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Abstract: (1) Background: The estimation of daily reproduction numbers throughout the 

contagiousness period is rarely considered, and only their sum R0 is calculated to quantify the 

contagiousness level of an infectious disease. (2) Methods: We provide the equation of the discrete 

dynamics of the epidemic’s growth and obtain an estimation of the daily reproduction numbers by 

using a deconvolution technique on a series of new COVID-19 cases. (3) Results: We provide both 

simulation results and estimations for several countries and waves of the COVID-19 outbreak. (4) 

Discussion: We discuss the role of noise on the stability of the epidemic’s dynamics. (5) Conclusions: 

We consider the possibility of improving the estimation of the distribution of daily reproduction 

numbers during the contagiousness period by taking into account the heterogeneity due to several 

host age classes. 

Keywords: daily reproduction number; COVID-19 outbreak; discrete epidemic growth equation; 

discrete deconvolution; COVID-19 in several countries 

 

1. Introduction 

1.1. Overview and Literature Review 

Following the severe acute respiratory syndrome outbreak caused by coronavirus 

SARS CoV-1 in 2002 [1] and the Middle East Respiratory Syndrome outbreak caused by 

coronavirus MERS-CoV in 2012 [2], the COVID-19 disease caused by coronavirus SARS 

CoV-2 is the third coronavirus outbreak to occur in the past two decades. Human 

coronaviruses, including 229E, OC43, NL63 and HKU1, are a group of viruses that cause 

a significant percentage of all common colds in humans [3]. SARS CoV-2 can be 

transmitted from person to person by respiratory droplets and through contact and 

fomites. Therefore, the severity of disease symptoms, such as cough and sputum, and 

their viral load, are often the most important factors in the virus’s ability to spread, and 

these factors can change rapidly within only a few days during an individual’s period of 

contagiousness. This ability to spread is quantified by the basic reproduction number R0 

(also called the average reproductive rate), a classical epidemiologic parameter that 

describes the transmissibility of an infectious disease and is equal to the number of 

susceptible individuals that an infectious individual can transmit the disease to during 

his contagiousness period. For contagious diseases, the transmissibility is not a biological 

constant: it is affected by numerous factors, including endogenous factors, such as the 

concentration of the virus in aerosols emitted by the patient (variable during his 
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contagiousness period), and exogenous factors, such as geo-climatic, demographic, socio-

behavioral and economic factors governing pathogen transmission (variable during the 

outbreak’s history) [4–8]. 

Due to these exogenous factors, R0 might change seasonally, but these factor 

variations are not significant if a very short period of time is considered. R0 depends also 

on endogenous factors such as the viral load of the infectious individuals during their 

contagiousness period, and the variations in this viral load [9–15] must be considered in 

both theoretical and applied studies on the COVID-19 outbreak, in which the authors 

estimate a unique reproduction number R0 linked to the Malthusian growth parameter of 

the exponential phase of the epidemic, during which R0 is greater than 1 (Figure 1). The 

corresponding model has been examined in depth, because it is useful and important for 

various applications, but the distribution of the daily reproduction number Rj at day j of 

an individual’s contagiousness period is rarely considered within a stochastic framework 

[16–20]. 

We therefore defined a partial reproduction number for each day of an individual’s 

contagiousness period, and, assuming initially that this number was the same for all 

individuals, we obtained the evolution equation for the number of new daily cases in a 

population. Assuming that the distribution of partial reproduction numbers (referred to 

as daily for simplicity) was subject to fluctuations, we calculated the consequences for 

their estimation, and we estimated them for a large number of countries, taking a duration 

of contagiousness of 3 followed by 7 days. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Spread of an epidemic disease from the first infectious “patient zero” (in red), located at the center of its influence 

sphere comprising the successive generations of infected individuals, for the same value of the reproduction number R0 = 

3, with a deterministic dynamic (left) and a stochastic one (right), with standard deviation σ of the uniform distribution 

on an interval centered on R0 and with a random variable time interval i between infectious generations (after [16]). 

