric mean of an and b2n, i.e.,

b2n =
2anbn
an + bn

and a2n =
√
anb2n. (21)

From (20) for the hexagon, i.e., n = 6 it follows that a6 = 3, b6 = 2
√
3. Then, Archimedes successively took

polygons of sides 12, 24, 48, and 96, used the recursive relations (21), and the inequality

265

153
<

√
3 <

1351

780
, (22)

to obtain the bounds

3.140845 · · · = 3
10

71
< π < 3

1

7
= 3.142857 · · · . (23)

The approximation 22/7 is often called the Archimedean value of π, and it is good for most purposes.
Archimedes’ polygonal method remained unsurpassed until 18 centuries, see Agarwal et. al. [2]. The
inequality (22) is of paramount interest because the bounds 265/153 and 1351/780 are best rational approx-
imations up to the respective denominators. The following rational bounds for π where either the lower
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an = n sin
π
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and bn = n tan

π

n
. (20)

It is clear that limn→∞ an = π = limn→∞ bn. Further, b2n is the harmonic mean of an
and bn, and a2n is the geometric mean of an and b2n, i.e.,

b2n =
2anbn

an + bn
and a2n =

√
anb2n. (21)

From (20) for the hexagon, i.e., n = 6 it follows that a6 = 3, b6 = 2
√

3. Then,
Archimedes successively took polygons of sides 12, 24, 48, and 96, used the recursive
relations (21), and the inequality

265
153

<
√

3 <
1351
780

, (22)

to obtain the bounds

3.140845 · · · = 3
10
71

< π < 3
1
7

= 3.142857 · · · . (23)

The approximation 22/7 is often called the Archimedean value of π, and it is good for
most purposes. Archimedes’ polygonal method remained unsurpassed until 18 centuries,
see Agarwal et al. [10]. The inequality (22) is of paramount interest because the bounds
265/153 and 1351/780 are best rational approximations up to the respective denominators.
The following rational bounds for π where either the lower bound or the upper bound is
the best k-digit rational approximation are obtained in Sen et al. [31]

k = 1 k = 2 k = 3 k = 4 k = 5
3
1
< π <

7
2

91
29
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22
7

688
219

< π <
355
113

9918
3157

< π <
1065
339

99733
31746

< π <
10295
3277

.
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One of the most frequently debated questions in the history of mathematics is the
“puzzling” approximation of

√
3, appeared in his book Measurement of a Circle, namely,

the inequality (22) which Archimedes presented without a justification. On the Website
https://mathpages.com/home/kmath038/kmath038.htm (accessed on 3 March 2021), for
the inequality (22) several reviews which appeared in the popular history of mathematics
books have been summarized, for example: Walter William Rouse Ball (1850–1925, Britain)
in 1908 “it would seem...that [Archimedes] had some (at present unknown) method of
extracting the square root of numbers approximately”, Thomas Little Heath (1861–1940,
Britain) in 1921 “the successive solutions in integers of the equations x2 − 3y2 = 1 and
x2 − 3y2 = −2 may have been found...in a similar way to...the Pythagoreans”, Bell in 1937,
“...he also gave methods for approximating to square roots which show that he anticipated
the invention by the Hindus of what amount to periodic continued fractions”, Boyer in
1968, “his method for computing square roots was similar to that used by the Babylonians”,
Morris Kline (1908–1992, USA) in 1972, without any explanation claimed that if N = a2 ± b
where a2 is the rational square nearest to N, larger or smaller, and b is the remainder, then
the following inequalities can be used to obtain (22)

a± b
2a± 1

<
√

N < a± b
2a

. (24)

As we have seen the right side bounds of the inequality (24) lead to the algorithm (11)
which indeed gives the upper bound of (22) (see Table 1, N = 3, a0 = 5/3), the left side
bounds of (24) give us two new iterative schemes

an+1 = an +
N − a2

n
2an + 1

=
a2

n + an + N
2an + 1

, a0 ≤
√

N < a0 + 1, n ≥ 0 (25)

and

an+1 = an −
a2

n − N
2an − 1

=
a2

n − an + N
2an − 1

, a0 − 1 <
√

N ≤ a0, n ≥ 0. (26)

For (25), by induction, we shall show that an ≤
√

N < an + 1 implies that an+1 ≤√
N < an+1 + 1, n ≥ 0. For this, it suffices to show that

a2
n + an + N

2an + 1
≤
√

N <
a2

n + an + N
2an + 1

+ 1

or
(an −

√
N)(an + 1−

√
N) ≤ 0 < (an −

√
N)2 + (an + 1−

√
N) + 2an,

which in view of an ≤
√

N < an + 1 is obvious. From (25), we also have an ≤ an+1. Thus,
the sequence {xn} generated by (25) is monotonically increasing, and bounded above,
and hence converges to

√
N.

For the sequence {xn} generated by the iterative scheme (26) numerical evidence
suggests that the convergence is oscillatory. Further, from (25) as well as (26) we could not
get the lower bound of (22), see Table 2.

https://mathpages.com/home/kmath038/kmath038.htm
https://mathpages.com/home/kmath038/kmath038.htm
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Table 2. Monotone and Oscillatory Convergence.

Algorithm (25) Algorithm (26)
n N = 2 N = 3 N = 2 N = 3

0
4
3

3
2

5
3

2

1
46
33

27
16

28
21

5
3

2
5812
4125

1929
1120

1078
735

37
21

3
91785094
64964625

9644721
5575360

1450204
1044435

1915
1113

• Again on the Website https://mathpages.com/home/kmath038/kmath038.htm (ac-
cessed on 3 March 2021) a clever observation is that if a is a bound (upper or lower) of√

3, then (5a + 9)/(3a + 5) is a closure bound on the opposite side (lower or upper).
This suggest the iterative scheme

an+1 =
5an + 9
3an + 5

, a0 =
5
3

, n ≥ 0. (27)

Since

a2
n+1 − 3 =

(
5an + 9
3an + 5

)2
− 3 = − 2(a2

n − 3)
9a2

n + 30an + 25
' − a2

n − 3
51.98 · · ·

the error is negated and reduced by a factor of nearly 52 in each iteration. Iterative
scheme (27) gives

a1 =
26
15

, a2 =
265
153

, a3 =
1351
780

, a4 =
13775
7953

, · · · .

Thus, a2 and a3, respectively, give the lower and upper Archimedes bounds of
√

3.

An immediate extension of the algorithm (27) for an arbitrary integer N can be written
as

an+1 =
pan + N2

Nan + p
, n ≥ 0 (28)

where p is the smallest (largest) integer so that p2 − N3 > 0 (< 0), i.e., p = dN3/2e, ceiling
function, (p = bN3/2c, floor function). Now, since

a2
n+1 − N =

(
pan + N2

Nan + p

)2

− N =
p2 − N3

(Nan + p)2 (a2
n − N) (29)

if p2 − N3 > 0, then in view of (p2 − N3)/(Nan + p)2 < 1, the sequence {an} generated
by (28) converges to

√
N and the convergence is decreasing provided a0 >

√
N, further

from (29)

a2
n+1 − N ≤ p2 − N3

(N3/2 + p)2 (a2
n − N),

whereas if a0 <
√

N the convergence is increasing and

a2
n+1 − N ≤ p2 − N3

(Na0 + p)2 (a2
n − N).

https://mathpages.com/home/kmath038/kmath038.htm
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For N = 2 and p = 3, so that p2 − N3 > 0, first few iterates are listed below.

a0 = 2, a1 =
10
7

, a2 =
58
41

, a3 =
338
239

, a4 =
1970
1393

a0 = 1, a1 =
7
5

, a2 =
41
29

, a3 =
239
169

, a4 =
1393
985

Now we consider the case when p2 − N3 < 0, i.e., N3 − p2 > 0. In this case (29) is
better written as

a2
n+1 − N = − N3 − p2

(Nan + p)2 (a2
n − N) (30)

We shall show that (N3 − p2)/(Nan + p)2 < 1. For this, since an ≥ 1, n ≥ 0 it suffices
to show that (N3 − p2)/(N + p)2 < 1, which is the same as N3 < N2 + 2p2 + 2Np. Now
since p is the largest integer such that N3 − p2 > 0, certainly, p2 ≥ (N − 1)3 which also
give p ≥ (N − 1). Thus, it is adequate to show that N3 < N2 + 2(N − 1)3 + 2N(N − 1),
but it is the same as 0 < (N− 1)[(N− 1)2 + 1]. In conclusion, the sequence {an} generated
by (30) converges, the convergence is clearly oscillatory, and

a2
n+1 − N ' − N3 − p2

(N3/2 + p)2 (a2
n − N).

For N = 3, p = 5 we have p2 − N3 < 0, and (28) reduces to (27). We have already
employed (27) to obtain first few iterates with a0 = 5/3 <

√
3. Now we compute first few

iterates with a0 = 2 >
√

3.

a1 =
19
11

, a2 =
194
112

, a3 =
1978
1142

, a4 =
20168
11644

.

• On the same Website and on the Website https://www.mathpages.com/home/
kmath190/kmath190.htm (accessed on 3 March 2021), following Babylonians’ the
basic ladder rule for generating a sequence of integers to yield the square root of a
number N the following recurrence relation has been discussed

sn = (2a)sn−1 + (N − a2)sn−2, n ≥ 2 (31)

where a is the largest integer such that a2 is less than N. Letting q =
√

N + a, or
(q− a)2 = N, it follows that

q2 = (2a)q + (N − a2),

and hence s0 = 1, s1 = q, sn = qn, n ≥ 2 satisfies (31). Now since q = sn−1/sn−2 and
q2 = sn/sn−2 from (31) it immediately follows that q = sn+1/sn, n ≥ 0. However,
since exactly q is unknown, we can begin with arbitrary (initial) integer values of
s0, s1 and generate the sequence of the ratios {sn+1/sn}, which must converge to the
solutions of (31), namely, q =

√
N + a. Thus, {(sn+1/sn)− a} converges to

√
N. We

also note that {(N− a2)(sn/sn+1)} converges to (N− a2)/q = (N− a2)/(
√

N + a) =√
N − a, and hence {a + (N − a2)(sn/sn+1)} converges to

√
N. Now we shall show

that for both the sequences {(sn+1/sn)− a} and {a+(N− a2)(sn/sn+1)} convergence
is oscillatory. For the first sequence it suffices to show that if (sn+1/sn)− a >

√
N,

which is the same as (sn/sn+1) < 1/(
√

N + a), then (sn+2/sn+1)− a <
√

N. For this,
from (31) we have

sn+2
sn+1

− a =
(2a)sn+1 + (N − a2)sn

sn+1
− a = a+(N− a2)

sn

sn+1
< a+(N− a2)

1√
N + a

=
√

N.

