
computation

Article

Exact Boolean Abstraction of Linear Equation Systems

Emilie Allart 1,2,† , Joachim Niehren 1,3,† and Cristian Versari 1,2,*,†

����������
�������

Citation: Allart, E.; Niehren, J.;

Versari, C. Exact Boolean Abstraction

of Linear Equation Systems.

Computation 2021, 9, 113. https://

doi.org/10.3390/computation9110113

Academic Editors: Jérôme Feret and

Cédric Lhoussaine

Received: 31 July 2021

Accepted: 12 October 2021

Published: 21 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 CRIStAL—Centre de Recherche en Informatique, Signal et Automatique de Lille—UMR 9189,
Université de Lille—Campus Scientifique, 59655 Villeneuve-d’Ascq, France; emilie.allart@univ-lille.fr (E.A.);
joachim.niehren@inria.fr (J.N.)

2 Faculte des Sciences et Technologies, University of Lille, 59650 Villeneuve-d’Ascq, France
3 Inria, Université de Lille, 59000 Lille, France
* Correspondence: cristian.versari@univ-lille.fr
† These authors contributed equally to this work.

Abstract: We study the problem of how to compute the boolean abstraction of the solution set of
a linear equation system over the positive reals. We call a linear equation system φ exact for the
boolean abstraction if the abstract interpretation of φ over the structure of booleans is equal to the
boolean abstraction of the solution set of φ over the positive reals. Abstract interpretation over
the booleans is thus complete for the boolean abstraction when restricted to exact linear equation
systems, while it is not complete more generally. We present a new rewriting algorithm that makes
linear equation systems exact for the boolean abstraction while preserving the solutions over the
positive reals. The rewriting algorithm is based on the elementary modes of the linear equation
system. The computation of the elementary modes may require exponential time in the worst case,
but is often feasible in practice with freely available tools. For exact linear equation systems, we can
compute the boolean abstraction by finite domain constraint programming. This yields a solution of
the initial problem that is often feasible in practice. Our exact rewriting algorithm has two further
applications. Firstly, it can be used to compute the sign abstraction of linear equation systems over
the reals, as needed for analyzing function programs with linear arithmetics. Secondly, it can be
applied to compute the difference abstraction of a linear equation system as used in change prediction
algorithms for flux networks in systems biology.

Keywords: linear equation systems; abstract interpretation; program analysis; systems biology

1. Introduction

We develop approaches to remedy the incompleteness of abstract interpretation [1]
of linear equation systems over the reals, in the algebra of booleans B = {0, 1} and the
structure of signs S = {−1, 0, 1}. These abstractions have various applications: in systems
biology, the boolean abstraction underlies abstractions of chemical reactions networks
into Boolean networks [2,3]. In program analysis, the sign abstraction can be applied to
functional programs with arithmetics for analyzing the signs of the possible values of
floating-point variables [4,5].

The soundness of abstract interpretations of first-order logic formulas without nega-
tion was shown by John [6–9]. It applies to the interpretation in any concrete structure S,
as long as it is connected by a homomorphism h : S→ ∆ to the abstract structure ∆. The
concrete interpretation of a first-order formula φ is the set of concrete solutions solS(φ),
and its abstract interpretation is the set of its abstract solutions sol∆(φ). John’s soundness
theorem (see Theorem 1 below) states that the set of abstract solutions of overapproximates
the abstraction by h of the set of concrete solutions:

h ◦ solS(φ) ⊆ sol∆(φ)

Computation 2021, 9, 113. https://doi.org/10.3390/computation9110113 https://www.mdpi.com/journal/computation

https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0003-4965-1819
https://orcid.org/0000-0002-2611-8950
https://doi.org/10.3390/computation9110113
https://doi.org/10.3390/computation9110113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computation9110113
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation9110113?type=check_update&version=2

Computation 2021, 9, 113 2 of 32

When choosing the operators in Σbool = {+, ∗, 0, 1}, the class of negation-free first-
order formulas with operators in Σbool extends on the classes of linear and polynomial
equation systems. In this article, we consider the boolean abstraction which is the unique
homomorphism hB : R+ → B, and the sign abstraction which is the unique homomorphism
hS : R→ S with respect to the operators in Σbool . The boolean abstraction maps any strictly
positive real to 1 and 0 to 0. The sign abstraction extends on the boolean abstraction while
mapping all strictly negative reals to −1. We note that the structure of signs S is not an
algebra since the sum of a positive and a negative number may have any sign.

1.1. Problematics

A natural question is whether abstract interpretation is complete [10] for the abstrac-
tion of formulas induced by a homomorphisms h : S→ ∆, i.e, whether for all negation-free
first-order formulas φ with the same operators:

h ◦ solS(φ) = sol∆(φ)

We call a formula φ h-exact if it satisfies this property. A counter example against
the completeness of abstraction interpretation for the boolean and the sign abstraction is
the linear equation φ0 equal to x + y ◦

= x + z. Here, we write ◦= for the equality symbol
inside the logic, to point out its difference from equality in the language of mathematics.
Formula φ0 is neither hB-exact nor hS-exact. This can be seen as follows. Over the reals φ0

is equivalent to y ◦= z, so that all assignments τ that are abstractions of concrete solutions
of φ0 must satisfy τ(y) = τ(z). When interpreted abstractly over B or S, however, φ0
admits the abstract solution τ = [x/1, y/1, z/0] which is not the abstraction of any concrete
solution since τ(y) 6= τ(z).

To deal with the incompleteness of abstract interpretation, we propose to study the
following two questions for homomorphism h : S → ∆ where h is either the boolean
abstraction hB or the sign abstraction hS.

Exact Rewriting Can we rewrite linear equation systems to h-exact formulas?
Computing Abstractions Can we can compute the abstraction h ◦ solS(φ) exactly for a
given system of homogeneous linear equations φ?

Geometrically speaking, the concrete solution sets solR+(φ) and solR(φ) of homo-
geneous linear equation systems φ are polytopes—i.e., finite intersections of half-spaces
in Rfv(φ). The problem of computing boolean abstractions or sign abstraction is thus to
compute the h∆ abstraction of a polytope given by a linear equation system.

For any h-exact formula φ, the computation of abstractions h ◦ solS(φ) is equivalent
to the computation of sol∆(φ). Since the abstract structure ∆ is finite for the boolean and
sign abstraction, we can compute the set of abstract solutions in at most exponential time
by a naive generate and test algorithm. Finite domain constraint programming [11] can
by used to avoid the naive generation of all variable assignments to ∆ in many practical
cases. Therefore, any algorithm for exact rewriting induces an algorithm for computing
abstractions that may be feasible in practice.

1.2. Contributions

Our main result is the first algorithm for exact rewriting that applies to linear equation
systems for the Boolean abstraction. Based on this algorithm, we present a novel algorithm
for computing the sign abstraction of linear equation systems.

Exact Rewriting for the Boolean Abstraction. In the first step, we study exact rewriting of
(homogeneous) linear equation systems for boolean abstraction. The counter example φ0,
for instance, can be rewritten to hB-exact formula y ◦

= z. The idea is to take the system
of all linear consequences over R+ of the linear equation system. There may be infinitely
many such consequences, but all of them are linear combinations of the extreme rays of
the cone solR+(φ0). Up to normalization, there are only finitely many extreme rays, which

Computation 2021, 9, 113 3 of 32

are known as the elementary modes of the linear equation system [12–15]. These can
be computed by libraries from computational geometry [16] in at most exponential time.
Nevertheless, the computation is often well-behaved in practice.

Based on the elementary modes (Folklore Theorem 2), we can rewrite any (homoge-
neous) linear equation system into quasi-positive and strongly-triangular linear equation
system that is equivalent over R+ (Corollary 1), that can be computed in at most exponen-
tial time. As we prove, such systems are always hB-exact (Theorem 3). Hence, any system
of linear equations can be converted in at most exponential time to some R+-equivalent
hB-exact formula.

Note that hB-exact formulas may still not be S-exact. A counter example is the strongly-
triangular quasi-positive linear system u + v ◦

= x ∧ u + v ◦
= y. It is not hS-exact, since it

entails x ◦= y over R but still has the abstract solution [u/1, v/−1, x/1, y/−1] over S which
maps x and y to distinct signs. Indeed, we don’t have any idea of how to do exact rewriting
for the sign abstraction. The problem is that positivity is essential for our approach, and
since the addition of positive and negative numbers may have any sign, S fails to be an
algebra, making the analogous argument as in the proof of B-exactness fail.

Extension to hB-Mixed Systems. In the second step, we introduce hB-mixed systems, which
by Theorem 4 generalize on systems of 1. linear equations, 2. positive polynomial equations
p ◦
= 0, and 3. positive polynomial inequations p 6 ◦= 0, where p is a positive polynomial

without constant term. We then show our main result:

Theorem 5 (Main). Any hB-mixed systems can be converted to a hB-exact formula by
converting its linear subsystem to an hB-exact formula.

The correctness of the algorithm for hB-mixed systems relies on the notion of hB-
invariant formulas that we introduce. The class of hB-invariant formulas subsume systems
of positive polynomial equations p ◦

= 0 and inequations p 6 ◦= 0, where p is a positive
polynomials without constant terms.

Computing Sign Abstractions. In the third step, we present an algorithm for computing the
sign abstraction of (homogeneous) systems of linear equations based on exact rewriting
for the boolean abstraction (Theorem 6). For this, we decompose the sign abstraction
into the boolean abstraction based on a function that is definable in first-order logic. This
function decomposes real numbers into their positive part x and negative part y. At least
one of these two parts must be zero, which can be expressed by the polynomial equation
x ∗ y ◦

= 0. The positivity of x can be expressed by ∃z.x ◦
= z ∗ z and the positivity of y in

analogy. In this way, we can reduce the problem of computing hS ◦ solR(φ) to the problem
of computing hB ◦ solR+(φ′) for some existentially quantified hB-mixed system φ′ that we
can make hB-exact based on our main Theorem 5.

Application to Program Analysis. We show how to apply the computation of the sign
abstraction of linear equation systems to improve the analysis of functional programs with
arithmetics. For finding program errors there it can be useful to know about the possible
signs of the values of program variables. We elaborate an example in the final Section 10.

Implementation. We implemented the hB-exact rewriting algorithm for hB-mixed systems
from the main Theorem 5 in Python. For this we used a library from computational
geometry [16] for computing elementary modes. We also used finite domain constraint
programming with Minizinc [17] for computing the set of boolean solutions over logical
formulas. Some successful experiments are mentioned in the related work subsection
below. We did not yet implemented the algorithm for computing sign abstractions, nor its
application to program analysis though.

1.3. Related Work

We start with related work by the authors, and then move to related work by others.

Computation 2021, 9, 113 4 of 32

Change Prediction of Reaction Networks. Our main Theorem 5 was recently applied to the
change prediction of reaction networks in systems biology [6]. Indeed, the development
of the present article was originally motivated by this application. The problem there is
to compute the difference abstraction of linear equation systems, expressing the steady
state semantics of chemical reaction networks. Two difference abstractions were consid-
ered, h∆3 : R2

+ → {
a

,
`

,≈} and a refinement thereof h∆6 : R2
+ → {↑, ↓,∼,⇑,⇓,≈}. In

analogy to the approach adopted for computing sign abstractions (step three above), the
algorithmic approach presented there is to decompose the difference abstractions h∆3 and
h∆6 into the boolean abstraction hB and functions that are definable in first-order logic. The
elaboration of this approach, however, is quite different for reflecting the nature of the
difference abstractions.

Experimentation. We tested our implementation of the exact rewriting algorithm for the
boolean abstraction successfully for computing difference abstractions in the application
of change prediction in systems biology. The experimental results are presented in [6] are
generally encouraging. They show that hB-exact rewriting based on elementary modes in
combination with finite domain constraint programming may indeed avoid naive generate
and test in many practical examples. In some of these examples, however, the overall
computation time still took some hours.

Abstracting Reaction Networks to Boolean Networks. Independently, the authors proposed an
abstraction of chemical reaction networks to boolean networks in [18], whose precision can
be improved by using the hB-exact rewriting of hB-mixed equation systems.

Alternative Algorithm for Computing Sign Abstractions. An alternative algorithm for comput-
ing the sign abstraction of linear equation systems (and thus also the boolean abstraction)
can be obtained by John’s overapproximation Theorem 1. It shows that it is sufficient to
generate the finitely many abstract solutions in τ ∈ solS(φ), and then to check for each
of them whether there exists a concrete solution σ such that τ = hS ◦ σ. To perform this
latter test, note that h∆(x) ◦= 1 is equivalent to the strict inequation x > 0 and hS(x) ◦= 0 by
the equation x ◦

= 0. Similarly, hS(x) ◦= −1 can be defined by the strict inequation x < 0.
Whether there exists a concrete solution σ ∈ solR(φ) such τ = h ◦ σ is thus equivalent to
the satisfiability of φ ∧∧x∈fv(φ) hS(x) ◦= τ(x) over R, where fv(φ) is the set of free variables
of φ. The satisfiability of systems of strict linear inequations and homogeneous linear
equations without constant terms over R are known to be decidable since at least 1926 [19].
But still, one has to generate the set of all abstract solutions solS(φ). The new algorithm
presented above avoids generating this set.

Abstract Program Interpretation over Numerical Domains. In abstract interpretation [20],
nonrelational domains permit to approximate the set of values of program variables while
ignoring the relationship to the values of others. Well-known nonrelational numerical
domains include the interval domain [21] describing invariants of the form

∧m
i=1 xi ∈ [ri, r′i]

with reals ri ≤ r′i and the constant propagation domain for invariants of the form
∧m

i=1 xi
◦
=

ri [22].
Abstract interpretation of relational domains may yield better approximations that

with nonrelational domains, since relationships between the values of different variables
can be taken into account. Well-known relational numerical domains include the poly-
hedral domain [4]. A polyhedron is the solution set of systems of inhomogeneous lin-
ear inequations of the form n1x1 + . . . + nmxm ≤ r. Alternatively, the linear equality
domain [23] was considered. These are defined by system of inhomogeneous linear equa-
tions n1x1 + . . . + nmxn

◦
= r.