When this distribution is considered, it is possible to calculate its entropy as a 

parameter quantifying its uniformity and to simulate the dynamics of the infectious 

disease either using a Markovian model such as that defined in Delbrück’s approach [17] 

or a classical discrete or ODE SIR deterministic model. In the Markovian case, R0 can be 

calculated from the evolutionary entropy defined by L. Demetrius as the Kolmogorov–

Sinaï entropy of the corresponding random process [18], which measures the stability of 

the invariant measure, dividing the population into the subpopulations S (individuals 

susceptible to but not yet infected with the disease), I (infectious individuals) and R 

(individuals who have recovered from the disease and now have immunity to it). In the 

deterministic case, R0 corresponds to the Malthusian parameter quantifying its 

exponential growth, and the stability of the asymptotic steady state depends on the 

subdominant eigenvalue [19,20]. 

R0 = 3 /  = 0 / i = 1 R0 = 3 /  = 2.69 / i random 

1 
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1.2. Calculation of R0 

In epidemiology, there are essentially two broad ways to calculate R0, which 

correspond to the individual-level modeling and to the population-level modeling. At the 

individual level, if we suppose the susceptible population size constant (hypothesis valid 

during the exponential phase of an epidemic), the daily reproduction rates of an 

individual are typically non-constant over his contagiousness period, and the calculations 

we present in the following define a new method for estimating R0, as the sum of the daily 

reproduction rates. This new approach allows us to have a clearer view on the respective 

influence on the transmission rate by endogenous factors (depending on the level of 

immunologic defenses of an individual) and exogenous factors (depending on 

environmental conditions). 

2. Materials and Methods 

The methodology chosen starts from an attempt to reconstruct an epidemic dynamic 

from the knowledge of the number Rikj of people infected at day j by a given infectious 

individual i during the kth day of his period of contagiousness of length r. By summing 

up the number of new infectious individuals Xj−k present on day j − k where started their 

contagiousness, we find that the number of new infected people on day j is equal to: 

Xj = k=1,r i=1,Xj−k Rikj (1) 

We will assume in the following that Rikj is the same, equal to Rk, for all individuals I 

and day j, then depends only on day k. Then, we have: 

Xj = k=1,r Rk Xj−k (2) 

The convolution Equation (2) is the basis of our modelling of the epidemic dynamics. 

2.1. The Contagion Mechanism from a First Infectious Case Zero 

Let us suppose that the secondary infected individuals are recruited from the centre 

of the sphere of influence of an infectious case zero and that the next infected individuals 

remain on a sphere centred on case 0, by just widening its radius on day 2. Therefore, the 

susceptible individuals C(j), which each infectious on day j − 1 can recruit, are on a part of 

the sphere of influence of case 0 reached at day j (rectangles on Figure 2). 

 

Figure 2. Spread of an epidemic disease from a first infectious case 0 (located at its influence sphere 

centre) progressively infecting its neighbours in some regions (rectangles) on successive spheres. 

2.2. The Biphasic Pattern of the Virulence Curve of Coronaviruses 

Mostly, the clinical course of patients with seasonal influenza shows a biphasic 

occurrence of symptoms with two distinct peaks. Patients have a classic influenza disease 

followed by an improvement period and a recurrence of the symptoms [11]. The influenza 

RNA virus shedding (the time during which a person might be contagious to another 

person) increases sharply one half to one day after infection, peaks on day 2 and persists 

for an average total duration of 4.5 days, between 3 and 6 days, which explains why we 
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will choose in the following contagiousness duration these extreme values, i.e., either 3 or 

6 days, depending on the positivity of the estimated daily reproduction numbers. It is 

common to consider this biphasic evolution of influenza clinically: after incubation of one 

day, there is a high fever (39–40 °C), then a drop in temperature before rising, hence the 

term “V” fever. The other symptoms, such as coughing, often also have this improvement 

on the second day of the flu attack: after a first feverish rise (39–39.5 °C), the temperature 

drops to 38 °C on the second day, then rises before disappearing on the 5th day, the fever 

being accompanied by respiratory signs (coughing, sneezing, clear rhinorrhea, etc.). By 

looking at the shape of virulence curves observed in coronavirus patients [12–16], we often 

see this biphasic pattern. 