Similarly, for the second sequence it suffices to show that if a + (N − a2)(sn/sn+1) >√
N, which is the same as (sn/sn+1) > 1/(

√
N + a), then a + (N − a2)(sn+1/sn+2) <

https://www.mathpages.com/home/kmath190/kmath190.htm
https://www.mathpages.com/home/kmath190/kmath190.htm
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√
N. However, this is the same as proving (sn+2/sn+1) >

√
N + a. Now from (31) it

follows that

sn+2
sn+1

= 2a + (N − a2)
sn

sn+1
> 2a + (N − a2)

1
(
√

N + a)
= 2a + (

√
N − a) = (

√
N + a).

For N = 2 and N = 3, we need to take a = 1, so that the recurrence relation (31),
respectively, reduces to sn = 2sn−1 + sn−2 and sn = 2sn−1 + 2sn−2, n ≥ 2. We shall consider
these recurrence relations with s0 = 0 and s1 = 1, i.e.,

sn = 2sn−1 + sn−2, n ≥ 2, s0 = 0, s1 = 1 (32)

and
sn = 2sn−1 + 2sn−2, n ≥ 2, s0 = 0, s1 = 1. (33)

Although solutions of (32) and (33) can be written explicitly as

sn =
1

2
√

2
[(1 +

√
2)n − (1−

√
2)n] and sn =

1
2
√

3
[(1 +

√
3)n − (1−

√
3)n]

for the computation they are of little help. In Table 3, we directly use (32) and (33) to list
successive approximations obtained for

√
2 and

√
3.

Table 3 contains most of the data of Table 1, also it includes Archimedes’ lower and
upper bounds for

√
3, in fact, it is probable that Archimedes used iterative scheme (31) to

establish the inequality (22).

Table 3. Babylonian Ladder Rule.

N = 2 N = 3

n (sn+1/sn)− 1 1 + (sn/sn+1) (sn+1/sn)− 1 1 + 2(sn/sn+1)

2
3
2

*
7
5

* 2
5
3

3
7
5

17
12

5
3

7
4

4
17
12

*
41
29

*
7
4

19
11

5
41
29

99
70

19
11

26
15

6
99
70

*
239
169

*
26
15

71
41

7
239
169

577
408

71
41

97
56

8
577
408

*
1393
985

*
97
56

265
153

9
1393
985

3363
2378

265
153

362
209

10
3363
2378

*
8119
5741

*
362
209

989
571



Computation 2021, 9, 29 27 of 49

Table 3. Cont.

N = 2 N = 3

n (sn+1/sn)− 1 1 + (sn/sn+1) (sn+1/sn)− 1 1 + 2(sn/sn+1)

11
8119
5741

19601
13860

989
571

1351
780

12
19601
13860

*
47321
33461

*
1351
780

3691
2131

13
47321
33461

114243
80782

3691
2131

5042
2911

14
114243
80782

*
275807
195025

*
5042
2911

13775
7953

15
275807
195025

665857
470832

13775
7953

18817
10864

16
665857
470832

*
1607521
1136689

*
18817
10864

51409
29681

• Davies in his preprint [32] combined a simple proposition:

If
v
u

<
y
x

then
v
u

<
v + y
u + x

<
y
x

and an argument similar to that of bisection method to compute Archimedes lower and
upper bounds in (22). For this, he assumed a pair of two approximations α = v/u
and β = y/x of

√
3 such that α <

√
3 < β. Now calculate γ = (v + y)/(u + x)

and replace α by γ if γ <
√

3, i.e., (v + y)2 < 3(u + x)2, and replace β by γ if
γ >

√
3, i.e., (v + y)2 > 3(u + x)2. This gives an improved pair of approximations.

The procedure continues until the desired accuracy is achieved. With α = 1 and β = 2
his first sixteen pairs of approximations are
(

1
1

,
2
1

) (
3
2

,
2
1

) (
5
3

,
2
1

) (
5
3

,
7
4

) (
12
7

,
7
4

) (
19
11

,
7
4

) (
19
11

,
26
15

) (
45
26

,
26
15

)

(
71
41

,
26
15

) (
71
41

,
97
56

) (
168
97

,
97
56

) (
265
153

∗
,

97
56

) (
265
153

,
362
209

) (
627
362

,
362
209

) (
989
571

,
362
209

) (
989
571

,
1351
780

∗)

While the above list of pairs of approximations of
√

3 contain lower and upper bounds
of Archimedes, an extended algorithm for the computation of

√
N for an arbitrary

integer N has no merit.
• For the lower bound on the Website https://math.stackexchange.com/questions/89

4862/archimedes-approximation-of-square-roots (accessed on 3 March 2021), posted
in 2015, the secant method has been suggested. Recall from the standard numerical
analysis text books, the secant method for finding a simple root a∗ of the equation
f (x) = 0 is

an+1 =
an−1 f (an)− an f (an−1)

f (an)− f (an−1)
, n ≥ 1 (34)

where a0, a1 are two initial approximations, one is less than a∗ and the other is greater
than a∗. For the root a∗ the secant method is superlinear, i.e., the rate of convergence
is the Golden Number Φ. We note that for the equation f (x) = x2 − N = 0 the secant
method (34) simply reduces to

an+1 =
an−1an + N
an−1 + an

, n ≥ 1. (35)

https://math.stackexchange.com/questions/894862/archimedes-approximation-of-square-roots
https://math.stackexchange.com/questions/894862/archimedes-approximation-of-square-roots
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It is interesting to note that if in (35), we take an−1 = an, then it is the same as (11).
Applying (35) with N = 3, a0 = 5/3 (which is less than

√
3), and a1 = 26/15 (which

is greater than
√

3), see Table 1, we immediately get a2 = 265/153, which is the lower
bound in (22). From (35), we also compute a3 = 13775/7953 ' 1.73205079844, which
is a better lower bound than in (22).

• For the lower bound in (22) on the Website https://hsm.stackexchange.com/
questions/771/what-is-so-mysterious-about-archimedes-approximation-of-sqrt-3
(accessed on 3 March 2021), posted in 2015, following Babylonians tables are con-
structed for n2 and 3n2, n ≥ 1 and it was noticed that 70225 = (265)2 ' 3(153)2 =
20227.

• Upper bound in the inequality (22) is the same as obtained in Sulbasutras, see (5).
Unfortunately, historians never found place to write this fact.

• For two positive numbers a, b three classical Pythagorean means are the arithmetic
mean (AM) = (a + b)/2, the geometric mean (GM) =

√
ab, and the harmonic mean

(HM) = 2ab/(a + b). These means were studied with proportions by Pythagoreans
and later generations of Greek mathematicians because of their importance in geom-
etry and music. The following inequalities and equality between these means are
straightforward and well-known in the literature

min{a, b} ≤ HM ≤ GM ≤ AM ≤ max{a, b}, GM2 = AM ·HM.

Based on the above inequalities, we have the following three algorithms HMA, GMA,
and AMA

cn+1 =
2anbn

an + bn
, bn+1 =

√
anbn, an+1 =

an + bn

2
, n ≥ 0

where a0, b0 are positive (initial approximation) numbers. The GMA and AMA first
appeared in the works of Lagrange, and their properties were further analyzed by
Gauss, for their applications to approximate π see the recent monograph of Chan [33].
It is clear that cn+1 ≤ bn+1 ≤ an+1, n ≥ 0. From this, it immediately follows that

an+1 − an =
an + bn

2
− an =

bn − an

2
≤ 0,

bn+1 =
√

anbn ≥
√

bnbn = bn,

and
cn+1 − cn =

2anbn

an + bn
− cn ≥

2anbn

2an
− cn = bn − cn ≥ 0,

thus the sequence {an} is decreasing, the sequence {bn} is increasing, the sequence
{cn} is also increasing and bn ≤ cn+1 ≤ bn+1. Thus, min{a0, b0} ≤ c1 ≤ cn ≤
bn ≤ an ≤ a1 ≤ max{a0, b0}. In conclusion all the three sequences {cn}, {bn}, {an}
converge to the same limit. The convergence of {cn} also follows from the relation
HMA = GMA2/AMA. Now to find

√
N we let bn = N/an for all n ≥ 0. Then HMA,

GMA, and AMA, respectively, reduce to

cn+1 =
2anN

a2
n + N

, bn+1 =
√

N, an+1 =
1
2

(
an +

N
an

)
, n ≥ 0

Here a0 is some positive rational number. Clearly, AMA is the same as (11). We note
that the equation (a + 3/a)/2 = 1351/780 gives a = 26/15, and (a + 3/a)/2 = 26/15
holds for a = 5/3. Thus, if we employ AMA for N = 3 with a0 = 5/3 (which is a
reasonable choice, see (5)) then a2 is the same as the upper bound of the inequality
(22). We further note that the equation 6a/(a2 + 3) = 265/153, which is the same as
265a2 − 918a + 795 = 0 has no rational roots, and hence lower bound of (22) cannot
be obtained from HMA for N = 3.

https://hsm.stackexchange.com/questions/771/what-is-so-mysterious-about-archimedes-approximation-of-sqrt-3
https://hsm.stackexchange.com/questions/771/what-is-so-mysterious-about-archimedes-approximation-of-sqrt-3
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• A proof of (22) based on very simple inequalities is as follows:

1351
780

=
1
15

(
26− 1

52

)
=

1
15

√
262 − 1 +

1
522 >

1
15

√
262 − 1 =

√
3

and

265
153

=
1
15

(
26− 1

51

)
=

1
15

√
262 − 1− 50

512 <
1
15

√
262 − 1 =

√
3.