In the present paper, we study the problem of computing the sign abstraction of
polytopes represented by homogeneous linear equation systems. The polytopes can be
obtained by existing methods for the abstract program interpretation over the polyhedral
domain. One weakness of our approach is that we study the homogeneous case only, so
that we can only abstract polytope and not more general polyhedrons.

Computation 2021, 9, 113 5 of 32

1.4. Outline

In Section 2, we recall preliminaries on homomorphisms between Σ-structures. In
Section 3, the first-order logic is recalled. John’s theorem and its relation to the soundness
and completeness of abstract interpretation in the classical framework are discussed in
Section 4. We discuss how to make linear equation system quasipositive and strongly
triangular based on elementary modes in Section 5. These properties can be used to prove
hB-exactness as we show in Section 6, and thus to obtain an hB-exact rewriting of linear
equation systems. We introduce the notion of hB-invariance in Section 7 and apply it in
Section 8 to lift the hB-exact rewriting algorithm from linear to hB-mixed systems. This
allows us to define the sign abstraction of linear equation systems on Section 9. We finally
apply this result in Section 10 to the sign analysis of functional programs with arithmetic.

2. Homomorphisms on Σ-Structures

We need some basic notation from set theory and standard notion of universal algebra
such as Σ-algebras, Σ-structures, and homomorphism.

For any set A and n ∈ N, the set of n-tuples of elements in A is denoted by An. For
finite sets A the number of elements of A is denoted by |A|. Furthermore, for any function
f : A → B we define the function f 2 : A2 → B2 such that f 2(a, a′) = (f (a), f (a′) for all
a, a′ ∈ A.

2.1. Σ-Algebras

We next recall the notion of Σ-algebras. Let Σ = ∪n≥0F(n)] C be a ranked signature.
We call the elements of f ∈ F(n) are called n-ary function symbols, even though we may
also use them as n + 1-ary relation symbols later on when moving to Σ-structures. The
elements in c ∈ C are called the constants of Σ.

Definition 1. A Σ-algebra S = (dom(S), .S) consists of a set dom(S) and an interpretation .S

such that cS ∈ dom(S) for all c ∈ C, and f S : dom(S)n → dom(S) for all f ∈ F(n).

Let B = {0, 1} be the set of booleans, N the set of natural numbers including 0, Z the
set of integers, R the set of real numbers, and R+ the set of positive real numbers including
0. Note that B ⊆ N ⊆ R+ ⊆ R and N ⊆ Z ⊆ R. Let the addition on the reals be the
binary function +R : R2 → R and the multiplication the binary function ∗R : R2 → R.
Let the addition on the positive real numbers +R+ : R2

+ → R+ be equal to the restriction
+R
|R+×R+

and the multiplication ∗R+ : R2
+ → R+ be the restriction ∗R|R+×R+

.
Let Σbool = {+, ∗} ∪ {0, 1} be the set of boolean operators where + and ∗ are binary

function symbols and 0 and 1 constants. Note that constant 0 is freely overloaded with the
boolean 0 and the constant 1 with the boolean 1.

Example 1. The set of positive reals R+ can be turned into a Σbool-algebra, in which the functions
symbols are interpreted as binary functions +R+ and ∗R+ . The constants are interpreted by
themselves 0R+ = 0 and 1R+ = 1.

Example 2. The set of Booleans B = {0, 1} ⊆ R+ equally defines a Σbool-algebra. There, the
function symbols are interpreted as a disjunction +B = ∨B and conjunction ∗B = ∧B on Booleans.
The constants are interpreted by themselves 0B = 0 and 1B = 1.

2.2. Σ-Structures

We next recall the usual generalization of Σ-algebras to Σ-structures. The objective is
to generalize from functions to relations. For this, we consider n-ary function symbols as
n+1-ary relation symbols.

Definition 2. A Σ-structure ∆ = (dom(∆), .∆) consists of a set dom(∆) and an interpretation .∆

such that c∆ ∈ dom(∆) for all c ∈ C and f ∆ ⊆ dom(∆)n+1 for all f ∈ F(n).

Computation 2021, 9, 113 6 of 32

Clearly, any Σ-algebra is also a Σ-structure. Note also that symbols in F(0) are inter-
preted as monadic relations, i.e., as subsets of the domain, in contrast to constants in C that
are interpreted as elements of the domain.

We denote the subtraction on the reals by the binary function −R : R2 → R and the
division on the reals by the ternary relation /R ⊆ R2 ×R. Note that division by zero is
undefined. Note also that subtraction on R+ would yield only a partial function.

Let Σarith = {+, ∗,−, /} ∪ {0, 1} be the arithmetic signature, where 0 and 1 are con-
stants, and all other operators are binary function symbols. Again, we freely overlead to
constant 0 with real number 0 and the constant 1 with the real number 1.

Example 3. The set of reals R can be turned into a Σarith-structure, with the interpretation of the
binary functions symbols as the ternary relations +R, ∗R, −R, /R. The constants are interpreted
by themselves 0R = 0 and 1R = 1. Note that /R is a partial but not a total function, since division
by 0 is not defined. So we must see /R as a ternary relation, so that R is not a Σarith-algebra. It still
is a Σbool-algebra though.

Example 4. The set of signs {−1, 0, 1} ⊆ R can be turned into a Σarith-structureS = ({−1, 0, 1}, .S)
with the interpretation +S, −S, ∗S and, /S given in Figure 1. The constants are interpreted by
themselves 0S = 0 and 1S = 1. Note that all +S contains (−1, 1,−1), (−1, 1, 1) and (−1, 1, 0)
meaning that the sum of a strictly negative and a strictly positive real has a sign in −1 +S 1, so it
may either be strictly positive, strictly negative, or zero. So S is a Σarith-structure and even when
restricting the signature to Σbool it remains a Σbool-structure that is not a Σbool-algebra.

Figure 1. Evaluation in the Σarith-structure of signs S.

2.3. Homomorphisms

We recall the standard notion of homomorphism for Σ-structures which can also be
applied to Σ-algebras.

Definition 3. A homomorphism between two Σ-structures S and ∆ is a function h : dom(S)→
dom(∆) such that for c ∈ C, n ∈ N, f ∈ F(n), and s1, . . . , sn+1 ∈ dom(S):

1. h(cS) = c∆, and
2. if (s1, . . . , sn+1) ∈ f S then (h(s1), . . . , h(sn+1)) ∈ f ∆.

We can convert any n + 1-ary relation to a n-ary set valued functions. In this way, any
n-function is converted to a n-ary set valued n-functions. In other words, functions of type
Dn → D are converted to functions of type Dn → 2D where D = dom(∆). In set-valued
notation, the second condition on homomorphism can then be rewritten equivalently as
h(f S(s1, . . . , sn)) ⊆ f ∆(h(s1), . . . , h(sn)). A homomorphism for Σ-algebras thus satisfies
h(cS) = c∆ and for all function symbols f ∈ F(n) and s1, . . . , sn ∈ dom(S) it satisfies
h(f S(s1, . . . , sn)) = f ∆(h(s1), . . . , h(sn)).

The boolean abstraction is the function hB : R+ → B with hB(0) = 0 and hB(r) = 1 if
r > 0.

Computation 2021, 9, 113 7 of 32

Lemma 1. The boolean abstraction hB is a homomorphism between Σbool-algebras.

Proof. For all r, r′ ∈ R+ we have:

hB(r +R+ r′) = 1 ⇔ r +R+ r′ 6= 0 ⇔ r 6= 0∨ r′ 6= 0 ⇔ hB(r) = 1∨ hB(r′) = 1
hB(r ∗R+ r′) = 1 ⇔ r ∗R+ r′ 6= 0 ⇔ r 6= 0∧ r′ 6= 0 ⇔ hB(r) = 1∧ hB(r′) = 1

Hence, hB(r +R+ r′) = hB(r) +B hB(r′) and hB(r ∗R+ r′) = hB(r) ∗B hB(r′). Finally, for both
constants c ∈ C we have that hB(cR+) = hB(c) = c = cB.

The sign abstraction is the function hS : R → S with hS(0) = 0, hS(r) = −1 for all
strictly negative reals r < 0 and hS(r) = 1 for all strictly positive reals r > 0.

Lemma 2. The sign abstraction hS is a homomorphism between Σarith-structures.

Proof. Let r, r′ ∈ R. For the multiplication we have hS(r ∗R r′) = hS(r) ∗R hS(r′) and thus
hS(r ∗R r′) ∈ {hS(r) ∗R hS(r′)} = hS(r) ∗S hS(r′). For the addition, we have to distinguish
cases. If r and r′ have the same sign, so r +R r′ has the same sign, so that we have hS(r +R

r′) ∈ hS(r) +S hS(r′). If r > 0 and r′ < 0 or vice versa then we have hS(r) +S hS(r′) = S
so that hS(r +R r′) ∈ S = hS(r) +S hS(r′). The treatment of −S and /S is similar. For the
constants, we have hS(0R) = 0S and hS(1R) = 1S.

3. First-Order Logic

We recall the syntax and semantics of first-order logic with equality. For this, we fix a
countably infinite set of variables V that will be ranged over by x, y, z.

3.1. Expressions

Given a ranked signature with constants and function symbols Σ = C ∪⋃n≥0 F(n), the
set of Σ-expressions contains all terms that can be constructed from constants and variables
by using function symbols:

e1, . . . , en ∈ EΣ ::= x | c | f (e1, . . . , en) where c ∈ C, n ≥ 0, f ∈ F(n), x ∈ V

Let fv(e) be the set of all variables that occur in e. Given a subset V ⊆ V let EΣ(V) be
the subset of expression e ∈ EΣ with fv(e) ⊆ V.

The semantics of Σ-expressions is defined in Figure 2. For any Σ-structure S and
variable assignment σ : V → dom(S), any expression e ∈ EΣ(V) denotes a set of values
JeKσ,S ⊆ dom(S). This set is defined recursively by set-valued interpretation of the operators
of the expressions in the structure S. If S is a Σ-algebra, then the result will always be
a singleton.

Figure 2. Set-valued interpretation of expressions JeKσ,S ⊆ dom(S).

3.2. Logic Formulas

The set of first-order formulas is the set of terms constructed with the usual first-order
connectives from equations with symbols in Σ and variables in V :

φ ∈ FΣ ::= e ◦= e′ | ∃x.φ | φ ∧ φ | ¬φ where e, e′ ∈ EΣ and x ∈ V

A Σ-formula φ ∈ FΣ is a term, which either is a Σ-equation e ◦= e′ with variables
in V , an existentially quantified formula ∃x.φ, a conjunction φ ∧ φ′, or a negation ¬φ.
A system of Σ-equations is a conjunction of equations e1

◦
= e′1 ∧ . . . ∧ en

◦
= e′n where

e1, e′1, . . . , en, e′n ∈ EΣ.

Computation 2021, 9, 113 8 of 32

The set of free variables fv(φ) contains all those variables of φ that occur outside the
scope of any existential quantifier in φ. Given a subset V ⊆ V we write FΣ(V) for the
subset of formulas φ ∈ FΣ such that fv(φ) ⊆ V.

First-order formulas can be defined for providing the missing logical operators. Firstly,
we can define disjunctions φ ∨ φ′ =def ¬(¬φ ∧ ¬φ′) and implications φ→ φ′ =def ¬φ ∨ φ′,
and secondly, universally quantified formulas ∀x.φ =def ¬∃x.¬φ. Note that these formulas
are not negation-free (and thus John’s theorem cannot be applied to them). Third, we define
the valid formula true =def ∃x.x ◦= x. Fourth, we write

∧n
i=1 φi instead of φ1 ∧ . . . ∧ φn. In

the case n = 0 the conjunction is true. Fifth, for any vector of variables y = (y1, . . . , yn) ∈
Vn we will write ∃y.φ instead of ∃y1 . . . ∃yn.φ.

For any V ⊆ V , the semantics of first-order formulas φ ∈ FΣ(V) for a Σ-structure S
and a variable assignment σ : V → dom(S) is the truth value JφKσ,S ∈ B defined in Figure 3.

Figure 3. Interpretation of formulas φ ∈ FΣ(V) as truth values JφKσ,S ∈ B over a Σ-structure S given
a variable assignment σ : V → dom(S).

Note that the equality symbol ◦= is interpreted as nondisjointness, i.e., an equation
e ◦= e′ is true if and only if JeKσ,S ∩ Je′Kσ,S 6= ∅. In the case of Σ-algebras, the equality
symbol ◦= is indeed interpreted as equality of singletons. In the case of more general
Σ-structures, though, it is not interpreted as set equality.

The set of solutions with domain V of a formula φ ∈ FΣ(V) over a Σ-algebra S is:

solS
V(φ)={σ : V → dom(S) | JφKσ,S = 1}

If V = fv(φ) we omit the index V, i.e., solS(φ) = solS
V(φ).

Two formulas φ, φ′ ∈ FΣ are called S-equivalent if they have the same solution sets
over S on V = fv(φ) ∪ fv(φ′), that is solS

V(φ) = solS
V(φ

′). Note that y ◦= y is equivalent to
z ◦= z and also to true, i.e., to ∃x.x ◦= x.