2.3. Relationships between Markovian and ODE SIR Approaches 

In the following, we suppose that the susceptible population size remains constant, 

which constitutes a hypothesis valid during the exponential phase of epidemic waves. The 

Markovian stochastic and ODE deterministic approaches are linked by a common 

background consisting of the birth and death process approach used in the kinetics of 

molecular reactions by Delbrück [17], then in dynamical systems theory by numerous 

authors [18–23], namely in modelling of the epidemic spread in exponential growth. In 

the ODE approach, the Malthusian parameter is the dominant eigenvalue, and the 

equivalent in the Markovian approach is the Kolmogorov–Sinai entropy (called 

evolutionary entropy in [24–26]). 

2.3.1. First Method for Obtaining the SIR Equation from a Deterministic Discrete 

Mechanism 

Let us suppose the model is deterministic and denote by Xj the number of new 

infected cases at day j (j ≥ 1), and Rk (k = 1, …, r) the daily reproduction number at day k 

of the contagiousness period of length r for all infectious individuals. Then, we have 

obtained Equation (2) by supposing that the contagiousness behaviour is the same for all 

the infectious individuals: 

Xj = ∑k=1,r Rk Xj−k, 

which says that the Xj−k new infected at day j − k give Rk Xj−k new infected on day j, 

throughout a period of contagiousness of r days, the Rk’s being possibly different or zero. 

For example, if r = 3, for the number X5 of new cases at day 5, equation X5 = R1X4 + R2X3 + 

R3X2 means that new cases at day 4 have contributed to new cases at day 5 with the term 

R1X4, R1 being the reproduction number at first day of contagiousness of new infected 

individuals at day 4. 

In matrix form, we obtain: 

X = MR, (3) 

where X = (Xj, …, Xj−r−1) and R = (R1, …, Rr) are r-dimensional vectors and M is the following 

r-r matrix:  

M = [

Xj−1, Xj−2,     … , Xj−r

Xj−k−1, Xj−k−2,   … , Xj−k−r

Xj−r Xj−r−1, … , Xj−2r+1

] (4) 

It is easy to show that, if X0 = 1 and r = 5 (estimated length of the contagiousness 

period for COVID-19 [12–21]), we obtain: 

X5 = R15 + 4R13R2 + 3R12R3 + 3R1R22 + 2R2R3 + 2R1R4 + R5 (5) 

The length r of the contagiousness period can be estimated from the ARIMA series 

of the stationary random variables Yj’s, equal to the Xj’s without their trend, by 

considering the length of the interval on which the auto-correlation function remains more 
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than a certain threshold, e.g., 0.1 [4]. For example, by assuming r = 3, if R1 = a, R2 = b and 

R3 = c, we obtain: 

X0 = 1, X1 = a,  X2 = a2 + b + c,  X3 = a3 + 2ab,  X4 = a4 + 3a2b + b2 + 2ac, 

X5 = a5 + 4a3b + 3ab2 + 3a2c + 2bc,  X6 = a6 + 5a4b + 4a3c + 6a2b2 + 6abc + b3 + c2, 

X7 = a7 + 6a5b + 5a4c + 10a3b2 + 12a2bc + 4ab3 + 3b2c + 3ac2 

(6) 

If R1 and R2 are equal, respectively, to a and b, and if a = b = R/2, c = 0, then, X5 behaves 

like: 

X5 = R5/32 + R4/4 + 3R3/8 (7) 