15. Apollonius of Perga (around 262–200 BC, Greece)

He earned the title ‘The Great Geometer.’ Apollonius wrote a work on the cylindrical
helix and another on irrational numbers, which is mentioned by Proclus Diadochus (410–
485 AD, Greece).

16. Bakhshali Manuscript (about 200 BC)

It was found in 1881 in the village Bakhshali in Gandhara, near Peshawar, North-West
India (present-day Pakistan). It is written in an old form of Sanskrit on birch bark. Only
about 70 mutilated birch barks still exist, the greater portion of the manuscript has been
lost. This manuscript gives various algorithms and techniques for a variety of problems,
such as computing square roots, dealing with negative numbers, and finding solutions of
quadratic equations. To find an approximate root of a non-square number it says “In case
of a non-square (number), subtract the nearest square number; divide the remainder by
twice (the root of that number). Half the square of that (that is, the fraction just obtained) is
divided by the sum of the root and the fraction and subtract; (this will be the approximate
value of the root) less the square (of the last term)”. Thus, if N = a2 + b, then

√
N =

√
a2 + b ' a +

b
2a
− (b/2a)2

2(a + b/2a)
. (36)

In fact, to obtain (36) both (8) and (9) are used. Let a be the largest integer such that a2

is less than N, and N = a2 + b. Then, (8) gives

√
N ' a +

b
2a

and
(

a +
b

2a

)2
−
(

b
2a

)2
= N.

Thus, we can use (9), to get

√
N =

√(
a +

b
2a

)2
−
(

b
2a

)2
' a +

b
2a
− (b/2a)2

2(a + b/2a)
.

Since b = N − a2 from (36) it follows that

√
N ' a +

N − a2

2a
− (N − a2)2

4a(N + a2)
=

a2(a2 + 6N) + N2

4a(a2 + N)
. (37)

Now let a be the smallest integer such that a2 is greater than N, and N = a2 − b.
Then, (9) gives

√
N =

√
a2 − b ' a− b

2a
and

(
a− b

2a

)2
−
(

b
2a

)2
= N.

Thus, we can use (9) again, to get

√
N =

√(
a− b

2a

)2
−
(

b
2a

)2
' a− b

2a
− (b/2a)2

2(a− b/2a)
. (38)
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Since b = a2 − N from (38) it follows that

√
N ' a− a2 − N

2a
− (a2 − N)2

4a(a2 + N)
=

a2(a2 + 6N) + N2

4a(a2 + N)
. (39)

Relations (37) and (39) lead to the algorithm

an+1 =
a2

n(a2
n + 6N) + N2

4an(a2
n + N)

, a0 = a, n ≥ 0. (40)

Clearly, in (40) we can take a any convenient real number so that a2 is close to
N. Further, from our considerations it is clear that the iterative scheme (40) converges
quartically. In Table 4, we give few iterates for N = 2, 3, and 41, 105, 481 considered in
Bakhshali Manuscript.

Table 4. Quartic Convergence.

n N = 2 N = 3 N = 41 N = 105 N = 481

0 1 1 6 10 21

1
17
12

7
4

11833
1848

3361
328

1698568
77448

2
665857
470832

18817
10864

A1 A2 A3

0 2 2 7 11 22

1
17
12

97
56

2017
315

12737
1243

1862441
84920

2
665857
470832

708158977
408855776

A4 A5 A6

In this table

A1 =
156843854425524193
24494894774743008

, A2 =
1020854854709761

99625232718112
, A3 =

2032223263651344335681
9266140487240050641

A4 =
1261006858463
196936184856

, A5 =
26318786070520577
2568450524613787

, A6 =
96254287085727658170489761
4388817717938678567053280

An immediate extension of (4) for any nonlinear equation equation f (x) = 0 is

bn = an −
f (an)

f ′(an)
, an+1 = bn −

f (bn)

2
(

f (bn)− f (an)

bn − an

)
− f ′(an)

, n ≥ 0.

For this algorithm and its higher order extensions and their scope in real-word com-
putation see Sen et al. [34].

17. Marcus Vitruvius Pollio (about 75–15 BC, Italy)

Commonly known as Vitruvius describes the use of
√

2 progression or ad quadratum
technique. It uses geometry to double a square in which the diagonal of the original square
is equal to the side of the resulting square.

18. Theon of Smyrna (about 70–135 AD, Turkey-Greece)

He described how prime numbers, geometrical numbers such as squares, progressions,
music and astronomy are interrelated. He also formulated an algorithm (see Filep [35],
and the Website http://numbers.computation.free.fr/Constants/Sqrt2/sqrt2.html (ac-

http://numbers.computation.free.fr/Constants/Sqrt2/sqrt2.html
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cessed on 3 March 2021)) to compute approximations of
√

2. His algorithm is based on the
construction of two sequences {an} and {bn} of natural numbers (he called an as the side
number and bn as the diagonal number), which satisfy the recurrence relations

an = an−1 + bn−1, bn = 2an−1 + bn−1, n ≥ 1. (41)

We notice that

b2
n − 2a2

n = (2an−1 + bn−1)
2 − 2(an−1 + bn−1)

2 = − (b2
n−1 − 2a2

n−1),

and hence, if an−1, bn−1 is a solution of

b2 − 2a2 = ± 1, (42)

then an, bn is a solution of
b2 − 2a2 = ∓ 1.

Thus, it follows that
bn

an
=

√
2± 1

a2
n

and since limn→∞ an = limn→∞ bn = ∞, we can make (1/an)2 arbitrarily small. Hence,
limn→∞(bn/an) =

√
2. In conclusion, if (a0, b0) is an integer solution of (42) then (41)

converges to
√

2 and the convergence is oscillatory. From these observations names for an
as the side number and for bn as the diagonal number become clear.

In the literature Equation (42) mistakenly known as Pell’s equation. In fact, John Pell
(1611–1685, Britain) has nothing to do with these equations. Euler mistakenly attributed
to Pell a solution method that had in fact been found by William Brouncker (1620–1684,
Britain), in response to a challenge by Fermat. In reality second order indeterminate
equations, of the form Nx2 + 1 = y2 where N is an integer, were first discussed by
Brahmagupta. For their solution, he employed his “Bhavana” method and showed that
they have infinitely many solutions. Unfortunately, it has been recorded that Fermat
was the first to assert that it has infinitely many solutions. Brahmagupta’s celebrated
work Brāhmasphutasiddhānta, was translated into English by Henry Thomas Colebrooke,
(1765–1837, Britain).

Now let (an−1, bn−1) be an integer solution of (42), then from the above observations
(an+1, bn+1) = (3an−1 + 2bn−1, 4an−1 + 3bn−1) is also a solution of the same Equation (42).
Thus, if for the iterative scheme

xn = 3xn−1 + 2yn−1, yn = 4xn−1 + 3yn−1, n ≥ 1 (43)

(x0, y0) is an integer solution of b2 − 2a2 = 1(−1) then (43) converges to
√

2, and the
convergence will be monotonically decreasing (increasing).

To implement (41) and (43), we need integer solutions of (42). For the equation
b2 − 2a2 = 1 the minimal solution also known as the fundamental solution (by inspection)
is (a, b) = (2, 3), whereas for the equation b2 − 2a2 = −1 the minimal solution is (1, 1).

It is easy to see that system (41) with (a0, b0) = (2, 3) and (a0, b0) = (1, 1), respectively,
can be written as

an+1 = 2an + an−1, a0 = 2, a1 = 5
bn+1 = 2bn + bn−1, b0 = 3, b1 = 7, n ≥ 1

(44)

and
an+1 = 2an + an−1, a0 = 1, a1 = 2
bn+1 = 2bn + bn−1, b0 = 1, b1 = 3, n ≥ 1.

(45)

Now recall that in the construction of Table 3 for N = 2, we executed the recurrence
relation (32) to obtain {sn}. It can easily be verified that an and bn obtained from (45)
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are connected with sn by the relations an−1 = sn, bn−1 = sn+1 − sn, n ≥ 2, and hence
bn/an, n ≥ 1 leads to the second column of Table 3. Similarly, an and bn obtained from (44)
are connected with sn by the relations an−1 = sn+1, bn−1 = sn+1 + sn, n ≥ 2, and hence
bn/an, n ≥ 1 leads to the third column of Table 3.

Similar to that of (41), system (43) with (x0, y0) = (2, 3) and (x0, y0) = (1, 1), respec-
tively, can be written as

xn+1 = 6xn − xn−1, x0 = 2, x1 = 12
yn+1 = 6yn − yn−1, y0 = 3, y1 = 17, n ≥ 1

(46)

and
xn+1 = 6xn − xn−1, x0 = 1, x1 = 5
yn+1 = 6yn − yn−1, y0 = 1, y1 = 7, n ≥ 1.

(47)

Again, looking at Table 3, we find that xn and yn obtained from (47) are connected with the
same sn by the relations xn = s2n+2, yn = s2n+3 − s2n+2, n ≥ 0, and hence yn/xn, n ≥ 0
leads to the second column of Table 3 with ∗, and monotonically decreasing. Similarly,
xn and yn obtained from (46) are connected with sn by the relations xn = s2n+1, yn =
s2n+1 + s2n, n ≥ 1, and hence yn/xn, n ≥ 1 leads to the third column of Table 3 with ∗, and
monotonically increasing.

• For n ≥ 0, explicit solutions of the system (45) are

an =
1

2
√

2

[
(1 +

√
2)n+1 − (1−

√
2)n+1

]
and bn =

1
2

[
(1 +

√
2)n+1 + (1−

√
2)n+1

]
.