3.3. Examples

Since B ⊆ R+ we can define the boolean abstraction by a formula y ◦= hB(x) in FΣbool
over R+ with two variables x, y ∈ V :

(x ◦= 0∧ y ◦= 0) ∨ (¬x ◦= 0∧ y ◦= 1)

Since S ⊆ R we can define the sign abstraction by a formula y ◦= hS(x) in FΣbool
over

R with two variables x, y ∈ V :

(x ◦= 0∧ y ◦= 0) ∨ (x > 0∧ y ◦= 1) ∨ (x < 0∧ y + 1 ◦= 0)

where:
x ≥ 0 =def ∃z. x ◦= z ∗ z
x > 0 =def x ≥ 0∧ ¬(x ◦= 0)
x < 0 =def ¬x ≥ 0

These definitions illustrate that both abstraction are closely related to strict inequations
x > 0 and x < 0. The boolean abstraction is concerned with strict positivity x > 0, while
the sign abstraction is also concerned with strict negativity x < 0.

Computation 2021, 9, 113 9 of 32

3.4. Semantic Properties of Free and Bound Variables

We need the following two standard lemmas on the role of free and bound variables
for the solution sets of logic formulas. For any subset of variable assignments R of type
V′ → dom(S) and any disjoint sets of variables V ∩V′ = ∅ we define extS

V(R) = {σ ∪ σ′ |
σ : V → dom(S), σ′ ∈ R}.

Lemma 3 (Cylindrification). If V ∩ fv(φ) = ∅ then solS
V∪fv(φ)(φ) = extS

V(solS(φ)).

Proof. We can show that JeKσ,S = JeKσ|fv(e),S for all expressions e ∈ EΣ with fv(e) disjoint to
V and any variable assignment σ : fv(e) ∪ V → dom(S) by induction on the structure of
expressions. From this, we can prove for all formulas φ ∈ FΣ such that fv(φ) is disjoint
from V and σ : fv(φ) ∪V → dom(S) that JφKσ,S = JφKσ|fv(φ),S by induction on the structure
of Σ-formulas. This implies the lemma.

The projection πa(f) of a function f : A→ B is its restriction f|A\{a}. The projection
of a set F of functions f : A→ B is πa(F) = {πa(f) | f ∈ F}.

Lemma 4 (Quantification is projection). solS(∃x. φ) = πx(solS(φ)).

Proof. This is follows from the semantics of existential quantified formulas as follows:

solS(∃x. φ) = {σ|fv(φ)\{x} | σ ∈ solS(φ)} = πx(solS(φ))

4. Abstract Interpretation

We recall the notion of Σ-abstractions and use them for abstracting sets of concrete
solutions of logic formulas within the usual framework of abstract interpretation. Due to
John’s theorem, this abstraction can be soundly approximated by the abstract interpretation
of logic formulas in the target structure of the Σ-abstraction. We will argue that John’s over-
approximation shows the soundness of abstract interpretation in the classical framework
of Cousot & Cousot [1]. We will then introduce the notion of exactness of a logic formula
with respect to a Σ-abstraction and relate it to the completeness of abstract interpretation.

4.1. John’s Overapproximation for Σ-Abstractions

The notion of Σ-abstraction from [6] generalizes at the same time over the boolean
abstraction and the sign abstraction.

Definition 4. A Σ-abstraction is a homomorphism h : S → ∆ between Σ-structures such that
dom(∆) ⊆ dom(S).

The boolean abstraction hB is a Σbool-abstraction by Lemma 1. The sign abstraction hS
is a Σbool-abstraction by Lemma 2.

Let h : S→ ∆ be a Σ-abstraction and V ⊆ V . For any subset of assignments R of type
V → dom(S), we define the abstraction:

h ◦ R = {h ◦ σ : V → dom(∆) | σ ∈ R}

Theorem 1 (John’s Overapproximation [6,8,9]). For any Σ-abstraction h : S → ∆ between
Σ-structures and any negation-free Σ-formula φ ∈ FΣ:

h ◦ solS(φ) ⊆ sol∆(φ)

Computation 2021, 9, 113 10 of 32

John’s theorem states that the abstraction with respect to h of the concrete solution set
of a first-order formula can be overapproximated by abstract interpretation of the formula
in the target structure of h.

We only give a brief sketch of the full proof, which can be found in [6]. Let V = fv(φ)
and σ : V → dom(S). For any expression e ∈ EΣ(V), we can show h(JeKσ,S) = JeKh◦σ,∆ by
induction on the structure of e. It then follows for any negation-free formula φ ∈ FΣ(V)
that JφKσ,S ≤ JφKh◦σ,∆. This is equivalent to that {h ◦ σ | σ ∈ solS

V(φ)} ⊆ sol∆
V(φ) and thus

h ◦ solS
V(φ) ⊆ sol∆

V(φ). Since V = fv(φ), it follows that h ◦ solS(φ) ⊆ sol∆(φ) as required.

4.2. Exactness of Σ-Formulas for Σ-Abstractions

As a new contribution, we introduce the notion of exactness of first-order formulas
with respect to a Σ-abstraction.

Definition 5 (h-Exactness). Let h : S → ∆ be a Σ-abstraction and φ ∈ FΣ(V) a formula. We
call φ h-exact with respect to V if h ◦ solS

V(φ) = sol∆
V(φ). We call φ h-exact if φ is h-exact with

respect to fv(φ).

For instance, the linear equation system φ equal to x + y ◦= x + z is neither hB-exact
nor hS-exact. However it is equivalent to y ◦

= z which is both hB-exact and hS-exact. To
see this note that τ = [x/1, y/1, z/0] belongs to solB(φ) but not to hB ◦ solR+(φ) since
τ(y) 6= τ(z). The same assignment also belongs to solS(φ) but not to hS ◦ solR(φ) since
τ(y) 6= τ(z).

4.3. Soundness and Completeness of Abstract Interpretation

John’s theorem is related to the soundness of abstract interpretation and the notion
of exactness to its completeness. To state the precise relationship, we need to embed our
setting into the classical framework of abstract interpretation [1,10].

When considering formulas as programs, the usual framework of abstract interpre-
tation of programs applies to the interpretation of the formulas (programs) in the target
structure of the Σ-abstraction. More formally, we fix a finite subset of variables V ⊆ V and
consider the subset of formulas as programs:

P = {φ ∈ FΣ(V) | φ is negation-free}

The semantics of a program φ ∈ P over a given Σ-structure S is the set of its solutions
over S:

JφK = solS(φ)

The range of the semantics mapping is the space of concrete values C = 2{σ|σ:V→dom(S)}.
Note that (C,⊆,∩,∪) is a complete lattice. An abstract interpretation of a program φ ∈ P
maps φ to the set of its solutions over ∆:

JφK] = sol∆(φ)

The range of the abstract interpretation is the abstract domain A = 2{τ|τ:V→dom(∆)}.
Clearly, (A,⊆,∩,∪) is also a complete lattice. We define the abstraction function αh : C → A
of our Galois connection such that for subsets of concrete assignments R ⊆ C:

αh(R) = h ◦ R

Definition 6 (Cousot & Cousot [1], Giacobazzi, Ranzato & Scozzari [10]). An abstract
interpretation J.K] : P → A is sound for an abstraction α : C → A with respect to the program
semantics J.K : P → C if for all programs φ ∈ P it holds that α(JφK) ⊆ JφK]. It is complete if all
programs φ ∈ P satisfy α(JφK) = JφK].

Computation 2021, 9, 113 11 of 32

John’s theorem states that the abstract interpretation αh of negation free-formulas
φ ∈ P over ∆ is sound for the abstraction of solS(φ) with respect to the Σ-abstraction
h : S → ∆. Furthermore, if all formulas of P are h-exact then abstract interpretation
over ∆ is complete for abstraction αh. As illustrated above, abstract interpretation over
B fails to be complete for the abstraction αhB , and similarly, abstract interpretation over
S fails to be complete for the abstraction αhS . Note that the completeness of abstract
interpretations was largely studied in the context of program analysis (see e.g., Section 8
of [10] for an overview).

In the present article, we study the problem of exact rewriting for hB. The question
is how to rewrite a Σbool-formula into a hB-exact formula that is R+-equivalent. Note
that exact rewriting of linear equation system for hB is a different problem than to decide
whether abstract interpretation is complete for αhB on linear equation systems. Still, both
notions are closely related: exact rewriting can help to improve the precision of abstract
interpretation just in the case where it is not already complete, i.e., maximally precise.
Otherwise, exact rewriting is trivial.

In the case of the sign abstraction, we do not have any algorithmic idea of how to do
exact rewriting for linear equation systems. Therefore, we study the easier problem of exact
rewriting for the boolean abstraction of linear equation systems in the first place. Given
an hB-exact formula φ, we can compute the abstraction hB ◦ solR+(φ) = solB(φ) by finite
domain constraints programming. We then use exact rewriting for the boolean abstraction
to compute sign abstractions of linear equation systems hS ◦ solR(φ), rather than relying on
exact rewriting for the sign abstraction itself. For this, we use first-order definitions beside
of finite domain constraint programming.

4.4. Galois Connection

We finally introduce the concretization operation that corresponds to the abstraction
of the solution set of a logic formula with respect to a Σ-abstraction, and show that the pair
of abstraction and concretization forms a Galois connection.

Given a Σ-abstraction h : S → ∆, and a set R of variable assignments to dom(∆),
we define the left-decomposition of R with respect to h as the following set of variable
assignments to dom(S):

h ◦−R =def {σ | h ◦ σ ∈ R}

So let αh : C → A be the abstraction induced by Σ-abstraction h. We define the
corresponding concretization function γh : A→ C such that for all abstract assignments
R ⊆ A:

γh(R) = h ◦−R =def {σ ∈ C | h ◦ σ ∈ R}

Lemma 5. (A, C, αh, γh) is a Galois connection, i.e., for all R ∈ C and T ∈ A:

αh(R) ⊆ T if and only if R ⊆ γh(T)

Proof. If h ◦ R ⊆ T then h ◦−h ◦ R ⊆ h ◦−T and since R ⊆ h ◦−h ◦ R we have R ⊆ h ◦−T.
If conversely R ⊆ h ◦−T then h ◦ R ⊆ h ◦ h ◦−T and since h ◦ h ◦−T = T it follows that
h ◦ R ⊆ T.

5. Equation Systems, Positivity, and Triangularity

We study systems of Σbool-equations for positivity and triangularity. These notions
will be essential for showing B-exactness. We are not only interested in homogeneous
linear equations but also in more general polynomial equations without constant term.

Computation 2021, 9, 113 12 of 32

5.1. Classes of Equation Systems

Let e1, . . . , en ∈ EΣbool be a sequence of expressions and n ∈ N. If n 6= 0 we define
∑n

i=1 ei =def e1 + . . . + en and ∏n
i=1 ei =def e1 ∗ . . . ∗ en. For n = 0, we define ∑n

i=1 ei = 0
and ∏n

i=1 ei = 1. Furthermore, for any expression e ∈ EΣbool we define:

ne =def

n

∑
i=1

e and en =def

n

∏
i=1

e

A polynomial (with natural coefficients) is a Σbool-expression of the following form:

l

∑
j=1

nj

ij

∏
k=1

x
mj,k
j,k

where l and ij are natural numbers, x1,1, . . . , xl,il variables, all nj 6= 0 are natural numbers
called the coefficients, and all mj,k 6= 0 are natural numbers called the exponents. The

products ∏
ij
k=1 x

mj,k
j,k are called the monomials of the polynomial.

Definition 7. A polynomial ∑l
j=1 nj ∏

ij
k=1 x

mj,k
j,k with natural coefficients nj 6= 0 has no constant

term if none of its monomials are equal to 1, i.e., ij 6= 0 for all 1 ≤ j ≤ l. It is linear if all its
monomials are variables, i.e., ij = 1 and mj,1 = . . . = mj,ij = 1 for all 1 ≤ j ≤ l.

A polynomial equation is a Σbool-equation p ◦= p′ between polynomials. A polynomial
equation system is a system of polynomial equations.

Linear polynomials have the form ∑l
j=1 njxj,1 where l and all nj 6= 0 are naturals and

all xj,1 are variables. In particular, linear polynomials do not have a constant term. Note
that the constant 0 is equal to the linear polynomial with l = 0. A (homogeneous) linear
equation is a polynomial equation with linear polynomials, so without constant terms. A
(homogeneous) linear equation system is a system of linear equations.

A (homogeneous) integer matrix equation has the form Ay ◦
= 0 where A is a n×m matrix

of integers for some naturals m, n such that y ∈ Vm and 0 ∈ {0}n. Any integer matrix
equation can be turned into a linear equation system with natural coefficients, by bringing
the negative coefficients positively on the right-hand side. For instance, the linear integer
matrix equation: (

3 0
2 −5

)(
x
y

)
◦
=

(
0
0

)
corresponds to the following system of linear Σbool-equations:

3x ◦= 0∧ 2x ◦= 5y

Therefore, we will sometimes confuse an integer matrix equations with the correspond-
ing system of linear Σbool-equations. Conversely, any system of linear Σbool-equations can
be converted into a integer matrix equation by moving the positive right-hand sides
negatively to the left and factorizing the expressions for the different occurrences of the
same variable.

5.2. Positivity and Triangularity

such that σ(y), σ(y′) We next define positivity and triangularity properties for equation
systems. These are key properties to show B-exactness of linear equation systems.

Definition 8. A Σbool-equation is called positive if it has the form e ◦= 0 and quasi-positive if
it has the form e ◦= ny, where n ∈ N, y ∈ V , and e ∈ EΣbool . We call a system of Σbool-equations
positive respectively quasi-positive if all its equations are.

Computation 2021, 9, 113 13 of 32

This definition makes sense, since all constants in Σbool-expressions are positive and
all operators of Σbool-expressions preserve positivity. Note also that any positive equation
is quasipositive since the constant 0 is equal to the polynomial 0y.

This above system of linear equations is quasipositive, but not positive since 5y
appears on a right-hand side. More generally, the linear equation system for a integer
matrix equation Ay ◦

= 0 is positive if and only if all integers in A are positive, and
quasipositive if each line of A contains at most one negative integer.