If R = 2, {Xj}i=1,∞ is the Fibonacci sequence, and more generally, for R > 0, the 

generalized Fibonacci sequence. Let us suppose now that b = c = 0 and a depends on the 

day j: aj = νC(j), where C(j) represents the number of susceptible individuals, which can be 

met by one contagious individual at day j. If infected individuals (supposed to all be 

contagious) at day j are denoted by Ij, we have: 

Xj = ∆Ij/∆j = (Ij+1 − Ij)/(j + 1 − j) = νC(j)Ij (8) 

Let us suppose, as in Section 2.1, that the first infectious individual 0 recruits from 

the centre of its sphere of influence secondary infected individuals remaining in this 

sphere, and that the susceptible individuals recruited by the Ij infectious individuals 

present at day j are located on a part of the sphere of centered on the first infectious 0 

obtained by widening its radius (Figure 2). Then, we can consider that the function C(j) 

increases, then saturates due to the fact that an infectious individual can meet only a 

limited number of susceptible individuals as the sphere grows. We can propose for C(j) 

the functional form C(j) = S(j)/(c + S(j)), where S(j) is the number of susceptible individuals 

at day j. Then, we can write the following equation, taking into account the mortality rate 

µ: 

Xj = ∆Ij/∆j = νC(j)Ij − µIj = νIj S(j)/(c + S(j)) − µIj (9) 

This discrete version of epidemic modeling is used much less than the classic 

continuous version, corresponding to the ODE SIR model, with which we will show a 

natural link. Indeed, the discrete Equation (9) is close to SIR Equation (10), if the value of 

c is greater than that of S: 

dI/dt = νIS/(c + S) − µI (10) 

2.3.2. Second Method for Obtaining the SIR Equation from a Stochastic Discrete 

Mechanism 

Another way to derive the SIR equation is the probabilistic approach, which comes 

from the microscopic equation of molecular shocks by Delbrück [17] and corresponds to 

a classical birth-and-death process: if at least one event (with rates of contact ν, birth f, 

death µ or recovering ) occurs in the interval (t, t + dt), and by supposing that births 

compensate deaths, leaving constant the total size N of the population, we have: 

Probability({S(t + dt) = k,I(t + dt) = N − k}) = P(S(t) = k, I(t) = N − k) [1 − [µk + νk(N − k)−fk − (N − k)]dt] 

 + P(S(t) = k − 1,I(t) = N − k + 1) [f(k − 1) + (N − k + 1)]dt 

 − P(S(t) = k+1,I(t) = N − k − 1)[µ(k + 1) + ν(k + 1)(N − k − 1)]dt 
(11) 

Hence, we have, if Pk(t) denotes Probability({S(t) = k,I(t) = N − k}): 

dPk(t)/d = [P(S(t + dt) = k,I(t + dt) = N − k) − P(S(t) = k,I(t) = N − k)]/dt 

= − P(S(t) = k, I(t) = N − k) [µk + νk(N − k)−fk-(N − k)] 

+ P(S(t) = k − 1, I(t) = N − k + 1) [f(k − 1) + (N − k + 1)] 

− P(S(t) = k + 1, I(t) = N − k − 1) [µ(k + 1) + ν(k + 1)(N − k − 1)], 

 

and we obtain: 
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dPk(t)/dt = −[µk + νk(N − k)−fk − (N − k)]Pk(t) + [f(k − 1) + (N − k + 1)]Pk−1(t) − [µ(k + 1) + ν(k + 1)(N − 

k1)]Pk+1(t)  
 

Then, by multiplying by sk and summing over k, we obtain the characteristic function 

of the random variable S. If births do not compensate deaths, we have: 

Probability ({S(t + dt) = k,I(t + dt) = j}) = P(S(t) = k,I(t) = j) (1 − [µk + νkj − fk − j]dt)  