Now we define T0 = 0, T1 = 1, Tn = an−1bn−1, n ≥ 2 (recall an−1, bn−1, n ≥ 2,
respectively, are the denominator and numerator of column 2 in Table 3) then from
the above expressions it follows that

Tn =
1

4
√

2

[
(1 +

√
2)2n − (1−

√
2)2n

]
=

1
4
√

2

[
(3 + 2

√
2)n − (3− 2

√
2)n
]
, n ≥ 1

which is the solution of the recurrence relation

Tn = 6Tn−1 − Tn−2, T0 = 0, T1 = 1. (48)

In 1778, Euler showed that

T2
n =

1
32

[
(3 + 2

√
2)n − (3− 2

√
2)n
]2

, n ≥ 1

are the only (infinite) numbers that are both perfect squares and triangular (tk =
k(k + 1)/2). Clearly, compare to the above explicit representation of T2

n , for the
computation of Tn algorithm (48) is very simple. Now to find T2

n corresponds to
which tk we need to find solutions of T2

n = k(k + 1)/2, which is the same as finding
positive integer solutions of Pell’s equation b2 − 2a2 = 1, where b = (2k + 1) and
a = 2Tn. Since solutions (yk, xk), k ≥ 2 of the system (46) computed in the second
column of Table 3 with ∗ (respectively, numerator and denominator) are first few
positive integer solutions of b2 − 2a2 = 1, the corresponding k can be easily obtained
with the relation 2k + 1 = yk. Some perfect square triangular numbers T2

n (obtained
from (48)) and the corresponding tk are as follows:

T2
1 T2

2 T2
3 T2

4 T2
5 T2

6 T2
7 T2

8 · · ·
12 62 352 2042 11892 69302 403912 2354162 · · ·
t1 t8 t49 t288 t1681 t9800 t57121 t332928 · · ·

For more details on this work see Website https://en.wikipedia.org/wiki/Square_
triangular_number (accessed on 3 March 2021).

https://en.wikipedia.org/wiki/Square_triangular_number
https://en.wikipedia.org/wiki/Square_triangular_number
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A generalization of (41) for any integer N ≥ 2 is straightforward. In fact, for the
recurrence relations

an = an−1 + bn−1, bn = Nan−1 + bn−1, n ≥ 1 (49)

we have
b2

n − Na2
n = (1− N)(b2

n−1 − Na2
n−1),

which gives
b2

n − Na2
n = (1− N)n(b2

0 − Na2
0).

Thus, it follows that

b2
n

a2
n
− N =

(−1)n(N − 1)n

a2
n

(b2
0 − Na2

0), n ≥ 1. (50)

Now since {an} is a strictly increasing sequence, and a2 = a1 + b1 = a1 + Na0 + b0 >
N + 1, the right side of (50) tends to zero. This means the sequence {bn/an} converges to√

N, and the convergence is oscillatory. From (49) it also follows that

∣∣∣∣
bn

an
−
√

N
∣∣∣∣ =

(
√

N − 1)
|bn−1/an−1 + 1|

∣∣∣∣
bn−1

an−1
−
√

N
∣∣∣∣ '

(√
N − 1√
N + 1

)∣∣∣∣
bn−1

an−1
−
√

N
∣∣∣∣.

In particular, for N = 3 if we choose fundamental solution of b2 − 3a2 = 1 which is
(a0, b0) = (1, 2) then (49) leads to the algorithm

an = an−1 + bn−1
bn = 3an−1 + bn−1, n ≥ 1, a0 = 1, b0 = 2.

(51)

The sequence {bn/an} generated from (51) gives the fourth column of Table 3.
We note that system (51) can be written as

an+1 = 2an + 2an−1, a0 = 1, a1 = 3
bn+1 = 2bn + 2bn−1, b0 = 2, b1 = 5, n ≥ 1

(52)

and its solution is

an =
2 +
√

3
2
√

3
(1 +

√
3)n − 2−

√
3

2
√

3
(1−

√
3)n and bn =

3 + 2
√

3
2
√

3
(1 +

√
3)n − 3− 2

√
3

2
√

3
(1−

√
3)n. (53)

Again, for N = 3 if we choose fundamental solution of b2 − 3a2 = −2 which is
(a0, b0) = (3, 5) then (49) leads to the algorithm

an = an−1 + bn−1
bn = 3an−1 + bn−1, n ≥ 1, a0 = 3, b0 = 5.

(54)

The sequence {bn/an} generated from (54) gives the fifth column of Table 3.
Next, we consider the nonlinear recurrence relations

an = 2an−1bn−1
bn = Na2

n−1 + b2
n−1, n ≥ 1

(55)

and note that

b2
n − Na2

n = (b2
n−1 − Na2

n−1)
2 = · · · = (b2

0 − Na2
0)

2n
.
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Thus, if (a0, b0) is the fundamental solution (in fact, any integer solution) of b2− 3a2 =
1, then the sequence {bn/an} generated by (55) decreases monotonically to

√
N. From (55),

we also have
(

bn

an
−
√

N
)

=
1

2(bn−1/an−1)

(
bn−1

an−1
−
√

N
)2
' 1

2
√

N

(
bn−1

an−1
−
√

N
)2

.

In Table 5, we provide first three iterates to approximate N = 2, 3, 5, and 7 with the
corresponding fundamental solutions of b2 − Na2 = 1 as (2, 3), (1, 2), (4, 9), and (3, 8).

Table 5. Nonlinear Iterates.

N = 2 N = 3 N = 5 N = 7

n (a0, b0) = (2, 3) (a0, b0) = (1, 2) (a0, b0) = (4, 9) (a0, b0) = (3, 8)

0
3
2

2
1

9
4

8
3

1
17
12

7
4

161
72

127
48

2
577
408

97
56

51841
23184

32257
12192

3
665857
470832

18817
10864

5374978561
2403763488

2081028097
786554688

For N = 2 and 3 all entries in Table 5 are the same as in Table 3. Table 5 also indicates
superiority of the nonlinear algorithm (55) compared to all linear algorithms we have
discussed above. However algorithm (40) appears to have superiority.

Now we will consider the recurrence relations

an = (p + q)an−1 + 2qbn−1
bn = 2pan−1 + (p + q)bn−1, n ≥ 1

(56)

where p 6= q and a0, b0 are positive integers. For (56) it follows that
(

b2
n −

p
q

a2
n

)
= (p− q)2

(
b2

n−1 −
p
q

a2
n−1

)
= · · · = (p− q)2n

(
b2

0 −
p
q

a2
0

)
,

which is the same as (
b2

n
a2

n
− p

q

)
=

(p− q)2n

a2
n

(
b2

0 −
p
q

a2
0

)
.

Since an ≥ (p + q)an−1 implies an ≥ (p + q)na0, we find

∣∣∣∣
b2

n
a2

n
− p

q

∣∣∣∣ =

(
p− q
p + q

)2n ∣∣∣∣∣
b2

0
a2

0
− p

q

∣∣∣∣∣.

Thus, the sequence {bn/an} generated by (56) converges to
√

p/q, furher if b0/a0 >√
p/q (b0/a0 <

√
p/q) the convergence is monotonically decreasing (increasing). For p =

11, q = 5 we list first few terms of {bn/an}.

b0

a0
=

1
1

b1

a1
=

38
26

b2

a2
=

1180
796

b3

a3
=

36392
24536

b4

a4
=

1122064
756496

b0

a0
=

3
2

b1

a1
=

92
62

b2

a2
=

2836
1912

b3

a3
=

87440
58952

b4

a4
=

2695984
1817632
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19. Liu Hui (around 220–280, China)

He wrote an extremely important commentary on the Jiuzhang suanshu or, as it is more
commonly called, Nine Chapters on the Mathematical Art, which is believed to have been
originally written around 1000 BC. This work contains approximation of π as 3.141014,
and Chapter 4 Shao guang (Short width) suggest algorithms to find square and cube
roots of numbers. For square roots the method is a combination of completing squares
iteratively, and geometry, i.e., something like Figure 12 always in mind, see Burgos and
Beltrán-Pellicer [36], Katz [14], and Yong [37]. We explain the method by considering the
problem 12, where square root of 55225 is calculated. We begin with finding the integers
a, b, c so that the answer can be written as 100a + 10b + c. We calculate the largest integer
a so that (100a)2 < 55225. Clearly, a = 2 is the right choice. The difference between
the large (given) square (55,225) and the square with side 100a = 200, i.e., (40,000) in
Figure 12 is the large gnomon with area 55,225 − 40,000 =15,225. Now if we ignore the
outer thin gnomon, then b must satisfy 15225 > 2(100a)(10b) = 4000b, which gives the
largest integer b = 3. To verify that the choice b = 3 is correct, i.e., when the square
on 10b included, the area of the large gnomon is still less than 15,225, it is necessary to
check that 2(100a)(10b) + (10b)2 = 12900 <15,225. Since this is true, we can continue
to find c. For this, we need 55,225 − 40,000-30(2×200 + 30) > 2× 230c or 2325 > 460c.
An easy check shows that the largest integer which satisfies this is c = 5. Finally, since
(100a + 10b + c)2 = (200 + 30 + 5)2 = (235)2, the exact square root of 55,225 is 235.

Clearly, a = 2 is the right choice. The difference between the large (given) square (55225) and the square
with side 100a = 200, i.e. (40000) in Figure 12 is the large gnomon with area 55225− 40000 = 15225. Now if
we ignore the outer thin gnomon, then b must satisfy 15225 > 2(100a)(10b) = 4000b, which gives the largest
integer b = 3. To verify that the choice b = 3 is correct, i.e., when the square on 10b included, the area of the
large gnomon is still less than 15225, it is necessary to check that 2(100a)(10b) + (10b)2 = 12900 < 15225.
Since this is true, we can continue to find c. For this, we need 55225− 40000− 30(2× 200 + 30) > 2× 230c
or 2325 > 460c. An easy check shows that the largest integer which satisfies this is c = 5. Finally, since
(100a+ 10b+ c)2 = (200 + 30 + 5)2 = (235)2, the exact square root of 55225 is 235.

Figure 12. Chinese Method for Square Root
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Similar to square roots, having cubes in mind there are examples in Jiuzhang suanshu to find cube roots
of numbers. For example, it is shown that the cube root of 1860867 is the exact number 123. In case,
answer is not an exact number, the procedure continues using decimal fractions. Later Chinese extended
their procedure to find roots of polynomial equations up to degree ten.