Definition 9. We call a quasipositive system of Σbool-equations triangular if it has the form∧n
l=1 el

◦
= nlyl such that the variables yl are l-fresh for all 1 ≤ l ≤ n, i.e., yl 6∈ fv(

∧l−1
i=1 ei

◦
= e′i)

and if nl 6= 0 then yl 6∈ fv(el). We call the quasi-positive polynomial system strongly-triangular
if it is triangular and satisfies nl 6= 0 for all 1 ≤ l ≤ n.

The above linear equation system is triangular, but not strongly triangular since the
right-hand side of the first equation is 0. Consider an integer matrix equation Ay ◦

= 0. If
A is positive and triangular, then the corresponding linear equation system is positive
and triangular too. For being quasipositive and strongly-triangular, the integers below the
diagonal of A must be negative, those on the diagonal must be strictly negative, and those
on the right of the diagonal must be positive.

5.3. Linear Equation Systems and Elementary Modes

We next show that elementary modes [12–15] can be used to transform systems of
linear equations into R+-equivalent systems that are quasi-positive and strongly-triangular.

We first recall the necessary definitions and folklore results on elementary modes
and the double description method. We limit the presentation to equations with integer
coefficients solved in R+, since more general definitions and results for elementary modes
in R are not needed for this paper.

Definition 10. The support of a function σ : V → R is supp(σ) = {y ∈ V | σ(y) 6= 0}.

Definition 11 (Elementary Modes). An elementary mode of an integer matrix A ∈ Zn,m is
a vector n ∈ Nn such that for any sequence of pairwise distinct variables y ∈ Vn the function
σ = [y/n] is a solution in solR+(Ay ◦

= 0) such that:

• supp(σ) is minimal, i.e., there exist no σ′ ∈ solS(φ) such that supp(σ′) (supp(σ),
• σ is normalized, i.e., there exist variables y, y′ in y such that σ(y) and σ(y′) are coprimes

(their greatest common divisor is 1).

The elementary modes of a matrix A are the extreme directions of the polyhedral cone
solR+(Ay ◦

= 0). This implies that any solution of the linear system can be expressed as a
weighted sum of its elementary modes, where all the weights are non negative. Due to
normalization, the number of elementary modes is finite for all integer matrices.

Theorem 2 (Folklore). For any integer matrix A ∈ Zm,n one can compute a matrix of natural
numbers E ∈ Nn,o in at most exponential time, such that the Σbool-formulas for Ay ◦

= 0 and
∃x.Ex ◦

= y are R+-equivalent for all vectors y ∈ Vn and x ∈ V o of pairwise distince variables.
Furthermore, the o columns of E are the elementary modes of A.

We note that Theorem 2 can be lifted to matrices of rational numbers Q, since any
rational matrix equation Ay ◦

= 0 can be rewritten to a integer matrix equation with the
same R+-solution set, by multiplying with the natural numbers in the denominators of the
rational numbers. The freely available cddlib tool in the rational mode [24] inputs a matrix
A ∈ Qn,m, and outputs the list of (integer) elementary modes of A. From this list, we can
construct the matrix E for A by aligning the elementary modes of A as the columns of E.

Computation 2021, 9, 113 14 of 32

Note that the interface of the cddlib tool is more general, in that it applies to rational
matrix inequations interpreted over the reals, rather than to rational matrix equations
interpreted over the positive reals: it permits to compute the normalized extreme directions
of the polyedral cone solR(By ≥ 0) for any rational matrix inequation B over the reals. If
one wants to compute the elementary modes of a rational matrix A – that is the normalized
extreme directions of polyhedral cones of over the positive reals solR+(Ay ◦

= 0) – then one

can chose B =

 A
−A
Id

 where Id is the identity matrix with as many columns as A.

Corollary 1 (Elementary Mode Rewriting). Given a system of linear equations φ ∈ FΣbool
, one

can compute in at most exponential time an R+-equivalent formula emr(φ) that has the form ∃x.φ′

where φ′ is quasi-positive and strongly-triangular system of equations.

Proof. Any system of linear equations φ can be converted into some integer matrix equa-
tion Ay ◦

= 0 where y is a vector that contains all variables in fv(φ) exactly once. Let E be a
matrix of elementary modes of A from Theorem 2. This theorem states that Ay ◦

= 0 and
thus φ is R+-equivalent to ∃x.Ex ◦= y for some vector of fresh variables x. So let emr(φ) be
∃x.φ′ and φ′ be Ex ◦= y. Since all entries of E are positive, the variables in y are pairwise
distinct, and the variables in x are chosen freshly, it follows that φ′ is both quasi-positive
and strongly-triangular.

We have implemented the elementary mode rewriting in Python based on the cddlib
tool, and plan to make our tool publically available soon. An example input is the system
of linear Σbool-equations φ0 given in Figure 4. The corresponding integer matrix equation
system is given there too. The elementary modes of the matrix of this system are the vectors
(1, 0, 1, 1) and (1, 1, 0, 0). When putting these vectors in the columns of a new matrix, our
tool returns the elementary mode rewriting emr(φ0) in Figure 5.

Figure 4. A linear equation system and the corresponding integer matrix equation.

Figure 5. The elementary mode rewriting and the corresponding matrix equation.

6. hB-Exact Rewriting of Linear Equation Systems

Our next objective is to study the preservation of h-exactness by logical operators.
The main difficulty of this paper is the fact that h-exactness is not preserved by conjunc-
tion. Nevertheless, as we will show next, it is preserved by disjunction and existential
quantification.

To do so we first show that h-exactness is preserved when adding variables. For
this, we have to assume that the Σ-abstraction h is sujective, which will be the case of all
Σ-abstractions of interest.

Lemma 6 (Variable extension preserves exactness). Let h : S→ ∆ be a Σ-abstraction that is
surjective and φ ∈ FΣ(V) a formula. Then the h-exactness of φ implies the h-exactness of φ with
respect to V.

Computation 2021, 9, 113 15 of 32

Proof. This follows from that abstractions of solutions of φ can be extended arbitrarily to
variables that do not appear freely in φ as stated by the following claim.

Claim 1. For all σ : V → ∆: σ ∈ h ◦ solS(φ) iff σ|fv(φ) ∈ h ◦ solS(φ).

For the one direction let σ ∈ h ◦ solS
V(φ). Then, there exists σ ∈ solS

V(φ) such that
σ = h ◦ σ. Since V ⊇ fv(φ) it follows that σ|fv(φ) ∈ solS(φ). Furthermore σ|fv(φ) = h ◦ σ|fv(φ)
and thus σ|fv(φ) ∈ h ◦ solS(φ).

For the other direction let σ|fv(φ)) ∈ h ◦ solS(φ). Then, there exists σ ∈ solS(φ) such
that σ|fv(φ) = h ◦ σ. For any y ∈ V \ fv(φ) let sy ∈ dom(S) be such that h(sy) = σ(y). Such
values exists since h is surjective. Now define σ′ = σ[y/sy | y ∈ V \ fv(φ)]. Since V ⊇ fv(φ)
it follows that σ′ ∈ solS

V(φ). Furthermore, σ = h ◦ σ′, so σ ∈ h ◦ solS
V(φ).

For the case of disjunction, we need a basic property of unions (joins) which fails for
intersections (meets).

Lemma 7 (Abstraction αh preserves joins). Let V be a set of variables, R1 and R2 be subsets of
assignments of type V → dom(S) and h : S→ ∆ be a Σ-abstraction. Then:

h ◦ (R1 ∪ R2) = h ◦ R1 ∪ h ◦ R2

Proof. This lemma follows from the following equivalences:

τ ∈ h ◦ (R1 ∪ R2) ⇔ ∃σ.σ ∈ R1 ∪ R2 ∧ τ = h ◦ σ
⇔ ∃σ.(σ ∈ R1 ∨ σ ∈ R2) ∧ τ = h ◦ σ
⇔ ∃σ.(σ ∈ R1 ∧ τ = h ◦ σ) ∨ (σ ∈ R2 ∧ τ = h ◦ σ)
⇔ τ ∈ h ◦ R1 ∨ τ ∈ h ◦ R2
⇔ τ ∈ h ◦ R1 ∪ h ◦ R2

Proposition 1. The disjunction of h-exact formulas is h-exact.

Proof. Let φ1 and φ2 be negation free formulas that are h-exact. Let V = fv(φ1) ∪ fv(φ2).
Lemma 6 shows that φ1 and φ2 are also h-exact with respect to the extended variable set V,
i.e., for both i ∈ {1, 2}:

h ◦ solS
V(φi) = sol∆

V(φi)

The h-exactness of the disjunction φ1 ∨ φ2 can now be shown as follows:

h ◦ solS(φ1 ∨ φ2) = h ◦ (solS
V(φ1) ∪ solS

V(φ2))
= h ◦ solS

V(φ1) ∪ h ◦ solS
V(φ2) by Lemma 7

= sol∆
V(φ1) ∪ sol∆

V(φ2) by h-exactness of φ1 and φ2 wrt. V
= sol∆(φ1 ∨ φ2)

Lemma 8 (Projection commutes with abstraction). For any Σ-abstraction h : S→ ∆, subset R
of assignments of type V → S, and variable x ∈ V : h ◦ πx(R) = πx(h ◦ R).

Proof. For all σ : V → dom(S) we have h ◦ πx(σ) = h ◦ σ|V\{x} = (h ◦ σ)|V\{x} =
πx(h ◦ σ).

Proposition 2 (Quantification preserves exactness). For any surjective Σ-abstraction h : S→
∆ and formula ∃x.φ ∈ FΣ, if φ is h-exact then ∃x.φ is h-exact.

Computation 2021, 9, 113 16 of 32

Proof. Let φ be h-exact. By definition φ is h-exact with respect to V = fv(φ). Since h
is assumed to be surjective, Lemma 6 implies that φ is h-exact with respect to V ∪ {x}
(independently of whether x occurs freely in φ or not). Hence:

h(solS(∃x.φ)) = h(πx(solS(φ))) by Lemma 4
= πx(h(solS(φ))) by Lemma 8
= πx(sol∆(φ)) since φ is h-exact
= sol∆(∃x.φ) by Lemma 4

We next study the h-exactness for strongly-triangular systems of Σbool-equations,
under the condition that h is an abstraction between Σbool-algebras with unique division
(see Definition 12).

Lemma 9 (Singleton property). If S is a Σ-algebra, e ∈ EΣ(V), and σ : V → S a variable
assignment, then the set JeKσ,S is a singleton.

Proof. By induction on the structure of expressions e ∈ EΣ(V):
Case of constants c ∈ C. The set JcKσ,S = {cS} is a singleton.
Case of variables x ∈ V. The set JxKσ,S = {σ(x)} is a singleton.
Case f (e1, . . . , en) where ei ∈ EΣ(V) and f ∈ F(n).

J f (e1, . . . , en)Kσ,S = { f S(s1, . . . , sn) | si ∈ JeiKσ,S}

This set is a singleton since JeiKσ,S are singletons by induction hypothesis, meaning
that f S(Je1Kσ,S, . . . , JenKσ,S) is also a singleton since S is a Σ-algebra.

A Σ-algebra is a Σ-structure with the singleton property. Let ele be the function that
maps any singleton to the element that it contains.

Definition 12. We say that a Σbool-structure S has unique division if it satisfies the first-order
formula ∀x.∃=1y. ny ◦= x for all nonzero natural numbers n ∈ N.

Clearly, the Σbool-structures R+, B, and S have unique division. Note, however, that S
is not a Σbool-algebra, so that the following two Propositions 3 and 4 cannot be applied to S
instead of B.

For any element s of the domain of a Σbool-structure S with unique division and
any nonzero natural number n ∈ N, we denote by s

n the unique element of {σ(y) | σ ∈
solS(ny ◦= z), σ(z) = s}.

Lemma 10. Let φ ∈ FΣbool
be a formula and S a Σbool-algebra with unique division. For nonzero

natural number n, variable y 6∈ fv(φ), and expression e ∈ EΣ(fv(φ)):

solS(φ ∧ ny ◦= e) = {σ[y/
ele(JeKσ,S)

n
] | σ ∈ solS(φ)}

Proof. We fix some σ : fv(φ) → dom(S) arbitrarily. Since S is a Σbool-algebra, JeKσ,S is
a singleton and fv(e) ⊆ V(φ), ele(JeKσ,S) is defined uniquely. Furthermore S has unique

division, so that ele(JeKσ,S)
n is a well-defined element of dom(S). Therefore and since y 6∈ fv(φ),

σ[y/ ele(JeKσ,S)
n] is the unique solution of the equation ny ◦= e that extends on σ.

Firstly, we prove the inclusion “⊇”. Let σ ∈ solS(φ), y 6∈ fv(φ), and σ[y/ ele(JeKσ,S)
n] is a

solution of ny ◦= e, it follows that σ[y/ ele(JeKσ,S)
n] is a solution of φ ∧ ny ◦= e.

Computation 2021, 9, 113 17 of 32

Secondly, we prove the inverse inclusion “⊆”. Let σ ∈ solS(φ ∧ ny ◦
= e). Since

σ[y/ ele(JeKσ,S)
n] is the unique solution of the equation ny ◦= e that extends on σ′ = σ|fv(φ) it

follows that σ(y) = ele(JeKσ,S)
n so that σ = σ′[y/ ele(JeKσ,S)

n] while σ′ ∈ solS(φ).

Proposition 3. Let φ ∈ FΣbool
(V) a formula, n 6= 0 a natural number, e ∈ EΣbool (V) an

expression, y /∈ V, and h : S→ ∆ a Σbool-abstraction between Σbool-algebras with unique division.
Under these conditions, if φ is h-exact then φ ∧ e ◦= ny is h-exact.