+ P(S(t) = k − 1,I(t) = j + 1) [f(k − 1) + (j + 1)]dt 

− P(S(t) = k + 1,I(t) = j − 1)[µ(k + 1) + ν(k + 1)(j − 1)]dt 

(12) 

If S and I are supposed to be independent and if the coefficients ν, f, µ and  are 

sufficiently small, S and I are Poisson random variables [27], whose expectations E(S) and 

E(I) verify: 
dE(S)/dt = fE(S) − νE(SI) − µE(S) + E(I) 

or, if f = µ, dE(S)/dt  E(I)[−νE(S) + ], 
(13) 

leading to the SIR equation for the variables S, I and R considered as deterministic: 

dS/dt = −νSI + R, dI/dt = νSI − kI − µI, dR/dt = kI − R (14) 

3. Results 

3.1. Distribution of the Daily Reproduction Numbers Rj’s along the Contagiousness Period of an 

Individual. A Theoretical Example Where They Are Supposed to Be Constant during the 

Epidemics 

If R0 denotes the basic reproduction number (or average transmission rate) in a 

givenpopulation, we can estimate the distribution V (whose coefficients are denoted Vj = 

Rj/Ro) of the daily reproduction numbers Rj along the contagious period of an individual, 

by remarking that the number Xj of new infectious cases at day j is equal to Xj = Ij – Ij−1, 

where Ij is the cumulated number of infectious at day j, and verifies the convolution 

equation (equivalent to Equation (2)): 

Xj = ∑ RkXj−kk =1,r , giving in continuous time: X(t) = ∫ R(s)X(t − s)ds
r

1
, (15) 

where r is the duration of the contagion period, estimated by 1/( + µ),  being the 

recovering rate and µ the death rate in SIR Equation (14). r and S can be considered as 

constant during the exponential phases of the pandemic, and we can assume that the 

distribution V is also constant; then, V can be estimated by solving the linear system 

(equivalent to Equation (3)): 

R = M−1X (16) 

where M is given by Equation (4). Equation (16) can be solved numerically, if the pandemic 
is observed during a time greater than 1/( + µ). We will first demonstrate an example of 
how the matrix M can be repeatedly calculated for consecutive periods of length equal to 
that of the contagiousness period (supposed to be constant during the outbreak), giving 
matrix series M1, M2, ... Following Equation (4), we put the values of Xi’s in the two matrices 
below, with r = 3 for two periods, the first from day 1 to day 3 and the second from day 4 
to day 6. 

M1 = [

X4 X3 X2

X3 X2 X1

X2 X1 Xo

] , M2 = [

X6 X5 X4

X5 X4 X3

X4 X3 X2

],…, 

where, after Equation (6), M1 and M2 can be calculated from the Rj’s as: 

 M1 = [

R1
4 + 3R1

2R2 + 2R1R3 + R2
2 R1

3 + 2R1R2 + R3 R1
2 + R2

R1
3 + 2R1R2 + R3 R1

2 + R2 R1

R1
2 + R2 R1 1

], 
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and M2 is given by: 

[

R1
6 + 5R1

4R2 + 4R1
3R3 + 6R1R2R3 + 6R1

2R2
2 + R2

3 + R3
2 R1

5 + 4R1
3R2 + 3R1

2R2 + 2R2R3 + 3R3R1
2 R1

4 + 3R1
2R2 + 2R1R3 + R2

2

R1
5 + 4R1

3R2 + 3R1
2R2 + 2R2R3 + 3R3R1

2 R1
4 + 3R1

2R2 + 2R1R3 + R2
2 R1

3 + 2R1R2 + R3

R1
4 + 3R1

2R2 + 2R1R3 + R2
2 R1

3 + 2R1R2 + R3 R1
2 + R2

] 

Additionally, from Equation (2), if, for instance, j = 8 and r = 3, then we have the 

expression below, which means that the new cases on the 8th day depend on the new 

cases detected on the previous days 7, 6 and 5, supposed to be in a period of 

contagiousness of 3 days: 

X8 =  ∑ RkX8−k

k = 1,3

= R1X7 + R2X6 + R3X5 (17) 

Let us suppose now that the initial Rj’s on a contagiousness period of 3 days, are equal 

to:  

[

R1

R2

R3

] = [
2
1
2
], then matrix M defined by Mij = X7−(i+j) gives the Rj’s from Equation (16), hence  

allows the calculation of Xj = k=1,3 Rk Xj−k. 