20. Bhaskara II or Bhaskaracharya (working 486, India). His contributions to mathematics
include: first visual proof of the Pythagorean theorem; solutions of quadratic, cubic and quartic indeter-
minate equations; solutions of indeterminate quadratic equations; integer solutions of linear and quadratic
indeterminate equations; a cyclic Chakravala method for solving indeterminate equations, and solutions of
quadratic equations with more than one unknown, including negative and irrational solutions.

21. Abu Kamil, Shuja′ ibn Aslam ibn Muammad ibn Shuja′ (850-930, Egypt). He
contributed to algebra and geometry. His Book of Algebra contains a total of 69 problems. Kamil was
probably the first mathematician who used irrational numbers as coefficients of an algebraic equation, and
also accepted irrational numbers as solutions of the equation. In the literature often he is known as “The
Reckoner from Egypt”

22. Abu Abd Allah Muhammad ibn Isa Al-Mahani (about 820-880, Iran-Iraq). He wrote
commentaries on parts of Euclid’s Elements. In particular, for book X, Al-Mahani examined and classified
quadratic irrationals and cubic irrationals. He provided definitions for rational and irrational magnitudes,
which he treated as irrational numbers. He dealt with them freely but explains them in geometric terms.

23. Abu Ja’far al-Khazin (900-971, Iran). He provided a meaningful definition of rational and
irrational magnitudes.

24.Al-Hashimi (10th century, Iraq). He provided general proofs (rather than geometric demonstrations)
for irrational numbers, as he considered multiplication, division, and other arithmetical functions. He also
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Similar to square roots, having cubes in mind there are examples in Jiuzhang suanshu
to find cube roots of numbers. For example, it is shown that the cube root of 1,860,867 is the
exact number 123. In case, answer is not an exact number, the procedure continues using
decimal fractions. Later Chinese extended their procedure to find roots of polynomial
equations up to degree ten.

20. Bhaskara II or Bhaskaracharya (Working 486, India)

His contributions to mathematics include: first visual proof of the Pythagorean the-
orem; solutions of quadratic, cubic and quartic indeterminate equations; solutions of
indeterminate quadratic equations; integer solutions of linear and quadratic indetermi-
nate equations; a cyclic Chakravala method for solving indeterminate equations, and so-
lutions of quadratic equations with more than one unknown, including negative and
irrational solutions.

21. Abu Kamil, Shuja′ ibn Aslam ibn Muammad ibn Shuja′ (850–930, Egypt)

He contributed to algebra and geometry. His Book of Algebra contains a total of 69
problems. Kamil was probably the first mathematician who used irrational numbers as
coefficients of an algebraic equation, and also accepted irrational numbers as solutions of
the equation. In the literature often he is known as “The Reckoner from Egypt”.
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22. Abu Abd Allah Muhammad ibn Isa Al-Mahani (about 820–880, Iran-Iraq)

He wrote commentaries on parts of Euclid’s Elements. In particular, for book X, Al-
Mahani examined and classified quadratic irrationals and cubic irrationals. He provided
definitions for rational and irrational magnitudes, which he treated as irrational numbers.
He dealt with them freely but explains them in geometric terms.

23. Abu Ja’far al-Khazin (900–971, Iran)

He provided a meaningful definition of rational and irrational magnitudes.

24. Al-Hashimi (10th Century, Iraq)

He provided general proofs (rather than geometric demonstrations) for irrational
numbers, as he considered multiplication, division, and other arithmetical functions. He
also gave a method to prove the existence of irrational numbers.

25. Abu Abdallah al-Hassan ibn al-Baghdadi (10th Century, Iraq)

In his influential book Treatise on Commensurable and Incommensurable Magnitudes he
related the concepts of number and magnitude by establishing a correspondence between
numbers and line segments, which continues today. Given a unit magnitude a, each whole
number N corresponds to an appropriate multiple Na of the unit magnitude. Parts of this
magnitude, such as (p/q)a, then correspond to parts of a numbers (p/q). Al-Baghdadi
considered any magnitude expressible this way as a rational magnitude. He showed that
these magnitudes relate to one another as numbers to numbers. Magnitudes that are
not parts he considered as irrational numbers. He also attempted to imbed the rational
numbers into a number line. Al-Baghdadi also proved a result on the density of irrational
magnitudes, namely, that between any two rational magnitudes there exist infinitely many
irrational magnitudes. In the late nineteenth century it was proved that between any two
real numbers there are infinitely many rational and irrational numbers, further irrational
numbers are infinitely more numerous than rational numbers.

To see Al-Baghdadi’s geometric interpretation of rational numbers, on a horizontal
straight line mark two distinct points O and A, where A is right of O. Now choose the
segment OA as a unit of length and let O and A represent the numbers 0 and 1,, respectively.
Then the positive and negative integers can be represented by a set of points on the line
spaced at unit intervals apart, the positive integers being represented to the right of O
and the negative integers to the left of O. The fraction with denominator q may then be
represented by the points that divide each of the unit intervals into q equal parts. Thus,
each rational number can be represented by a point on the line. In Figure 13, the point P
corresponds to the irrational number

√
2, which is between two rational numbers.

gave a method to prove the existence of irrational numbers.
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26. Omar Khayyám (1048-1131, Iran). He is considered one of the major mathematicians and as-
tronomers of the medieval period. His major contributions include the length of the year 365.24219858156
days, commentary on Euclid’s Elements, Euclid’s parallel postulate, and his classification to nineteen types
of cubic equations. He believed that for cubic equations arithmetic solutions were impossible. To the West-
ern world Omar is known as the author of The Rubaiyat (Persian poetry). Omar considered the problems
of irrational numbers and their relations to rational numbers. He called irrational magnitudes as numbers
themselves. He writes that methods for calculating square and cube roots came from India, and he has
extended them to the determination of roots of any order.

27.Nilakanthan Somayaji (around 1444-1544, India). His work includes the inductive mathematical
proofs, a derivation and proof of the arctangent trigonometric function, and in Sanskrit poetry the series
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In the literature (5) is known as Gregory–Leibniz after James Gregory (1638-1675, Scotland) and Gottfried
Wilhelm von Leibniz (1646-1716, Germany) series. He also gave sophisticated explanations of the irrationality
of π, the correct formulation for the equation of the center of the planets, and a heliocentric model of the
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26. Omar Khayyám (1048–1131, Iran)

He is considered one of the major mathematicians and astronomers of the medieval
period. His major contributions include the length of the year 365.24219858156 days,
commentary on Euclid’s Elements, Euclid’s parallel postulate, and his classification to
nineteen types of cubic equations. He believed that for cubic equations arithmetic solutions
were impossible. To the Western world Omar is known as the author of The Rubaiyat
(Persian poetry). Omar considered the problems of irrational numbers and their relations
to rational numbers. He called irrational magnitudes as numbers themselves. He writes
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that methods for calculating square and cube roots came from India, and he has extended
them to the determination of roots of any order.

27. Nilakanthan Somayaji (around 1444–1544, India)

His work includes the inductive mathematical proofs, a derivation and proof of the
arctangent trigonometric function, and in Sanskrit poetry the series

π

4
= 1− 1

3
+

1
5
− 1

7
+

1
9
− 1

11
+ · · · . (57)

In the literature (5) is known as Gregory—Leibniz after James Gregory (1638–1675,
Scotland) and Gottfried Wilhelm von Leibniz (1646–1716, Germany) series. He also gave
sophisticated explanations of the irrationality of π, the correct formulation for the equation
of the center of the planets, and a heliocentric model of the solar system. The following
expansion of π is also due to him

π = 3 +
4

2 · 3 · 4 −
4

4 · 5 · 6 +
4

6 · 7 · 8 −
4

8 · 9 · 10
+ · · · . (58)

This series converges faster than (57).

28. Nicolas Chuquet (around 1445–1488, France)

He is famous for his work Triparty en la science des nombres, which was not published
in his lifetime. In this work, he introduced our familiar numerical terms billion, trillion,
quadrillion, etc. He also showed that

√
5 ' 2 161

682 and
√

6 ' 2 89
198 .

29. Michael Stifel (1486–1567, Germany)

He invented logarithms independently of Napier, using a totally different approach.
His most famous work is Arithmetica Integra which was published in 1554. For irrational
numbers, he wrote: “We are moved and compelled to assert that they are numbers, com-
pelled that is, by the results which follow from their use. On the other hand ... just as an
infinite number is not a number, so an irrational number is not a true number, but lies
hidden in some sort of cloud of infinity”. He and at the same time Johannes Scheubel
(1494–1570, Germany) gave a method to find higher order roots using appropriate row of
the Blaise Pascal (1623–1662, France) triangle, a method which Chinese have already used
several centuries earlier to extract roots of polynomial equations up to degree ten.

30. Guillaume Gosselin (1536–1600, France)

He summarized the rules that supported the conventional arithmetic, algebraic calcu-
lations on geometric progressions, extraction of roots, calculations of irrational expressions,
and notations of the objects of algebra, then the rules that resolved equations of first and
second degrees with one unknown with numerical coefficients.

31. Zhu Zaiyu (1536–1611, China)

In 1604 wrote a New Explanation of the Theory of Calculation in which he derived values
of the roots of 2. He was so attracted to

√
2 that he used nine abacuses to compute it to

25—digit accuracy!

32. Francois Viéte (1540–1603, France)

He has been called the father of modern algebra and the foremost mathematician of
the sixteenth century. In his 1593 book Supplementum geometriae, he showed 3.1415926535 <
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π < 3.1415926537, i.e., gave the value of π correct to 9 places. He also represented π as an
infinite product

2
π

= cos
π

4
cos

π

8
cos

π

16
cos

π

32
· · · =

√
2

2

√
(2 +

√
2)

2

√(
2 +

√
(2 +

√
2)
)

2
· · · . (59)

This formula is one of the milestones in the history of π. The convergence of Vieta’s formula
was proved by Ferdinand Rudio (1856–1929, Germany) in 1891.