Proof. Let e ∈ EΣbool (V) an expression.

Claim 2. For any σ : V → R+: h(ele(JeKσ,S)) = ele(JeKh◦σ,∆).

This can be seen as follows. For any σ : V → S Theorem 1 on homomorphism yields
h(JeKσ,S) ⊆ JeKh◦σ,∆. Since S and ∆ are both Σ-algebras, the sets JeKσ,S and JeKh◦σ,∆ are both
singletons by Lemma 9, so that h(ele(JeKσ,S)) = ele(JeKh◦σ,∆).

Claim 3. For any s ∈ dom(S) and n 6= 0 a natural number: h(s
n) =

h(s)
n .

Since S is assumed to have unique division s′ = s
n is well-defined as the unique

element of dom(S) such that s′ +S . . . +S s′︸ ︷︷ ︸
n

= s. Hence, h(s′ +S . . . +S s′︸ ︷︷ ︸
n

) = h(s) and since

h is a homomorphism, it follows that h(s′) +∆ . . . +∆ h(s′)︸ ︷︷ ︸
n

= h(s). Since ∆ is assumed to

have unique division, this implies that h(s′) = h(s)
n .

The Proposition can now be shown based on these two claims. Let φ be h-exact, y 6∈ V,
and fv(e) ⊆ V. We have to show that φ ∧ ny ◦= e is h-exact too:

h ◦ solS(φ ∧ e ◦= ny) = h ◦ {σ[y/ ele(JeKσ,S)
n] | σ ∈ solS(φ)} by Lemma 10

= {(h ◦ σ)[y/h(ele(JeKσ,S)
n)] | σ ∈ solS(φ)} elementary

= {σ[y/h(ele(JeKσ,S)
n)] | σ ∈ sol∆(φ)} h-exactness of φ

= {σ[y/ h(ele(JeKσ,S))
n] | σ ∈ sol∆(φ)} by Claim 3

= {σ[y/ ele(JeKh◦σ,∆)
n] | σ ∈ sol∆(φ)} by Claim 2

= sol∆(φ ∧ e ◦= ny) by Lemma 10

Proposition 4. Let h : S→ ∆ be a Σbool-abstraction between algebras with unique division. Then
any strongly-triangular system of Σbool-equations is h-exact.

Proof. Any strongly-triangular system of equations has the form
∧n

i=1 ei
◦
= niyi where n

and ni 6= 0 are naturals and yi is i-fresh for all 1 ≤ i ≤ n. The proof is by induction on n.
In the case n = 0, the conjunction is equal to true which is h-exact since h(solS(true)) =
sol∆(true). In the case n > 0, we have by induction hypothesis that

∧i−1
j=1 ej

◦
= njyj is h-exact.

Since ni 6= 0 it follows from Proposition 3 that that ei
◦
= niyi ∧

∧i−1
j=1 ej

◦
= njyj is h-exact.

We notice that Proposition 4 remains true for triangular systems that are not strongly-
triangular. This follows from results that we can only present in the next section (Theorem 4
and Proposition 5), since they require an additional argument.

Theorem 3 (hB-Exactness). Quasi-positive strongly-triangular polynomial systems are hB-exact.

Computation 2021, 9, 113 18 of 32

Proof. The Σbool-algebras R+ and B have unique division, so we can apply Proposition 4
for proving the theorem.

We note that the analogous statement for S instead of B fails, even though S has unique
division. The problem is that S is not a Σbool-algebra. As a counter-example, reconsider the
strongly-triangular system of quasi-positive system equations:

u + v ◦= x ∧ u + v ◦= y

This system implies x ◦= y over R but accept the abstract solution [u/1, v/−1, x/1, y/−1]
mapping x and y to distinct signs, so it is not hS-exact. Nevertheless, it is hB-exact by
Theorem 3.

Corollary 2 (hB-exact rewriting of linear equation systems). For any linear Σbool-equations φ
the elementary mode rewriting emr(φ) ∈ FΣbool

is R+-equivalent, hB-exact, and can be computed
in at most exponential time from φ.

Proof. The elementary modes rewriting Corollary 1 shows that any linear Σbool-equation
system φ is R+-equivalent a formula emr(φ) of the form ∃z.φ′ such that φ′ is a quasi-positive
strongly-triangular linear equation system. Theorem 3 shows that any quasi-positive
strongly-triangular linear equation system is hB-exact, so is φ′. Existential quantification
preserves hB-exactness by Proposition 2, so emr(φ) is hB-exact too.

This hB-exact rewriting permits us to compute the boolean abstraction of any system of
linear Σbool-equations by computing the B-solutions of the R+-equivalent hB-exact formula.
The latter can be done by finite domain constraint programming.

Our objective to find an algorithm for computing the sign abstraction of a system of
linear Σbool-equations remains open. We finally approach it in Section 9. While the idea is
to use the hB-exact rewriting algorithm, we first need to generalize it from linear systems
to mixed systems. This is done in Section 8. The generalization relies on the notion of
hB-invariance, which we discuss next in Section 7.

7. Invariance

A problem that we need to overcome is that conjunctions of two h-exact formulas may
not be h-exact. The situation changes when assuming the following notion of h-invariance
for at least one of the two formulas.

Definition 13 (Invariance). Let h : S→ ∆ be a Σ-abstraction and V ⊆ V a subset of variables.
We call a subset R of variable assignments of type V → dom(S) h-invariant iff:

∀σ, σ′ : V → dom(S). (σ ∈ R ∧ h ◦ σ = h ◦ σ′ =⇒ σ′ ∈ R).

We call a Σ-formula φ h-invariant if its solution set solS(φ) is.

The relevance of the notion of invariance for exactness of conjunctions—that we will
formalize in Proposition 5—is due to the the following lemma:

Lemma 11. If either R1 or R2 are h-invariant then: h ◦ (R1 ∩ R2) = h ◦ R1 ∩ h ◦ R2.

Proof. The one inclusion is straightforward without invariance:

h ◦ (R1 ∩ R2) = {h ◦ σ | σ ∈ R1, σ ∈ R2}
⊆ {h ◦ σ | σ ∈ R1} ∩ {h ◦ σ | σ ∈ R2}
= h ◦ R1 ∩ h ◦ R2

Computation 2021, 9, 113 19 of 32

For the other inclusion, we can assume without loss of generality that R1 is h-invariant.
So let τ ∈ h ◦ R1 ∩ h ◦ R2. Then, there exist σ1 ∈ R1 and σ2 ∈ R2 such that τ = h ◦
σ1 = h ◦ σ2. By h-invariance of R1 it follows that σ1 ∈ R2. So σ1 ∈ R1 ∩ R2, and hence,
τ ∈ h ◦ (R1 ∩ R2).

We can now present the algebraic characterization of h-invariance based on the con-
cretization function γh of the Galois connection of h. Recall that R ⊆ h ◦−(h ◦ R) for
all subsets of concrete variable assignments R. The inverse inclusion characterizes the
h-invariance of R.

Lemma 12 (Algebraic characterization). Let h : S → ∆ be a Σ-abstraction. A subset R of
concrete variable assignment V → dom(S) is h-invariant for h iff h ◦−(h ◦ R) ⊆ R.

Proof. “⇒”. Let R be h-invariant and σ ∈ h ◦−(h ◦ R). Then, there exists σ′ ∈ R such that
h ◦ σ = h ◦ σ′. The h-invariance of R thus implies that σ ∈ R.
“⇐”. Suppose that h ◦−(h ◦ R) ⊆ R. Let σ, σ′ : V → dom(S) such that h ◦ σ = h ◦ σ′ and
σ ∈ R. We have to show that σ′ ∈ R. From h ◦ σ = h ◦ σ′ and σ ∈ R it follows that
σ′ ∈ h ◦−(h ◦ R) and thus σ′ ∈ R as required.

Lemma 13 (Variable extension preserves invariance). Let h be a surjective abstraction and R
a subset of functions of type V′ → dom(S) and V a subset of variables disjoint from V′. If R is
h-invariant then extS

V(R) is h-invariant too.

Proof. This follows straightforwardly from the characterization of h-invariance in Lemma 12
and the following two claims:

Claim 4. If h is surjective then h ◦ extS
V(R) = ext∆

V(h ◦ R).

This follows from h ◦ extS
V(R) = {h ◦ σ | σ ∈ extS

V(R)} = ext∆
V({h ◦ σ′ | σ′ ∈ R})

where we use the surjectivity of h in the last step.

Claim 5. h ◦−ext∆
V(R′) = extS

V(h ◦−R′) for any subset R′ of functions of type V′ → dom(∆).

h ◦−ext∆
V(R′) = {σ : V ∪V′ → dom(S) | h ◦ σ ∈ ext∆

V(R′)}
= {σ : V ∪V′ → dom(S) | h ◦ σ|V′ ∈ R′}
= extS

V({σ′ : V′ → dom(S) | h ◦ σ′ ∈ R′}
= extS

V(h ◦−R′)

Lemma 14. Let h : S→ ∆ be a surjective Σ-abstraction, φ be a Σ-formula, and V ⊇ fv(φ). Then,
the h-invariance of φ implies the h-invariance of solS

V(φ).

Proof. This follows from the cylindrification Lemma 3 and that extension preserves h-
invariance as shown in Lemma 13.

Proposition 5 (Exactness is preserved by conjunction when assuming invariance). Let h be
a surjective Σ-abstraction. If φ1 and φ2 are h-exact Σ-formulas and φ1 or φ2 are h-invariant then
the conjunction φ1 ∧ φ2 is h-exact.

Computation 2021, 9, 113 20 of 32

Proof. Let φ1 and φ2 be h-exact Σ-formulas. We assume without loss of generality that φ1
is h-invariant. Let V = fv(φ1 ∧ φ2). Since fv(φ2) ⊆ V the set solS

V(φ2) is h-invariant too by
Lemma 14. We can now show that φ1 ∧ φ2 is h-exact as follows:

h ◦ solS(φ1 ∧ φ2) = h ◦ (solS
V(φ1) ∩ solS

V(φ2))
= h ◦ solS

V(φ1) ∩ h ◦ solS
V(φ2) by Lemma 11

= sol∆
V(φ1) ∩ sol∆

V(φ2) by h-exactness of φ1 and φ2 wrt V
= sol∆(φ1 ∧ φ2)

Our next objective is to show that h-invariant formulas are closed under conjunction,
disjunction, and existential quantification. The two former closure properties rely on the
following two algebraic properties of abstraction decomposition.

Lemma 15 (Concretization γh preserves join and meet). For any Σ-abstraction h : S → ∆,
any subsets of assignments of type V → dom(S) R1 and R2 and V a subset of variables:

• h ◦−(R1 ∩ R2) = h ◦−R1 ∩ h ◦−R2.
• h ◦−(R1 ∪ R2) = h ◦−R1 ∪ h ◦−R2.

For general Galois connections, concretization is well-known to preserve joins but
may not preserve meets. Still, meets are preserved for any Galois connections where the
the concrete and abstract domains C and A are powersets as in our setting, so that joins are
unions and meets intersections.

Proof. The case of unions follows straightforwardly from the definitions:

h ◦−(R1 ∪ R2) = {σ | h ◦ σ ∈ R1 ∪ R2}
= {σ | h ◦ σ ∈ R1 ∨ h ◦ σ ∈ R2}
= {σ | h ◦ σ ∈ R1} ∪ {σ | h ◦ σ ∈ R2}
= h ◦−R1 ∪ h ◦−R2

The case of intersection is symmetric:

h ◦−(R1 ∩ R2) = {σ | h ◦ σ ∈ R1 ∩ R2}
= {σ | h ◦ σ ∈ R1 ∧ h ◦ σ ∈ R2}
= {σ | h ◦ σ ∈ R1} ∩ {σ | h ◦ σ ∈ R2}
= h ◦−R1 ∩ h ◦−R2

Lemma 16 (Intersection and union preserve invariance). Let h : S → ∆ be a Σ-abstraction.
Then, the intersection and union of any two h-invariant subsets R1 and R2 of variables assignments
of type V → dom(S) is h-invariant.

Proof. This follows from the algebraic characterization Lemma 12 for invariance, in
combination with the algebraic properties of composition and decomposition given in
Lemmas 7, 11, and 15.

Lemma 17 (Concretization γh commutes with projection). h ◦−πx(R) = πx(h ◦−R).

Proof. For all σ : V → dom(∆) we have h ◦−πx(σ) = h ◦−σ|V\{x} = (h ◦−σ)|V\{x} =
πx(h ◦−σ).

Computation 2021, 9, 113 21 of 32

Proposition 6 (Invariance is preserved by conjunction, disjunction, and quantification). If
h is a surjective abstraction, then the class of h-invariant FO-formulas is closed under conjunction,
disjunction, and existential quantification.

Proof. Let h : S→ ∆ be a Σ-abstraction.
Case of conjunction: Let φ1 and φ2 be h-invariant and V = fv(φ1 ∧ φ2). By Lemma 14 the
sets solS

V(φ1) and solS
V(φ2) are both h-invariant, and so by Lemma 16 is their intersection.

Hence:

h ◦−(h ◦ solS(φ1 ∧ φ2))
= h ◦−(h ◦ (solS

V(φ1) ∩ solS
V(φ2)))

⊆ solS
V(φ1) ∩ solS

V(φ2) by h-invariance and Lemma 12
= solS(φ1 ∧ φ2)

By Lemma 12 in the other direction, this implies that φ1 ∧ φ2 is h-invariant.
Case of disjunction: Analogous to the case of conjunction.
Case of existential quantification:

h ◦−(h ◦ solS(∃x.φ1))
= h ◦−(h ◦ πx(solS(φ1))) by Lemma 4
= h ◦−(πx(h ◦ solS(φ1))) by Lemma 8
= πx(h ◦−(h ◦ solS(φ1))) by Lemma 17
⊆ πx(solS(φ1)) by h-invariance of φ1 and Lemma 12
= solS(∃x.φ1) by Lemma 4

By Lemma 12, this implies that ∃x.φ1 is h-invariant.