The inverse of M is denoted by M−1 and verifies: R = M−1X, where X = (X6, X5, X4), with 

X1 = 1, X2 = 2, X3 = 5, X4 = 14, X5 = 37, X6 = 98 and we obtain: 

M1
−1 = [

37 14 5
14 5 2
5 2 1

]

−1

= [
−1/4 1 −3/4

1 −3 1
−3/4 1 11/4

],  

and a deconvolution gives the resulting Rj’s: 

[
−1/4 1 −3/4

1 −3 1
−3/4 1 11/4

] [
98
37
14

] = [
2
1
2
] = [

R1

R2

R3

], thanks to the following calculation: 

R1 = −49/2 + 37 − 21/2 = 2 

R2 = 98 − 111 + 14 = 1 

R3 = −147/2 + 37 + 77 = 2 

We obtain for the resulting distribution of daily reproduction numbers the exact 

replica of the initial distribution. We obtain the same result by replacing M1 by the matrix 

M2. 

3.2. Distribution of the Daily Reproduction Numbers Rj’s When They Are Supposed to Be 

Random 

Let us consider a stochastic version of the deterministic toy model corresponding to 

Equation (17), by introducing an increasing noise on the Rj’s, e.g., by randomly choosing 

their values following a uniform distribution on the three intervals: [2 − a, 2 + a], [1 − a/2, 

1 + a/2] and [2 − a, 2 + a] (for having a U-shape behavior), with increasing values of a, from 

0.1 to 1, in order to see when the deconvolution would give negative resulting Rj’s, with 

conservation of the average of their sum R0, if the random choice of the values of the Rj’s 

at each generation is repeated, following the stochastic version of Equation (2): Xj = k=1,r 

(Rk + εk) Xj−k, where r is the contagiousness period duration and εk is a noise perturbing Rk, 

whose distribution is chosen uniform on the interval [0, 2a] for k = 1,3, and [0, a] for k = 2. 

This choice is arbitrary, and the main reason of the randomization is to show that the 

deconvolution can give negative results for Rk’s, as those observed for increasing values 

of a, from 0.1 to 1, with explicit calculations for three consecutive periods, from day 1 to 

day 3, from day 4 to day 6, and from day 7 to day 9. 

For each random choice of the values of the daily reproduction numbers Rj’s, we can 

calculate a matrix M1 corresponding to Equation (3). Its inversion into the matrix M1−1 

makes it possible to solve the problem of deconvolution of Equation (2)—that is to say, to 

obtain new Rj’s as a function of the observed Xk’s. We can then calculate a new matrix M2 

from these new Rj’s and thus continue during an epidemic the estimation of the daily 

reproduction numbers Rj’s from the successive matrices M1, M2, …, and observed Xk’s. 
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1. For a = 0.1, let us randomly and uniformly choose the initial distribution of the daily 

reproduction numbers R1 in the interval [1.9, 2.1], R2 in [0.95, 1.05] and R3 in [1.9, 2.1] 

as R1= 2.1, R2= 0.95, R3 = 2.1. Then, the transition matrix M1 is equal to:  

M1 = [
41.7391 15.351 5.36
15.351 5.36 2.1
5.36 2.1 1

] and we have: 

M1
−1 = [

−0.2154195 0.92857143 −0.7953515
0.92857143 −2.95 1.2178571
−0.7953515 1.2178571 2.705584

]  

From X6 = 113.491, X5 = 41.7391, X4 = 15.351, resulting Rj’s are: R1 = 2.1, R2 = 0.95, R3 = 

2.1. 