33. Simon Stevin (1548–1620, Elgium)

In 1585, he published a 36-page booklet, La Thiende (The Tenth), which contains a brief
account of decimal fractions. He showed that it is possible to add and multiply infinite
decimals, so that infinite decimals not only look like numbers, but also behave like them.
He compared fractions with an unknown island having beautiful fruits, pleasant plains,
and precious minerals. In the defence of irrational numbers, he objected to the very idea of
calling them “irrational”, because all numbers are equally concrete from a geometric point
of view.

34. John Wallis (1616–1703, Britain)

Wallis was the most influential English mathematician before Newton. In 1662, he led
the formation of the Royal Society of London, in 1655 he published a treatise Arithmetica
infinitorum that defined conic sections analytically, in Calculus he extended the works of all
his predecessors, and presented π as an infinite product

π = 2 · 2
1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· 8

7
· 8

9
· · · (60)

without proof. The convergence of Wallis formula immediately follows by using squeeze
theorem of calculus. On the night of 22 December 1669, he occupied himself with finding
the integral part of the square root of 3× 1040 while in bed, and several hours afterward he
wrote down the result from memory. Two months later, he was challenged to extract the
square root of a number of 53 digits, which he performed mentally; one month later, he
dictated the answer that he had not committed to writing.

35. Jacob Bernoulli: Introduction of e

He was first of the eight prominent mathematicians in the Bernoulli family. Jacob
wrote on infinite series, studied many special curves, invented polar coordinates, developed
logarithmic differentiation, and introduced the Bernoulli numbers. he formulated the basic
principle in the theory of probability known as Bernoulli’s theorem or the law of large numbers.
In 1683, he introduced the number e.

36. Continued Fractions

There is a sufficient evidence that Aryabhata used continued fraction to solve a linear
indeterminate equation. A simple manipulation of Euclid’s Algorithm which is mainly used
to find gcd of the ratio of two geometric magnitudes leads to a finite (infinite) continued
fraction provided the ratio is rational (irrational). In Greek and Arab mathematical literature
there are fragments of continued fractions. Leonardo of Pisa (around 1170–1250, Italy)
introduced a type of continued fraction. We meet with several algorithms for

√
13 and

√
18

similar to current forms of continued fractions in the works of Rafael Bombelli (1526–1573,
Italy) and Pietro Antonio Cataldi (1552–1626, Italy), respectively. Wallis in his treatise
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Arithmetica infinitorum after presenting (60) writes that Lord William Viscount Brouncker
(1620-1684, Ireland) expanded4 = 4/π in continued fractions

4 = 1 +
1

2 +
9

2 +
25

2 +
49

2 +
81

2 + · · ·
and pointed out how the partial fractions are successively larger and smaller than4, and
the process converges to 4. While Brouncker was not kind enough to provide details
of his expansion, Wallis in his book Opera Mathematica of 1695 detailed basic facts and
properties of continued fractions (this term is also coined by him). Later Huygens, Euler,
Lambert, and Joseph Louis Lagrange (1736-1813, France-Italy) enriched the theory and
applications of continued fractions to the extend that it became a subject in its own right.
Especially, Euler showed that every rational number can be expressed as a terminating
simple continued fraction, and consequently every infinite continued fraction is irrational.
Continued fractions play dominate role in finding best rational approximations of irrational
numbers. An equation of the type

rk = b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · ·+
ak
bk

which Alfred Pringsheim (1850-1941, Germany) wrote as

rk = b0 +
a1|
|b1

+
a2|
|b2

+
a3|
|b3

+ · · ·+ ak|
|bk

and when all ai = 1, i ≥ 1 Gauss wrote as

rk = [b0; b1, b2, b3, · · · , bk]

is called the k-th convergent rk of a continued fraction, where ai, bi are integers (functions)
determined from a given irrational number (function). It is well known, for example, see
Agarwal [38], and Sen and Agarwal [13] that rk can be written as rk = uk/vk, where the
numerator uk and the denominator vk satisfy the recurrence relations

uk = bkuk−1 + akuk−2, u0 = b0, u1 = b0b1 + a1
vk = bkvk−1 + akvk−2, v0 = 1, v1 = b1, k = 2, 3, · · · .

(61)

Now we shall use the algorithm (61) to find rational approximations of a given positive
number

√
N. For this, again we assume that a to be an initial guess of

√
N so that N = a2 + r.

Since N − a2 = (
√

N + a)(
√

N − a) = r, it follows that

√
N = a +

r√
N + a

= a +
r

a +
(

a + r√
N+a

) = a +
r

2a +
r√

N + a

,

and the process continues.
In particular, for N = 2 and a = 1, we have r = 1 and

rk = [1; 2, 2, 2, · · · , 2].
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Thus, (61) reduces to

uk = 2uk−1 + uk−2, u0 = 1, u1 = 3
vk = 2vk−1 + vk−2, v0 = 1, v1 = 2

which is exactly the same as (45) with uk = bk, vk = ak, k ≥ 1 and therefore {rk =
uk/vk}k=1 leads to the second column of Table 3, and forms the sequence of best approxi-
mations of

√
2.

Similarly, for N = 3 and a = 1, we have r = 2 and

rk = 1 +
2|
|2 +

2|
|2 +

2|
|2 + · · ·+ 2|

|2 .

Thus, (61) reduces to

uk = 2uk−1 + 2uk−2, u0 = 1, u1 = 4
vk = 2vk−1 + 2vk−2, v0 = 1, v1 = 2

whose solution apperas as

uk = 2

(
3 + 2

√
3

2
√

3
(1 +

√
3)k−1 − 3− 2

√
3

2
√

3
(1−

√
3)k−1

)

vn = 2

(
2 +
√

3
2
√

3
(1 +

√
3)k−1 − 2−

√
3

2
√

3
(1−

√
3)k−1

)
.

(62)

From (53) and (62) it follows that uk = 2bk−1, vk = 2ak−1, k ≥ 1 and therefore
{rk = uk/vk}k=1 gives the fourth column of Table 3.

37. Leonhard Euler: Irrationality of e

He was probably the most prolific mathematician who ever lived. Euler’s energy and
capacity for work were virtually boundless. His collected works form about 80 quarto
sized volumes and it is believed that much of his work has been lost. What is particularly
astonishing is that Euler became virtually sightless in his right eye during the mid—1730s,
and was blind for the last 17 years of his life, and this was one of the most productive
periods! In 1748, Euler considered the functions cos x and sin x/x, x 6= 0 which have roots
at (2n± 1)π/2, n ≥ 0 and ±nπ, n ≥ 1, respectively. Then, he wrote these functions in
terms of infinite products

cos x =

(
1− 4x2

π2

)(
1− 4x2

9π2

)(
1− 4x2

25π2

)
· · · (63)

and

sin x
x

= = 1− x2

3!
+

x4

5!
− x6

7!
+ · · · =

(
1− x2

12π2

)(
1− x2

22π2

)(
1− x2

32π2

)
· · · . (64)

Substituting x = π/4 in (63), we get the following infinite product of 1/
√

2,

1√
2

=

(
1− 1

4

)(
1− 1

36

)(
1− 1

100

)
· · · ,

which gives

√
2 =

(
2 · 2
1 · 3

)(
6 · 6
5 · 7

)(
10 · 10
9 · 11

)
· · · = ∏

k≥0

(4k + 2)2

(4k + 1)(4k + 3)
. (65)
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It is interesting to note that (64) with x = π/2 immediately gives Wallis’ formula (47).
Now in (64) on equating the coefficients of x2, we get

1
6

=
1

12π2 +
1

22π2 +
1

32π2 + · · · ,

which is the same as
1
12 +

1
22 +

1
32 + · · · =

π2

6
. (66)

The above demonstration of Euler is based on manipulations that were not justified at
the time, and it was not until 1741 that he was able to produce a truly rigorous proof. In the
literature summing the series in (66) has become famous as Basel problem and currently
for this several proofs are known. The convergence of the infinite products (59), (60), (65),
and series (66) are extremely slow, but they are immensely of theoretical interest.

In 1748, Euler used the expansion

e =
∞

∑
n=0

1
n!

= 1 +
1
1!

+
1
2!

+
1
3!

+ · · · (67)

to find the value of e correct to 23 digits. Other records are by William Shanks (1812–1882,
Britain) in 1853 to 137 digits and in 1871 to 205 digits; John Louis von Neumann (1903–1957,
Hungary-USA) to 2010 in 1949; Shanks and John William Wrench, Jr. (1911–2009, USA) to
100265 in 1961; Jerry Bonnell and Robert Nemiroff to ten million in 1994; Patrick Demichel
(USA) to eighteen million in 1997; Birger Seifert to twenty million in 1997; Demichel to
fifty million in 1997; Sebastian Wedeniwski to two hundred million in 1999, and more
than eight hundred million later same year; Xavier Gourdon to one and quatre billion in
1999; Gourdon and Kondo to two billion in 2000 and twelve billion eight hundred later
same year; and Kondo and Alexander Yee to one trillion in 2010. The following rational
bounds for e where either the lower bound or the upper bound is the best k-digit rational
approximation are obtained in Sen et al. [31]

k = 1 k = 2 k = 3 k = 4 k = 5
8
3
< e <

3
1

19
7

< e <
87
32

878
323

< e <
193
71

2721
1001

< e <
8620
3539

75117
27634

< e <
49171
18089

.

In 1737, Euler also wrote the first proof to show that e is irrational, which was published
in 1744. His proof is based on the infinite continued fractional representation of e,

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, . . . , 1, 2n, 1, · · · ].

He also proved irrationality of e2, and indicated that the irrationality of e is of dif-
ferent kind, which lead to transcendental numbers. Here we provide a most admired
elementary proof of 1815 due to Jean Baptiste Joseph Fourier (1768–1830, France), also see
Agarwal et al. [18]. From (67), we have

2 = 1 +
1
1!

< e = 1 +
1
1!

+
1
2!

+
1
3!

+ · · · < 1 +
(

1 +
1
2
+

1
22 +

1
23 + · · ·

)
= 3.

Now suppose to contrary that e = p/q, where p and q are integers and q > 1. Thus,
we have e = p/q = ∑∞

n=0 1/n!, which is the same as

p(q− 1)! = q!
q

∑
k=0

1
k!