We do not know whether negation preserves h-invariance in general, but for finite ∆
it can be shown that if φ is h-exact and h-invariant, then ¬φ is h-exact and h-invariant too.

Proposition 7. Let h be a surjective Σ-abstraction. Then, the class of h-exact and h-invariant
Σ-formulas is closed under conjunction, disjunction, and existential quantification.

Proof. Closure under conjunction follows from Propositions 5 and 6, closure under
disjunction from Propositions 1 and 6, and closure under existential quantification by
Propositions 2 and 6.

Theorem 4 (hB-invariance and hB-exactness of polynomial equations). Any positive polyno-
mial equation p ◦= 0 such that p has no constant term is hB-exact and hB-invariant.

Proof. Consider a positive polynomial equation p ◦= 0 such that p has no constant term

and only positive coefficients. Thus, p has the form ∑l
j=1 nj ∏

ij
k=1 x

mj,k
j,k

◦
= 0 where l ≥ 0,

and nj, ij, mj,k > 0.

Claim 6. For both algebras S ∈ {B,R+}: solS(p ◦= 0) = solS(
∧l

j=1
∨ij

k=1 xj,k
◦
= 0).

The polynomial has a value of zero if and only if all its monomials do, that is:

∏
ij
k=1 x

mjk
j,k = 0 for all 1 ≤ j ≤ l. Since constant terms are ruled out, we have ij 6= 0.

Furthermore, we assumed for all polynomials that mj,k 6= 0. So for all 1 ≤ j ≤ l there must
exist 1 ≤ k ≤ ij such that xj,k = 0.

Claim 7. The equation x ◦= 0 is hB-exact and hB-invariant.

Computation 2021, 9, 113 22 of 32

This proof of this claim is straightforward from the definitions.

With these two claims, we are now in the position to prove the Theorem 4. Since the
class of hB-exact and hB-invariant formulas is closed under conjunction and disjunction

by Proposition 7, it follows from by Claim 7 that ∧l
j=1 ∨

ij
k=1 xj,k

◦
= 0 is both hB-exact and

hB-invariant. Since this formula is equivalent over R+ to the polynomial equation by
Claim 6, the hB-invariance carries over to p ◦= 0. The hB-exactness also carries over based
on the equivalence for both structures R+ and B:

hB ◦ solR+(p ◦= 0) = hB ◦ solR+
V (∧l

j=1 ∨
ij
k=1 xj,k

◦
= 0) by Claim 6 for R+

= solB(∧l
j=1 ∨

ij
k=1 xj,k

◦
= 0) by hB exactness

= solB(p ◦= 0) by Claim 6 for B.

8. hB-Exact Rewriting of hB-Mixed Systems

In this section, we lift our main result to hB-mixed system, presenting a rewrite
algorithm that makes any hB-mixed system hB-exact.

Definition 14. A hB-mixed system is a formula in FΣbool
of the form ∃z. φ ∧ φ′ where φ is a

system of linear Σbool-equations and φ′ a hB-invariant and hB-exact first-order formula.

Note that linear equation systems Ay ◦
= 0, with A an integer matrix and y a sequence

of pairwise distinct variables, need not to be hB-exact, if A is not positive. However,
as shown by the elementary mode rewriting Corollary 1 any linear equation systems is
R+-equivalent to some quasipositive strongly-triangular linear system, that is hB-exact by
Theorem 3.

Our next objective is to rewrite formulas to reduce the overapproximation coming with
the abstract interpretation over the Booleans by John’s theorem. The idea is to make a linear
equation system hB-exact that are used as subformulas as for instance of hB-mixed systems.

We recall from Corollary 1 that the elementary mode rewriting emr(φ) of a linear
equation system is an hB-exact formula that is R+-equivalent to φ. We now introduce the
boolean rewriting by lifting the elementary mode rewriting to a richer class of formulas.
Given a vector z ∈ V∗, a linear equation system φ ∈ FΣbool

, and a formula φ′ ∈ FΣbool
, the

boolean rewriting is defined by:

br(∃z. (φ ∧ φ′)) =def ∃z. (emr(φ) ∧ φ′)

The boolean rewriting may indeed reduce the overapproximation coming with abstract
interpretation of formulas over the booleans, as show by the following proposition.

Proposition 8. hB ◦ solR+(ψ) ⊆ solB(br(ψ)) ⊆ solB(ψ).

Proof. Let φ be a linear equation system, z ∈ V∗, φ′ ∈ FΣbool
and ψ =def ∃z.φ ∧ φ′.

Since φ is R+-equivalent to emr(φ), it follows that br(ψ) is R+-equivalent to ψ. Hence,
solR+(ψ) = solR+(br(ψ)) so that:

hB ◦ solR+(ψ) = hB ◦ solR+(br(ψ))

By John’s theorem, we have:

hB ◦ solR+(br(ψ)) ⊆ solB(br(ψ))

Computation 2021, 9, 113 23 of 32

Furthermore, by hB-exactness, R+-equivalence, and again John’s theorem, we have:

solB(emr(φ)) = hB ◦ solR+(emr(φ)) = hB ◦ solR+(φ) ⊆ solB(φ)

Therefore, it follows that:

solB(br(ψ)) ⊆ solB(ψ)

In combination this yields the inclusions of the proposition.

Theorem 5 (Main). For any hB-mixed system ψ ∈ FΣ the boolean rewriting br(ψ) is hB-exact,
R+-equivalent to ψ, and can be computed in at most exponential time.

Proof. Let ψ be a hB-mixed system ∃x. (φ ∧ φ′). where φ is a linear equation system and
φ′ a first-order formula that is hB-exact and hB-invariant. Based on the elementary modes
rewriting Corollary 1, the linear equation system φ can be transformed in at most expo-
nential time to the form emr(ψ) = ∃z.φ′′ where φ′′ is a quasipositive strongly-triangular
system of linear equations. Such polynomial equation systems are hB-exact by Theorem 3,
and so is φ′′. The Invariance Proposition 5 shows that the conjunction φ′′ ∧ φ′ is hB-exact
too, since φ′ was assumed to be hB-exact and hB-invariant. The hB-exactness is preserved
by existential quantification by Proposition 2, so the formula br(ψ) = ∃x. emr(φ) ∧ φ′ is
hB-exact too.

Corollary 3. The hB-abstraction of the R+-solution set of a hB-mixed system φ, that is hB ◦
solR+(φ), can be computed in at most exponential time in the size of the system φ.

Proof. Given a hB-mixed system φ, we can apply Theorem 5 to compute in at most expo-
nential time a R+-equivalent formula φ′′ that is hB-exact. It is then sufficient to compute
solB(φ′′) in exponential time in the size of φ. This can be done in the naive manner, that is
by evaluating the formula φ′′—which may be of exponential size—over all possible boolean
variable assignments, of which there may be exponentially many. For each assignment, the
evaluation can be done in PSPACE, and thus in exponential time. The overall time required
is thus a product of two exponentials, which remains exponential.

The algorithm from the proof Corollary 3 can be improved so that it becomes suf-
ficiently efficient for practical use. For this the two steps with exponential worst case
complexity must be made polynomial for the particular instances. Firstly, note that the
computation of the elementary modes (Corollary 1) is known to be computationally feasible.
Various algorithms for this purpose were implemented [16,24–26] and applied successfully
to problems in systems biology [14]. The second exponential step concerns the enumeration
of all boolean variable assignments. This enumeration may be avoided by using constraint
programming techniques for computing the solution set solB(φ′′). For those hB-mixed
systems for which both steps can be done in polynomial time, we can compute the boolean
abstraction of the R+-solution set in polynomial time too. The practical feasibility of this
approach was demonstrated recently at an application to knockout prediction in systems
biology [6], where previously only over-approximations could be computed.

9. Computing Sign Abstractions

We next show how to compute the sign abstraction hS ◦ solR(φ) for systems φ of linear
Σbool-equations. To apply hB-exact rewriting, we decompose the sign abstraction into the
boolean abstraction and functions definable in first-order logic.

Computation 2021, 9, 113 24 of 32

9.1. Decomposition

We can decompose any real number r ∈ R into a pair of two positive numbers
dec(r) ∈ R2

+—negative and the positive part—as follows:

dec(r) =def

{
(0, r) if r ≥ 0
(−r, 0) if r ≤ 0

The image of this surjective function is {0} ×R+) ∪ (R+ × {0}, so it has an inverse
dec−1 : ({0} ×R+) ∪ (R+ × {0})→ R, which satisfies for all pairs (r1, r2) in the domain:

dec−1(r1, r2) = r2 −R r1

Furthermore, recall that h2
B : R2

+ → B2 satisfies h2
B(r1, r2) = (hB(r1), hB(r2)).

Lemma 18 (Decomposition). hS = dec−1 ◦ h2
B ◦ dec

Proof. If r is negative then dec−1(h2
B(dec(r))) = dec−1(h2

B((−r, 0))) = dec−1((hB(−r), 0))
= −hB(−r) = hS(r). Otherwise if r is positive then dec−1(h2

B(dec(r))) = dec−1(h2
B((0, r)))

= dec−1((0, hB(r)) = hB(r) = hS(r).

9.2. Positivity

We show in a first step that first-order formulas over the reals can be rewritten, such
that interpretation over the positive reals is enough.

We call a formula φ ∈ FΣbool
flat if all equations contained in φ have the form x ◦

=

x1 + x2, x ◦
= x1 ∗ x2, x ◦

= 0, or x ◦
= 1 for some variables x, x1, x2. Note that any formula

φ ∈ FΣbool
can be converted to an equivalent flat formula in linear time by introducing fresh

existentially quantified variables, so that we can assume flatness without loss of generality.
We fix two generators of fresh variable ν	, ν⊕ : V → V . For any x ∈ V , the intention

is that ν⊕(x) stands for the positive part of x and ν	(x) for its negative part. We will
preserve the invariants x = ν⊕(x)− ν	(x) and ν⊕(x) ∗ ν	(x) = 0. Furthermore, we define
ν : V → V2 such that for all x ∈ V :

ν(x) =def (ν	(x), ν⊕(x))

For any flat formula φ ∈ FΣ(V) we define a formula decν(φ) ∈ FΣ(ν	(V) ∪ ν⊕(V))
with the variables ν	(x) and ν⊕(x) instead of x for all x ∈ V. Otherwise the formula
d̃ecν(φ) has the same meaning as over the reals than φ.

d̃ecν(φ) = decν(φ) ∧
∧

x∈V
ν⊕(x) ∗ ν	(x) ◦= 0

where

decν(x ◦= x1 + x2) = decν(x ◦= x1 ∗ x2) =

ν⊕(x) + ν	(x1) + ν	(x2)
◦
= ν⊕(x) + ν⊕(x1) ∗ ν	(x2) + ν	(x1) ∗ ν⊕(x2)

◦
=

ν	(x) + ν⊕(x1) + ν⊕(x2) ν	(x) + ν⊕(x1) ∗ ν⊕(x2) + ν	(x1) ∗ ν	(x2)

decν(x ◦= 0) = ν⊕(x) ◦= ν	(x) decν(x ◦= 1) = ν⊕(x) ◦= ν	(x) + 1
decν(∃x.φ) = ∃ν	(x).∃ν⊕(x). decν(φ ∧ φ′) = decν(φ) ∧ decν(φ′)

ν⊕(x) ∗ ν	(x) ◦= 0∧ decν(φ) decν(¬φ) = ¬decν(φ)

Note that the definition in the case of addition, the definition relies on that subtraction
−R in the structure of reals is the inverse of addition +R. The expressions that are to be
subtracted on one side of the equation are added to the other side instead. This is also used
in the case of multiplication, in combination with the distributivity law for addition +R

Computation 2021, 9, 113 25 of 32

and multiplication ∗R. Furthermore, d̃ecν(φ) belongs to FΣbool
(ν	(V) ∪ ν	(V)) and can be

computed in linear time from φ.

Proposition 9 (Positivity). For any flat formula φ ∈ FΣbool
(V):

dec ◦ solRV(φ) = {σ2 ◦ ν|V | σ ∈ solR+(d̃ecν(φ))}

Proof. By induction on the structure of φ. In the first case of reals, can use that −R is the
inverse of +R and that the distributivity laws holds for +R and ∗R.

Lemma 19. For any flat linear equation system φ, the formula d̃ecν(φ) is a hB-mixed system.

Proof. If φ is a flat linear system, then decν(φ) is a linear system, so that d̃ecν(φ) is a
hB-mixed system.

9.3. Computing Sign Abstractions

We now have developed all the prerequisite for computing the sign abstraction of
linear equation systems by using hB-exact boolean rewriting of hB-mixed systems.