The next initial Rj’s are chosen as: R1 = 2, R2 = 0.95, R3 = 1.9 and we have: 

X7 = 2X6 + 0.95X5 + 1.9X4 = 226.982 + 39.652 + 29.17 = 295.8 

X8 = 2X7 + 0.95X6 + 1.9X5 = 591.6 + 107.816 + 79.304 = 778.72 

Then, we obtain the matrices M2 and M2−1: 

M2 = [
295.8 113.491 41.7391

113.491 41.7391 15.351
41.7391 15.351 5.36

]  

M2
−1 = [

−0.07779371 0.20964295 0.00524305
0.20964295 −1.0123552 1.26721348
0.00524305 1.26721348 −3.48354228

]  

Then, the resulting Rj’s equal: R1 = 2.0279, R2 = 7.6158, R3 = −16.426. 

The next initial Rj’s are: R1 = 2, R2 = 1.05, R3 = 1.9 and we have: 

X9 = 2X8 + 1.05X7 + 1.9X6 = 1557.44 + 310.59 + 215.63 = 2083.66 

X10 = 2X9 + 1.05X8 + 1.9X7 = 4167.32 + 817.656 + 562.02 = 5546.996 

From these values of X9 and X10, we obtain the matrices M3 and M3−1: 

M3 = [
2083.66 778.72 295.8
778.72 295.8 113.491
295.8 113.491 41.7391

]  

M3
−1 = [

0.02596375 −0.05192766 −0.04280771
−0.05192766 0.0256605 0.29823273
−0.04280771 0.29823273 −0.48358035

]  

Then, the resulting Rj’s equal: R1 = 2.486, R2 = −2.33, R3 = 7.38769. 

2. For a = 1, let us choose the initial R1 in [1, 3], R2 in [0.5, 1.5] and R3 in [1, 3], e.g., R1 = 

1, R2 = 1.355 and R3 = 1.1. Then, the transition matrix M1 is equal to: 

M1 = [
9.101 4.81 2.355
4.81 2.355 1
2.355 1 1

] and its inverse is given by: 

M1
−1 = [

−1.11983471 2.02892562 0.60828512
2.02892562 −2.93801653 −1.84010331
0.60828512 −1.84010331 1.40759184

]  

New cases are: X6 = 18.209, X5 = 9.101, X4 = 4.81, X3 = 2.355, X2 = 1, X1 = 1, and by 

deconvoluting, we obtain the resulting Rj’s equal to: R1 = 1, R2 = 1.355, R3 = 1.1, i.e., the 

exact initial distribution. 

Let us now consider new initial Rj’s: R1 = 1, R2 = 1, R3 = 1. That gives a new matrix M2, 

with new X7 and X8 calculated from the new initial Rj’s, by using the former values of X6, 

…, X2: 

X7 = X6 + X5 + X4 = 18.209 + 9.101 + 4.81 = 32.12 

X8 = X7 + X6 + X5 = 32.12 + 18.209 + 9.101 = 59.43 

Hence, we obtain: 

M2 = [
32.12 18.209 9.101
18.209 9.101 4.81
9.101 4.81 2.36

] and 

M2
−1 = [

−0.35061537 0.1839519 0.97925345
0.1839519 −1.47916605 2.31025157
0.97925345 2.31025157 −8.0783421

] 

 

and the resulting Rj’s equal: R1 = 2.90, R2 = 5.4888, R3 = −14.696. 