+ q!
∞

∑
k=q+1

1
k!

.



Computation 2021, 9, 29 42 of 49

Now, we observe that

0 < p(q− 1)!− q!
q

∑
k=0

1
k!

=
1

q + 1
+

1
(q + 1)(q + 2)

+ · · ·

<
1

q + 1
+

1
(q + 1)2 + · · · =

1
q

< 1.

However, p(q− 1)!− q! ∑
q
k=0 1/k! is a positive integer. Thus, e is irrational.

In 1998, Martin Aigner (born 1942, Austria) and Günter Matthias Ziegler (born 1963,
Germany) provided details about the irrationality of ex for any nonzero rational x. We
also remark that employing several different algorithms, a massive details about the
approximations of e have been given in Sen and Agarwal [13].

38. Johann Heinrich Lambert: Irrationality of π

Lambert was the first to introduce hyperbolic functions into trigonometry. He general-
ized Euler’s method to show that continued fractions of ex and tan x are irrational if x is a
nonzero rational. Lambert’s following continued fractions of ex and tan x of 1761 are of
great historical importance

ex = 1 +
x|
|1 +

−1x|
|(2 + x)

+
−2x|
|(3 + x)

+
−3x|
|(4 + x)

+ · · ·

and

tan x =
x|
|1 +

−x2|
|3 +

−x2|
|5 +

−x2|
|7 + · · · . (68)

To prove the irrationality of π, in 1768, Lambert substituted x = π/4 in (68), so that
the left side of (68) is simply one. Then he assumed that there exist integers p and q such
that π/4 = p/q, i.e., π/4 is rational and then showed that the right side of (68) is irrational.
The complete Lambert’s proof is available on the Website https://math.stackexchange.
com/questions/895611/lamberts-original-proof-that-pi-is-irrational (accessed on 3 March
2021). After Lambert’s proof several prominent mathematicians gave alternative proofs
(claimed to be simpler) to prove the irrationality of π, for example, in 1794, Charles Hermite
(1822-1901, France) showed that π2 is irrational, from which the irrationality of π follows
immediately; in 1945, Dame Mary Lucy Cartwright (1900–1998, England) set as an example
in an exam at the Cambridge University a new proof of the irrationality of π (the origin
of the proof is not yet known); this is followed by the proof of Nicolas Bourbaki (born
1939, France) in 1949; then Ivan Morton Niven (1915–1999, Canadian-American) in 1947
(also see his book [39]), and Miklós Laczkovich (born 1948, Hungary) in 1997. For details
see the Website https://en.wikipedia.org/wiki/Proof_that_piis_irrational (accessed on 3
March 2021).

For each natural number q and each nonnegative integer n, let

An(q) = qn
∫ π

0

xn(π − x)n

n!
sin(x)dx.

Since An(q) is the integral of a function which is defined on [0, π], takes the value 0
at the lower and upper limits and positive in (0, π), An(q) > 0. Further, since x(π − x) ≤
(π/2)2, we have

An(q) ≤ πqn 1
n!

(π

2

)2n
= π

(qπ2/4)n

n!
and hence An(q) < 1 for sufficiently large n. On the other hand, recursive integration by
parts leads to the fact that, if p and q are natural numbers such that π = p/q and f is the
polynomial function from [0, π] to IR defined by f (x) = xn(p− qx)n/n!, then

https://math.stackexchange.com/questions/895611/lamberts-original-proof-that-pi-is-irrational
https://math.stackexchange.com/questions/895611/lamberts-original-proof-that-pi-is-irrational
https://en.wikipedia.org/wiki/Proof_that_piis_irrational
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An(q) =
∫ π

0
f (x) sin(x)dx

= [− f (x) cos(x)]x=π
x=0 −

[
− f ′(x) sin(x)

]x=π
x=0 + · · · ±

[
f (2n)(x) cos(x)

]x=π

x=0
±
∫ π

0
f (2n+1)(x) cos(x)dx.

Since f is a polynomial of degree 2n, the last term is 0. Now since each function
f (k), 0 ≤ k ≤ 2n as well as sin(x) and cos(x) take integer values at 0 and π, this shows that
An(q) is an integer. Since it is greater than 0, it must be a positive integer. However, we
have seen that An(q) < 1 if n is sufficiently large. This contradiction shows that π = p/q
is impossible.

39. Joseph Liouville (1809–1882, France)

The fascinating and difficult theory of transcendental numbers originated in the work
of Liouville. The irrationality of e and π, which is equivalent to the fact these numbers
are not roots of any linear equation of the form ax + b = 0 whose coefficients are integers,
had been proved by Euler and Lambert. In 1844 Liouville showed that e is also not a
root of any quadratic equation with integral coefficients. This led them to conjecture that
e does not satisfy any polynomial equation anxn + an−1xn−1 + · · · + a1x + a0 = 0 with
integral coefficients. However, all his efforts to prove this conjecture failed. Liouville first
proved the existence of transcendental numbers in 1844, and in 1851 gave the first decimal
examples such as the Liouville constant

Lb =
∞

∑
n=1

1
10n! =

1
101 +

1
102 +

1
106 + · · · = 0.11000100 . . . .

His methods regarding transcendence have led to extensive research.

40. Karl Theodor Wilhelm Weierstrass: Sequential Definition of Irrationality

He has been acknowledged as the “father of modern analysis”. In 1872 his rigorous
work led them to discover a function that, although continuous, had no derivative at
any point. Following the work of Augustin-Louis Cauchy (1789–1857, France) of 1821,
Weierstrass continued the sequential definition of irrational numbers based on convergent
series. This definition was further extended to classes of equivalent sequences by Heinrich
Edward Heine (1821–1881, Germany) in 1872.

41. Gustav Conrad Bauer (1820–1906, Germany)

In 1859, he obtained the series

1
π

= 1− 5
(

1
2

)3
+ 9
(

1 · 3
2 · 4

)3
− 13

(
1 · 3 · 5
2 · 4 · 4

)3
+ · · · .

In Ramanujan’s first letter on 31 January 1913 to Godfrey Harold Hardy (1877–1947,
England), among several theorems the above series was one of the results.

42. Charles Hermite: Transcendence of e

He made two very significant contributions to mathematics. In 1858, acknowledging
Niels Henrik Abel’s (1802–1829, Norway) result that the general polynomial equation
of the fifth degree cannot be solved by functions involving only rational operations and
root extractions, Hermite showed that such equations can be solved by elliptic functions.
In 1873, he proved the conjecture of Liouville and affirmed that e is indeed a transcendental
number. According to him, we are servants rather than masters in mathematics. Here we
shall follow an elegant demonstration of Richard Schwartz (born 1966, USA) to prove the
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transcendence of e. For contrary, assume that e is algebraic, i.e., satisfies the polynomial
equation with integer coefficients

n

∑
k=0

ckek = 0, c0 6= 0, max
0≤k≤n

|ck| < n.

Here the degree of the polynomial may be less than n. Consider the functions

F =
∞

∑
i=0

f (i), f (x) =
xp−1(1− x)p(2− x)p · · · (n− x)p

(p− 1)!
.

Here the integer p > n will be chosen later. Clearly, f is a Hermite polynomial, and so
for F the sum is finite. We need the following three steps:

(a). We write f as g× h, where

g(x) =
xp−1

(p− 1)!
and h(x) = (1− x)p(2− x)p · · · (n− x)p.

Since g(p−1)(0) = 1 and otherwise g(i)(0) = 0, from the formula f (`) = ∑`
i=0 g(i)h(`−i)

it follows that

F(0) =
∞

∑
i=0

h(i)(0) = h(0) +
∞

∑
i=1

h(i)(0) = (n!)p + p(· · · ) ∈ Z − pZ .

Hence, in view of 0 < |c0| < n it follows that c0F(0) ∈ Z − pZ .
(b). Now we write f as g× h, where

g(x) =
(x− k)p

(p− 1)!
and h(x) =

xp−1(1− x)p(2− x)p · · · (n− x)p

(k− x)p , 1 ≤ k ≤ n.

Since h ∈ Z [x], g(p)(k) = p and g(i)(0) = 0 otherwise, we have

F(k) = p×
∞

∑
i=0

h(i)(k) ∈ pZ .

(c). Let φ(x) = e−xF(x), so that

φ′(x) = − e−x(F(x)− F′(x)) = − e−x

(
∞

∑
i=0

f (i)(x)−
∞

∑
i=1

f (i)(x)

)
= − e−x f (x).

Here we have used the fact that for F the sum is finite. Thus, we have |φ′(x)| ≤ | f (x)|
for x ≥ 0. Now in view of the mean value theorem, it follows that for all 1 ≤ k ≤ n,

|F(k)− ekF(0)| = |ek||φ(k)− φ(0)| ≤ kek max
[0,k]
|φ′| ≤ nen max

[0,n]
| f | ≤ en(nn+2)p

(p− 1)!
<

1
n2 .

The last inequality follows for p(≥ n) sufficiently large.
Next since from (a) and (b), respectively, we have c0F(0) ∈ Z − pZ , and for each

1 ≤ k ≤ n, F(k) ∈ pZ , it follows that ∑n
k=0 ckF(k) ∈ Z − pZ , and therefore is a nonzero

integer. The required contradiction now follows from the following successive equalities
and inequalities, and (c),

1 ≤
∣∣∣∣∣

n

∑
k=0

ckF(k)

∣∣∣∣∣ =

∣∣∣∣∣
n

∑
k=0

ckF(k)− 0× F(0)

∣∣∣∣∣ =

∣∣∣∣∣
n

∑
k=0

ckF(k)−
(

n

∑
k=0

ckek

)
× F(0)

∣∣∣∣∣

=

∣∣∣∣∣
n

∑
k=0

ck(F(k)− ekF(0))

∣∣∣∣∣ < n
n

∑
k=0
|F(k)− ekF(0)| = n

n

∑
k=1
|F(k)− ekF(0)| < n2

n2 = 1.
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Finally, we state Weak Hermite-Lindemann-Weierstrass Theorem (WHLWT): Let a be a
non-zero algebraic number (possibly complex), then ea is transcendental.