Theorem 6. For any linear equation system φ ∈ FΣbool
(V), the formula br(d̃ecν(φ)) can be

computed in at most exponential time and satisfies:

hS ◦ solRV(φ) = {[y/τ(ν⊕(y))−R τ(ν	(y)) | y ∈ V] | τ ∈ solB(br(d̃ecν(φ)))}

Proof. Let φ ∈ FΣbool
(V) be a system of linear equations. Without loss of generality, we

can assume that φ is flat. Let: φ̃ =def d̃ecν(φ). The formula φ̃ is a hB-mixed system by
Lemma 19 with fv(φ̃) = ν	(V) ∪ ν⊕(V) so that we can apply the Main Theorem 5 to it. It
shows that boolean rewriting br(φ̃) is an R+-equivalent formula in FΣ(ν⊕(V) ∪ ν	(V))
that is hB-exact and can be computed in at most exponential time. We can now conclude
as follows:

hS ◦ solRV(φ)
= dec−1 ◦ h2

B ◦ dec ◦ solRV(φ) Decomposition Lemma 18
= dec−1 ◦ h2

B ◦ {σ2 ◦ ν|V | σ ∈ solR+(φ̃)} Positivity Proposition 9
= dec−1 ◦ h2

B ◦ {σ2 ◦ ν|V | σ ∈ solR+(br(φ̃)} R+-equivalence of φ̃ and br(φ̃)
= {dec−1 ◦ τ2 ◦ ν|V | τ ∈ solB(br(φ̃))} hB-exactness of br(φ̃)
= {[y/τ(ν⊕(y))−R τ(ν	(y)) | y ∈ V] definition of dec−1

| τ ∈ solB(br(φ̃))}

The sign abstraction of a system φ of Σbool-equations with free variables in V = fv(φ)
can thus be computed by first computing the hB-exact formula br(φ̃) ∈ FΣ(ν⊕(V)∪ ν	(V))
from Theorem 6 by applying the Positivity Proposition 9 and the Main Theorem 5, then
computing solB(br(φ̃)) by finite domain constraint programming, and finally inferring
hS ◦ solR(φ) thereof based on the equation of Theorem 6.

Corollary 4. The sign abstraction hS ◦ solRV(φ) can be computed in at most single exponential
time in the size of φ.

Proof. The formula br(φ̃) is of exponential size but contains only twice as many variables
than φ. Let n = |fv(φ)|. We can then compute hS ◦ solRV(φ) by testing 62n variable assign-
ments for membership to solR(br(φ̃)). Each such test is linear in the size of br(φ̃), and thus

Computation 2021, 9, 113 26 of 32

in O(2m) where m is the size of φ. So the overall time is in O(62n2m) and since n ≤ m in
O(63m).

We finally show that the same algorithm as for computing the sign abstraction for
linear equation systems can be lifted to a richer class of formulas to obtain another and
possibly more precise overapproximation of the sign abstraction than John’s.

Proposition 10. Let ψ = ∃z. φ ∧ φ′ in FΣbool
(V) for some linear equation system φ and formula

φ′ ∈ FΣbool
. The formula br(d̃ecν(ψ)) then yields an overapproximation of the sign abstraction

of φ:

hS ◦ solRV(ψ) ⊆ {[y/τ(ν⊕(y))−R τ(ν	(y)) | y ∈ V] | τ ∈ solB(br(d̃ecν(ψ)))}

Proof. Along the lines of the proof of Theorem except that br(d̃ecν(ψ)) is not hB-exact. There-
fore, the equality where the hB-exactness was used must be weakened to an inclusion.

10. Application to Program Analysis

We illustrate our results by applying the sign abstraction for program analysis based on
abstract interpretation. We consider the Python implementation in Figure 6 of the function
I : R2 → R. A call I(a, s) supposedly computes the approximation of the integral

∫ a
0 f(x)dx

with step width s for some total function f : R→ R. Abstract interpretation allows us to
find out the conditions that must hold on the input parameters for I((a : f loat, s : f loat) to
work properly, and in particular to avoid exception throwing.

Figure 6. Python function approximating the integral
∫ a

0 f(x)dx for a given function f : R→ R.

We can first interpret numeric programs abstractly as a formula of first-order logic
with signature Σarith. We illustrate this in an ad hoc manner on the integral example I:

φI =def

∃retf∃retI∃result.
(a < 0 ⇐⇒ raise_exception ◦

= 1) ∧
((s > a∧ do_recursion ◦

= 0∧ result ◦= 0) ∨
(¬(s > a) ∧ do_recursion ◦

= 1 ∧ arec
◦
= a− s ∧ srec

◦
= s∧

result ◦= s · retf + retI))

The variables a and s are the formal parameters in the definition of I(a : f loat, s : f loat).
The others are fresh variables introduced to handle exceptions or function calls: the boolean
flag raise_exception represents exception throwing, the boolean flag do_recursion has a true
value only when a recursive call is made to I with actual parameters represented by the
variables arec, srec and return value represented by retI, while retf is the variable for the
return value of the call to the function f. The final return value of I is represented by the
variable result. In what follows, we are not interested in the signs of the last three variables,
so we quantify them existentially.

The sign behavior of function I is given by the formula’s sign abstraction hS ◦ solR(φI).
Given that φI is not hB-mixed system, we cannot apply the algorithm from Theorem 6
directly to compute this sign abstraction. Nevertheless, it will be beneficial as we will
illustrate below.

Computation 2021, 9, 113 27 of 32

By John’s theorem, the sign abstraction hS ◦ solR(φI) can be overapproximated by the
abstract interpretation solS(φI). Since S is a finite structure, this abstract interpretation
can be computed by finite domain constraint programming. For this, we implemented a
solver for first-order formulas over the structure S with Minizinc [17]. When applied to
φI it returns the set of abstract solutions solS(φI) given in Table 1. This set contains the 6
unjustified abstract solutions 2, 4, 10, 13, 15, 18 outside hS ◦ solR(φI). In the table they are
distinguished by gray background color. We also note that the last three solutions 17, 18, 19
could be ruled out when using a more precise abstract program interpretation, taking into
account that no recursive call is possible when an exception is thrown.

Table 1. Set of abstract solutions in solS(φI). Six solutions with gray background color are unjustified
since outside hS ◦ solR(φI).

raise_exception do_recursion a s arec srec

1. 0 0 0 1 −1 1
2. 0 0 1 1 0 1
3. 0 0 1 1 −1 1
4. 0 0 1 1 1 1
5. 0 1 0 0 0 0
6. 0 1 1 0 1 0
7. 0 1 0 −1 1 −1
8. 0 1 1 1 0 1
9. 0 1 1 −1 1 −1

10. 0 1 1 1 −1 1
11. 0 1 1 1 1 1
12. 1 0 −1 0 −1 0
13. 1 0 −1 −1 0 −1
14. 1 0 −1 −1 −1 −1
15. 1 0 −1 −1 1 −1
16. 1 0 −1 1 −1 1
17. 1 1 −1 −1 0 −1
18. 1 1 −1 −1 −1 −1
19. 1 1 −1 −1 1 −1

The sets of abstract solutions provide information on possible sign of values of the
parameters in a call I(a : f loat, s : f loat). For example, solution 1 in Table 1 states that
when called with values of signs [a/0, s/1] the function I will not raise an exceptions nor
make a recursive call. Solution 8 states that when called with values of signs [a/1, s/1]
function I may go into recursion with signs [arec/0, srec/1] without raising an exception.

Any set of abstract solutions defines an abstract call graph. The abstract call graphs
of solS(φI) and hS ◦ solR(φI) from Table 1 are given in Figure 7. Solution 1 in Table 1
implies a solid edge from the node IS(1, 1) to the node IS(0, 1). The edge is solid since
solution 1 is justified. Edges induced by unjustified solutions are dashed. The unjustified
solution 10 for instance induces the dashed edge from IS(1, 1) to IS(1,−1). Solutions
with do_recursion = 0 and raise_exception = 0 do not induce any edge. Instead, they show
that the computation may stop, producing final nodes that are surrounded by a double
circle. The final nodes are IS(1, 1) and IS(0, 1). Note that for all nonfinal nodes, either an
exception is raised or the computation loops endlessly. Solutions with raise_exception = 1
induce an edge to the EXCEPT node.

Computation 2021, 9, 113 28 of 32

Figure 7. Sign call graph of function I in Figure 6 created from the sets of abstract solutions in Table 1.
Solid lines correspond to abstract solutions in hS ◦ solR(φI), while dashed lines correspond to
unjustified abstract solutions in solS(φI). For example, IS(1,−1) represents assignment [a/1, s/− 1],
that is signs of a and s in calls I(a : f loat, s : f loat) where a > 0 and s < 0. Light blue edges may
be removed by improving φI so that solutions 17, 18, 19 become impossible. Computation may
terminate without raising an exception in nodes surrounded by a double circle.

Given that only 2 unjustified solutions with do_recursion = 0 and raise_exception = 0
(10 and 18), there are only 2 dashed edges in the graph. Furthermore, the edges induced by
the last three solutions 17, 18, 19 are drawn in blue, since these could be removed with a
more precise abstract program interpretation than φI.

The sign analysis without the unjustified dashed edges yields the following result: the
program in state IS(1, 1), where a > 0 and s > 0 may either terminate, loop indefinitely, or
go to state IS(0, 1) and terminate there immediately. With the unjustified dashed edges,
however, it wrongly seems possible that the program may also raise an exception by
passing through IS(−1, 1). This overapproximation would be particularly unfortunate
since state IS(1, 1) is the only useful state to call I.

We next show how to remove the unjustified solutions by applying the overapprox-
mation algorithm for the sign abstraction from Proposition 10, that lifts the algorithm for
exact sign abstraction from Theorem 6 to a richer class of formulas. The idea is to split the
formula φI into its linear part and the rest. Before doing so, we preprocess the inequation
s > a: We introduce a fresh variable signvar, add the equation s− a ◦= signvar, and rewrite
s > a to signvar > 0. The linear part of φI then becomes:

s− a ◦= signvar∧ arec
◦
= a− s∧ srec

◦
= s

We can then rewrite the linear part into the signature Σbool by moving the negative
parts positively onto the other side. This yields the following linear equation system:

s ◦= signvar + a∧ arec + s ◦= a∧ srec
◦
= s

The remainder of φI can be rewritten as follows:

((a < 0∧ raise_exception > 0) ∨ (a ≥ 0∧ raise_exception ◦
= 0))

∧((signvar > 0∧ do_recursion ◦
= 0∧ result ◦= 0)∨

(signvar ≤ 0∧ do_recursion > 0∧ result ◦= s ∗ retf + retI))

It is not clear whether the conjunction of both parts is a hB-mixed system, since it is
not clear how to show the hB-invariance of the equation result ◦= s ∗ retf + retI. Still, we
can apply the overapproximation algorithm of the sign abstraction from Proposition 10.
It indeed improves on John’s approximation, ruling out both unjustified solutions. The
details are worked out in Appendix A.

Computation 2021, 9, 113 29 of 32

In the general case, linear equation systems are not enough, in which case our algo-
rithm from Theorem 6 for computing sign abstractions cannot be applied. But then we can
still apply the overapproximation algorithm from Proposition 10 which rewrites a linear
part of the formula exactly. As illustrated by the present example, this overapproximation
is often way more precise than John’s.

11. Example for the Overapproximation of the Sign Abstraction

We reconsider conjunction of the linear part obtained and the rest of φI, that is
φlin
I ∧ φrest

I where:

φlin
I =def

s ◦= signvar + a

∧ arec + s ◦= a
∧ srec

◦
= s

φrest
I =def

((a < 0∧ raise_exception > 0)
∨ (a ≥ 0∧ raise_exception ◦

= 0))
∧ ((signvar > 0∧ do_recursion ◦

= 0∧ result ◦= 0)
∨ (signvar ≤ 0∧ do_recursion > 0∧ result ◦= s ∗ retf + retI))

The decomposition of the linear subsystem decν(φlin
I) for interpretation over B as

defined in Section 9 is obtained by splitting each variable x into two fresh variables ν⊕(x)
and ν	(x) representing its positive and negative part:

decν(φ
lin
I) =

ν⊕(s) + ν	(a) + ν	(signvar) ◦= ν	(s) + ν⊕(a) + ν⊕(signvar)

∧ ν⊕(arec) + ν	(a) + ν⊕(s)
◦
= ν	(arec) + ν⊕(a) + ν	(s)

∧ ν⊕(srec) + ν	(s)
◦
= ν	(srec) + ν⊕(s)

The additional constraints on the decomposition variables are:

ν⊕(s) ∗ ν	(s)
◦
= 0

∧ ν⊕(a) ∗ ν	(a)
◦
= 0

∧ ν⊕(signvar) ∗ ν	(signvar) ◦= 0
∧ ν⊕(arec) ∗ ν	(arec)

◦
= 0

∧ ν⊕(srec) ∗ ν	(srec)
◦
= 0

∧ ν⊕(result) ∗ ν	(result) ◦= 0
∧ ν⊕(retI) ∗ ν	(retI)

◦
= 0

∧ ν⊕(retf) ∗ ν	(retf)
◦
= 0

The elementary mode rewriting emr(decν(φlin
I)) is the following R+-equivalent hB-

exact Σbool-formula obtained via Corollary 1:

∃x0 . . . ∃x10.
∧ ν	(a)

◦
= x10 + x8 + x9

∧ ν⊕(a)
◦
= x10 + x6 + x7

∧ ν	(arec)
◦
= x4 + x5 + x9

∧ ν⊕(arec)
◦
= x3 + x5 + x7

∧ ν	(signvar) ◦= x2 + x3 + x7

∧ ν⊕(signvar) ◦= x2 + x4 + x9

∧ ν	(s)
◦
= x1 + x3 + x8

∧ ν⊕(s)
◦
= x1 + x4 + x6

∧ ν	(srec)
◦
= x0 + x3 + x8

∧ ν⊕(srec)
◦
= x0 + x4 + x6

Computation 2021, 9, 113 30 of 32

The nonlinear remainder also needs to be rewritten with the decomposition variables
for interpretation over B. The formula below is decν(φlin

I) except that we simplified the
rewriting of inequations a bit.

((¬ν	(a)
◦
= 0∧ ¬ν⊕(raise_exception) ◦= 0)

∨ (ν	(a)
◦
= 0∧ ν	(raise_exception) ◦= 0∧ ν⊕(raise_exception) ◦= 0))

∧ ((¬ν⊕(signvar) ◦= 0∧ ν	(do_recursion) ◦= 0∧ ν⊕(do_recursion) ◦= 0
∧ ν	(result) ◦= 0∧ ν⊕(result) ◦= 0)

∨ (ν⊕(signvar) ◦= 0∧ ¬ν⊕(do_recursion) ◦= 0
∧ ν⊕(result) + ν	(s) ∗ ν⊕(retf) + ν⊕(s) ∗ ν	(retf) + ν	(retI))
◦
= ν	(result) + ν⊕(s) ∗ ν⊕(retf) + ν	(s) ∗ ν	(retf) + ν⊕(retI)))

For any solution τ of the conjunction of the above three blocks of formulas over
the algebra of booleans B, we then obtain an assignment σ ∈ hS ◦ solR(φI) according to
Theorem 6:

σ(s) = τ(ν⊕(s))−R τ(ν	(s))
σ(a) = τ(ν⊕(a))−R τ(ν	(a))
σ(signvar) = τ(ν⊕(signvar))−R τ(ν	(signvar))
σ(arec) = τ(ν⊕(arec))−R τ(ν	(arec))
σ(srec) = τ(ν⊕(srec))−R τ(ν	(srec))
σ(result) = τ(ν⊕(result))−R τ(ν	(result))
σ(retf) = τ(ν⊕(retf))−R τ(ν	(retf))
σ(retI) = τ(ν⊕(retI))−R τ(ν	(retI))

12. Conclusions and Future Work

We showed that any hB-mixed system can be rewritten into an hB-exact formula by
computing the elementary modes of the linear subsystem. In previous work, hB-exact
rewriting hB-mixed systems was applied to compute difference abstractions exactly. In
the present paper, we showed that hB-exact rewriting can also be used to compute sign-
abstractions exactly.

We have illustrated the usefulness of the computation of sign abstraction for linear
formulas for the sign analysis of function programs. Using John’s overapproximation is
often not good enough for such applications, since the relationships between the signs of
different variables are quickly lost. We saw that elementary mode rewriting yields better a
better approximation of the sign abstraction even for nonlinear equation systems, which
may preserve these relationships.

The time for computing abstractions exactly strongly depends on the time needed
to compute the elementary modes. Some experiments were reported in [6] in the case of
the difference abstraction. There, one has to compute the elementary modes for a linear
equation system that contains two copies of the linear equation system given with the
input. The copying doubles the size and may increase the time for the computation of
the elementary modes seriously. In the application of difference abstraction to change
prediction of reaction networks, we observed cases where John’s overapproximation of
the difference abstraction could be computed in circa 10 min, while the exact computation
required circa 10 h.

In the future, it would we of interest to find heuristics for approximating abstractions
of linear equation systems that reduce the computation time of the exact algorithm while
improving John’s overapproximation in precision. In the case of difference abstractions, the
minimal support heuristics was proposed for this purpose [6]. In the example mentioned
above, this heuristics could be computed in circa 10 min, like John’s overapproximation,
while yielding the exact result. In general, however, the minimal support heuristics is
not exact.

Another interesting question for future work is how to compute more quantitative
abstractions exactly, as for instance with intervals. In this case however the structure of

Computation 2021, 9, 113 31 of 32

abstract values is infinite, therefore finite domain constraint programming is no longer
sufficient to compute the set of abstract solutions.

Author Contributions: These authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: We would like to acknowledge the reviewers for the constructive feedback.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The system of linear Σbool-equations decν(φlin
I) corresponds to the following linear

integer matrix equation:

 1 −1 0 0 1 −1 −1 1 0 0
−1 1 1 −1 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1 −1 1

ν	(a)
ν⊕(a)
ν	(arec)
ν⊕(arec)
ν	(signvar)
ν⊕(signvar)
ν	(s)
ν⊕(s)
ν	(srec)
ν⊕(srec)

◦
=

0
0
0
0
0
0
0
0
0
0

The elementary mode rewriting emr(decν(φlin

I)) corresponds to the linear integer
matrix equation :

0 0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0 0 0 1
0 0 0 0 1 0 1 0 1 0 0
0 0 0 1 1 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0 0 1
0 1 0 0 1 0 0 0 0 1 0
0 1 0 0 0 1 0 1 0 0 0
1 0 0 0 1 0 0 0 0 1 0
1 0 0 0 0 1 0 1 0 0 0

x0
x1
x10
x2
x3
x4
x5
x6
x7
x8
x9

◦
=

ν	(a)
ν⊕(a)
ν	(arec)
ν⊕(arec)
ν	(signvar)
ν⊕(signvar)
ν	(s)
ν⊕(s)
ν	(srec)
ν⊕(srec)

References
1. Cousot, P.; Cousot, R. Systematic Design of Program Analysis Frameworks. In Proceedings of the Sixth Annual ACM Symposium

on Principles of Programming Languages, San Antonio, TX, USA, 29–31 January 1979; pp. 269–282. [CrossRef]
2. Paulevé, L.; Sené, S. Non-Deterministic Updates of Boolean Networks. In Proceedings of the 27th IFIP WG 1.5 International

Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA 2021), Marseille, France, 12–14 July 2021;
pp. 10:1–10:16. [CrossRef]

3. Paulevé, L. Most Permissive Reaction Networks. Available online: https://loicpauleve.name/md/ak8WJ5d2TqKpmJBtP_8BaQ#
(accessed on 2 September 2021).

4. Cousot, P.; Halbwachs, N. Automatic Discovery of Linear Restraints Among Variables of a Program. In Proceedings of the Fifth
Annual ACM Symposium on Principles of Programming Languages, Tucson, AZ, USA, 23–25 January 1978; pp. 84–96. [CrossRef]

http://doi.org/10.1145/567752.567778
http://dx.doi.org/10.4230/OASIcs.AUTOMATA.2021.10
https://loicpauleve.name/md/ak8WJ5d2TqKpmJBtP_8BaQ#
http://dx.doi.org/10.1145/512760.512770

Computation 2021, 9, 113 32 of 32

5. Granger, P. Static Analysis of Linear Congruence Equalities among Variables of a Program. In Colloquium on Trees in Algebra and
Programming, Proceedings of the International Joint Conference on Theory and Practice of Software Development (TAPSOFT’91), Brighton,
UK, 8–12 April 1991; Abramsky, S., Maibaum, T.S.E., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 1991; Volume 493, pp. 169–192. [CrossRef]

6. Allart, E.; Niehren, J.; Versari, C. Computing Difference Abstractions of Linear Equation Systems. Theor. Comput. Sci. 2021.
[CrossRef]

7. Allart, E.; Versari, C.; Niehren, J. Computing Difference Abstractions of Metabolic Networks Under Kinetic Constraints. In
Computational Methods in Systems Biology, Proceedings of the 17th International Conference on Computational Methods in Systems Biology
(CMSB 2019), Trieste, Italy, 18–20 September 2019; Bortolussi, L., Sanguinetti, G., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2019; Volume 11773, pp. 266–285._14. [CrossRef]

8. Niehren, J.; Versari, C.; John, M.; Coutte, F.; Jacques, P. Predicting changes of reaction networks with partial kinetic information.
Biosyst. 2016, 149, 113–124. [CrossRef] [PubMed]

9. John, M.; Nebut, M.; Niehren, J. Knockout Prediction for Reaction Networks with Partial Kinetic Information. In Verification,
Model Checking, and Abstract Interpretation, Proceedings of the 14th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI 2013), Rome, Italy, 20–22 January 2013; Giacobazzi, R., Berdine, J., Mastroeni, I., Eds.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7737, pp. 355–374. [CrossRef]

10. Giacobazzi, R.; Ranzato, F.; Scozzari, F. Making abstract interpretations complete. J. ACM 2000, 47, 361–416.
[CrossRef]

11. Nethercote, N.; Stuckey, P.J.; Becket, R.; Brand, S.; Duck, G.J.; Tack, G. MiniZinc: Towards a Standard CP Modelling Language. In
Principles and Practice of Constraint Programming—CP 2007, Proceedings of the 13th International Conference on Principles and Practice
of Constraint Programming (CP 2007), Providence, RI, USA, 23–27 September 2007; Bessiere, C., Ed.; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4741, pp. 529–543. [CrossRef]

12. Motzkin, T.; Raiffa, H.; Thompson, G.; Thrall, R. The double description method. In Contributions to the Theory of Games; Kuhn,
H.W., Tucker, A.W., Eds.; Princeton University Press: Princeton, NJ, USA, 1953; Volume 2, pp. 51–74.

13. Fukuda, K.; Prodon, A. Double Description Method Revisited. In Combinatorics and Computer Science, Proceedings of the 8th
Franco-Japanese and 4th Franco-Chinese Conference, Brest, France, 3–5 July 1995; Deza, M., Euler, R., Manoussakis, Y., Eds.; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1995; Volume 1120, pp. 91–111. [CrossRef]

14. Gagneur, J.; Klamt, S. Computation of elementary modes: A unifying framework and the new binary approach. BMC Bioinform.
2004, 5, 175. [CrossRef] [PubMed]

15. Zanghellini, D.; Ruckerbauer, D.E.; Hanscho, M.; Jungreuthmayer, C. Elementary flux modes in a nutshell: Properties, calculation
and applications. Biotechn. J. 2013, 8, 1009–1016. [CrossRef] [PubMed]

16. Bagnara, R.; Hill, P.M.; Zaffanella, E. The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the
analysis and verification of hardware and software systems. Sci. Comput. Program. 2008, 72, 3–21. [CrossRef]

17. Rendl, A.; Guns, T.; Stuckey, P.J.; Tack, G. MiniSearch: A Solver-Independent Meta-Search Language for MiniZinc. In Principles
and Practice of Constraint Programming, Proceedings of the 21st International Conference on Principles and Practice of Constraint
Programming (CP 2015), Cork, Ireland, 31 August–4 September 2015; Pesant, G., Ed.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2015; Volume 9255, pp. 376–392. [CrossRef]

18. Allart, E.; Niehren, J.; Versari, C. Reaction Networks to Boolean Networks. Available online: https://hal.archives-ouvertes.fr/hal-
02279942 (accessed on 2 September 2021).

19. Dines, L.L. On Positive Solutions of a System of Linear Equations. Ann. Math. 1926, 28, 386–392. [CrossRef]
20. Miné, A. A Few Graph-Based Relational Numerical Abstract Domains. In Static Analysis, Proceedings of the 9th International Static

Analysis Symposium (SAS 2002), Madrid, Spain, 17–20 September 2002; Hermenegildo, M.V., Puebla, G., Eds.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2477, pp. 117–132. [CrossRef]

21. Cousot, P.; Cousot, R. Static determination of dynamic properties of programs. In Proceedings of the Second International
Symposium on Programming, Paris, France, 13–15 April 1976; pp. 106–130.

22. Granger, P. Static analysis of arithmetical congruences. Int. J. Comput. Math. 1989, 30, 165–190. [CrossRef]
23. Karr, M. Affine relationships among variables of a program. Acta Inf. 1976, 6, 133–151. [CrossRef]
24. Fukuda, K. cddlib—An efficient implementation of the Double Description Method. 2018. Available online: https://github.com/

cddlib/cddlib (accessed on 2 September 2021).
25. Klamt, S.; Stelling, J.; Ginkel, M.; Gilles, E.D. FluxAnalyzer: Exploring structure, pathways, and flux distributions in metabolic

networks on interactive flux maps. Bioinformatics 2003, 19, 261–269. [CrossRef] [PubMed]
26. Avis, D.; Jordan, C. mplrs: A scalable parallel vertex/facet enumeration code. Math. Program. Comput. 2018, 10, 267–302.

[CrossRef]

http://dx.doi.org/10.1007/3-540-53982-4_10
http://dx.doi.org/10.1016/j.tcs.2021.06.030
http://dx.doi.org/10.1007/978-3-030-31304-3_14
http://dx.doi.org/10.1016/j.biosystems.2016.09.003
http://www.ncbi.nlm.nih.gov/pubmed/27769750
http://dx.doi.org/10.1007/978-3-642-35873-9_22
http://dx.doi.org/10.1145/333979.333989
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/3-540-61576-8_77
http://dx.doi.org/10.1186/1471-2105-5-175
http://www.ncbi.nlm.nih.gov/pubmed/15527509
http://dx.doi.org/10.1002/biot.201200269
http://www.ncbi.nlm.nih.gov/pubmed/23788432
http://dx.doi.org/10.1016/j.scico.2007.08.001
http://dx.doi.org/10.1007/978-3-319-23219-5_27
https://hal.archives-ouvertes.fr/hal-02279942
https://hal.archives-ouvertes.fr/hal-02279942
http://dx.doi.org/10.2307/1968384
http://dx.doi.org/10.1007/3-540-45789-5_11
http://dx.doi.org/10.1080/00207168908803778
http://dx.doi.org/10.1007/BF00268497
https://github.com/cddlib/cddlib
https://github.com/cddlib/cddlib
http://dx.doi.org/10.1093/bioinformatics/19.2.261
http://www.ncbi.nlm.nih.gov/pubmed/12538248
http://dx.doi.org/10.1007/s12532-017-0129-y

	Introduction
	Problematics
	Contributions
	Related Work
	Outline

	Homomorphisms on -Structures
	-Algebras
	-Structures
	Homomorphisms

	First-Order Logic
	Expressions
	Logic Formulas
	Examples
	Semantic Properties of Free and Bound Variables

	Abstract Interpretation
	John's Overapproximation for -Abstractions
	Exactness of -Formulas for -Abstractions
	Soundness and Completeness of Abstract Interpretation
	Galois Connection

	Equation Systems, Positivity, and Triangularity
	Classes of Equation Systems
	Positivity and Triangularity
	Linear Equation Systems and Elementary Modes

	hB-Exact Rewriting of Linear Equation Systems
	Invariance
	hB-Exact Rewriting of hB-Mixed Systems
	Computing Sign Abstractions
	Decomposition
	Positivity
	Computing Sign Abstractions

	Application to Program Analysis
	Example for the Overapproximation of the Sign Abstraction
	Conclusions and Future Work
	
	References