43. Leopold Kronecker (1823–1891, Poland-Germany)

Besides making significant contributions in the fields such as theory of algebraic
equations, higher algebra, elliptic functions, and algebraic numbers, he is famous for
making the statement that irrational, imaginary, and all other numbers excluding the
positive integers were man’s work and therefore unreliable.

44. Julius Wilhelm Richard Dedekind’s Cut

In 1858, while teaching calculus for the first time at the Polytechnic, he came up
with the technique now called a Dedekind cut, whose history dates back to Eudoxus. He
published this in Stetigkeit und Irrationale Zahlen (Continuity and Irrational Numbers) in
1872. The central idea of a Dedekind cut is that an irrational number divides the rational
numbers into two sets, with all the members of one set (upper) being strictly greater than
all the members of the other (lower) set. For example,

√
2 puts all the negative numbers

and the numbers whose squares are less than 2 into the lower set, and the positive numbers
whose squares are greater than 2 into the upper set. Every point on the real line is either a
rational or an irrational number. Therefore on the real line there are no empty locations,
gaps, or discontinuities. Dedekind is considered one of the the most responsible for the
current definition and understanding of irrational numbers. In current literature Dedekind
cut (also known as Dedekind Property) is stated as follows: Let A and B be two nonempty
subsets of IR such that A ∪ B = IR and x ∈ A and y ∈ B implies x < y. Then, either A has
the greatest member, or B has the least member.

45. Paul Gustav Heinrich Bachmann (1837–1920)

His mathematical writing includes a five-volume survey of results and methods in
number theory, a two-volume work on elementary number theory, a book on irrational
numbers, and a book on the famous conjecture known as Fermat’s Last Theorem.

46. Georg Cantor (1845–1918, Russia-Germany)

He is regarded as the founder of set theory and is believed to be the one who intro-
duced this theory to the mathematical world in about 1875. His two major books on set
theory, Foundations of General Theory of Aggregates and Contributions to the Founding of the
Theory of Transfinite Numbers, were published in 1883 and 1895, respectively. However,
during 200–875 AD, Jain School of Mathematics in India utilized the concept of sets. In their
work, the Jains introduced (in the Prakrit language) several different types of sets, such
as cosmological, philosophical, karmic, finite, infinite, transfinite, and variable sets. They
called the largest set an omniscient set, and the set containing no elements was known
as the null set. They also defined the concept of a union of sets and used the method
of one-to-one correspondence for the comparison of transfinite sets, see Agarwal and
Sen [11]. Cantor’s major contribution was the mathematical systematization of set theory,
now known as naive (non-axiomatic) set theory, and the modern understanding of infinity.
However, Cantor’s former mentor, Kronecker, ridiculed Cantor’s theories. The term arith-
metization of analysis which was originally introduced by Kronecker, by which he meant its
constructivization in the text of the natural numbers, led to the famous Dedekind-Cantor
axiom: It is possible to assign to any point on a directed straight line, e.g., in the Euclidian
plane x-axis, a unique real number, and conversely, any real number can be represented
in a unique manner by a point on the line. Thus, there is one-to-one correspondence be-
tween real numbers and the points on a directed straight line. This allows us to call points
for real numbers, and the real line for the directed straight line. This axiom completes
Al-Baghdadi’s geometric interpretation of rational numbers to all real numbers. Cantor’s
proof that the set of all rational numbers is countable, whereas the set of all real numbers
is uncountable, confirms that almost all real numbers are irrational. In fact, in 1873, he
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showed that every interval contains transcendental numbers. Thus, almost all irrational
numbers are transcendental and all transcendental numbers are irrational. He also gave a
new method for constructing transcendental numbers.

47. Carl Louis Ferdinand von Lindemann: Transcendence of π (1852–1939, Germany)

In 1882, he proved that π is transcendental. His result showed at last that the age-old
problem of squaring the circle with a ruler-and-compass construction is impossible. In a
lecture given in 1886, Kronecker complimented Lindemann on a beautiful proof but, he
claimed, one that proved nothing since transcendental numbers do not exist. Lindemann
also developed a method of solving equations of any degree using transcendental func-
tions. Most astonishingly, he supervised the doctoral theses of David Hilbert (1862–1943,
Germany), Hermann Minkowski (1864–1909, Russian-Germany), and Arnold Johannes
Wilhelm Sommerfeld (1868–1951). They laid the future foundation of mathematics.

Now as a consequence of WHLWT we shall prove the transcendence of π. Suppose
π is algebraic, i.e., π is a root of a polynomial with rational coefficients, say, P(x). Then,
φ(x) = P(ix)P(−ix) is also a polynomial with rational coefficients and φ(iπ) = 0, i.e., iπ
is also algebraic. However, then WHLWT implies that eiπ is transcendental; however, it
contradicts Euler’s identity eiπ = −1, and hence π is transcendental.

48. Friedrich Engel (1861–1941, Germany)

He proved the following important infinite product formula
√

q + 1
q− 1

=
∞

∏
n=0

(
1 +

1
qn

)
,

where q0 = q ∈ N , qn+1 = 2q2
n − 1, n ≥ 0. For q = 3 and q = 2 this formula reduces to

√
2 =

(
1 +

1
3

)(
1 +

1
17

)(
1 +

1
577

)(
1 +

1
665857

)
· · ·

and √
3 =

(
1 +

1
2

)(
1 +

1
7

)(
1 +

1
97

)(
1 +

1
18817

)
· · · .

49. David Hilbert (1862–1943, Germany)

He is recognized as one of the most influential and universal mathematicians of the
19th and early 20th centuries. Hilbet invented or developed a broad range of fundamental
ideas, finding results in invariant theory, the axiomatization of geometry, and introduc-
ing the notion of Hilbert space, which is one of the foundations of functional analysis.
In 1900, Hilbert proposed a list of twenty-three problems as a challenge to the International
Congress of Mathematicians, held in Paris. This is regarded as the most successful and
deeply considered compilation of open problems ever to be produced by an individual
mathematician. His Seventh Problem: Irrationality and transcendence of certain numbers reads:
Is ab transcendental, for algebraic a 6= 0, 1, and irrational algebraic b?)

50. Godfrey Harold Hardy: Statistical Distribution of the Digits

Hardy essentially showed that if we take any irrational number, say,
√

2, cos 200, π
or e and write these to large decimal places, say, a billion or trillion decimal places, then
the number of digits 0, 1, 2, · · · , 9 are uniformly randomly distributed, i.e., the frequency
with which the digits (0 to 9) appear in the result will tend to the same limit (1/10) as the
number of decimal places increases beyond all bounds. In recent years these digits are
being used in applied problems as a random sequence. For details, see Agarwal et al. [10].
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51. Aleksander Osipovich Gelfond (1906–1968, Russia)

In 1934, he gave an affirmative answer to Hilbert’s seventh problem, and this was
followed by Theodor Schneider (1911–1988, German). This result in the literature is
known as Gelfond-Schneider theorem. This result does not help determine whether
numbers such as ee, ππ , or πe are transcendental, since both the bases and exponents
are transcendental numbers and therefore do not satisfy the conditions of the Gelfond–
Schneider theorem. Log 2 (base 10) can be shown to be transcendental using the Gelfond–
Schneider theorem. The transcendental number 2

√
2 is known as the Gelfond-Schneider

constant (or Hilbert number), and the transcendental number eπ = (eiπ)−i = (−1)−i is
known as Gelfond’s constant.

52. Roger Apéry (1916–1994, Greek-French)

The well known Riemann zeta function after George Friedrich Bernhard Riemann
(1826-1866, Germany) is defined as

ζ(s) = 1 +
1
2s +

1
3s + · · · , s = σ + it.

In 1979 Apéry published an unexpected proof of the irrationality of ζ(3). In the
literature ζ(3) is known as Apéry constant. The irrationality of ζ(2n + 1), n ≥ 2 is expected
but not yet established.

53. More on Numbers

The trigonometric functions sin x, cos x, tan x, csc x, sec x, cot x, and their hyper-
bolic counterparts, for any nonzero algebraic number x, expressed in radians are tran-
scendental. The number eπ

√
n is also transcendental. It is not yet known if the numbers

π + e, π− e, πe, πe. ππ are rational, algebraic, irrational, or transcendental. However, it is
certain that both π + e and πe cannot be rational (or algebraic). In fact, if both are rational
then (π + e)2 − 4πe is rational. However, this gives (π − e)2, and so π − e is algebraic.
However, then adding and subtracting π − e with π + e, we find that both π and e are
algebraic, which contradicts the fact that both are transcendental.

54. Conclusions

One of the greatest discovery in whole of mathematics is the invention of irrational
numbers, and then their understanding. In this article we have demonstrated that Vedic
Ascetics more than 5000 years back were unsuccessful in finding exact values of the num-
bers

√
2 and π. The ancient records (supported by great philosophers, mathematicians,

and historians) stipulate that Vedic Ascetics were also definite that these numbers are
incommensurable/irrational. We have exhibited that the claim of the historians of mathe-
matics that Pythagoras proved the irrationality of

√
2 is only conjectural. In fact, the first

geometric proof of the irrationality of
√

2 appeared only in Meno (Socratic dialogue by
Plato) almost two hundred years after Pythagoras. Since then several different proofs
of the irrationally of

√
2 and in general for

√
N for any natural number N which is not

not a perfect square have been given. We have provided some of these important proofs.
The next major understanding of irrational numbers came from the scholars of the Islamic
Middle East towards the end of the first millennium CE. They started treating irrational
numbers as algebraic objects, and most importantly provided a geometric interpretation
of rational numbers on a horizontal straight line. Since then research continues for the
known as well as unknown/expected irrational numbers, their subset of transitive num-
bers, and their computation to trillions of decimal places, we have detailed some of these
advancements. We have also discussed Dedekind-Cantor axiom of the 19th century which
provides geometric interpretation of all real numbers, and thus completes the Islamic work.
We have arranged individuals contributions chronologically to show that each continent of
the world has contributed in this fascinating field of mathematics.
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