We calculate X9 and X10 using new initial Rj’s: R1 = 3.0, R2 = 0.5, R3 = 2.9: 

X9 = 3X8 + 0.5X7 + 2.9X6 = 178.29 + 16.06 + 52.81 = 247.16 
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X10 = 3X9 + 0.5X8 + 2.9X7 = 741.48 + 29.715 + 93.148 = 864.343 

Hence, we obtain: 

M3 = [
247.16 59.43 32.12
59.43 32.12 18.209
32.12 18.209 9.101

] and 

M3
−1 = [

0.00718287 −0.00805357 −0.00923703
−0.00805357 −0.22288084 0.47435642
−0.00923703 0.47435642 −0.80659958

] 

 

and the resulting Rj’s equal: R1 = 3.66898, R2 = −33.857, R3 = 61.32. 

More precise simulation results are given in Table 1, which summarizes 

computations made for random choices of Rj’s distributions, for a = 0.1 and a = 1 and until 

time 20. These simulations show a great sensitivity to noise, but a qualitative conservation 

of their U-shaped distribution along the contagiousness period of individuals. More 

precisely, because of the presence of noise on the Rj’s, we cannot always obtain positive 

values from the data for the Rj’s by applying the deconvolution, which explains the 

presence of negative values in empirical examples, as in the theoretical noised examples. 

A way to solve this problem could be to suppose that noise is stationary during all of the 

growth period of a wave, then calculate the Rj’s for all running time windows of length 

equal to the contagiousness duration and then obtain the mean of the Rj’s corresponding 

to these windows. As this stationary hypothesis is not widely accepted, we prefer to keep 

negative values and focus on the shape of the distribution of the Rj’s. 

Table 1. Simulation results obtained for extreme noises a = 0.1 and a = 1, showing great variations of deconvoluted 

distribution of daily reproduction numbers Xj’s and a qualitative conservation of their U-shaped distribution along 

contagiousness period. 

a Initial Rj’s t Xt Xt+1 Xt+2 Resulting R’js R0 
Distribution Shape, Sign 

R0  

0.1 2.1; 0.95; 2.1 4 15.35 31.74 113.5 2.1; 0.95; 2.1 5.15 U-shape, positive  

 2; 0.95; 1.9 6 113.5 295.8 778.7 2.03; 7.6; −16.4 −6.77 Inverted U-shape, negative 

 2; 1.06; 1.9 8 778.7 2083.7 5547 2.49; −2.33; 7.39 7.55 U-shape, positive 

 1.9; 1.05; 1.9 10 5547 14,207 36,776 2.69; −16.7; 43.8 29.8 U-shape, positive 

 1.9; 0.95; 1.9 12 36,776 93,910 240,359 2.92; 1.68; −6.7 −2.1 Decreased shape, negative 

 1.9; 1; 1.9 14 240,359 622,149 1,605,227 2.3; −4.83; 14.3 11.8 U-shape, positive 

 2; 1.05; 1.9 16 1,605,227 4,331,630 11,561,153 2.76; 27; −70 −40.2 Inverted U-shape, negative 

 1.9; 1; 1.95 18 11,561,153 29,558,395 76,502,587 2.5; −6.48; 17.9 13.9 U-shape, positive 

 2; 1; 2.1 20 76,502,587 2,076,519 556,226,772 2.67; −7.6; 19.7 14.8 U-shape, positive 

1 1; 1.355; 1.1 4 4.81 9.1 18.21 1; 1.355; 1.1 3.455  Inverted U-shape, positive 

 1; 1; 1 6 18.21 32.12 59.43 2.9; 5.49; −14.7 −6.31 Inverted U-shape, negative 

 3; 0.5; 2.9 8 59.43 247.16 864.34 3.7; −33.9; 61.3 31.1 U-shape, positive 

 2.6; 0.7; 2.6 10 864.34 2574.82  7942 3; −1.79; 7.14 8.35 U-shape, positive 

 2.5; 0.75; 1.5 12 7942.2 23,083.1 67,526.6 3.35; 2.54; −11.6 −5.71 Decreased shape, negative 

 2.4; 0.8; 2.4 14 67,526.6 199,590 588,437 2.58; −0.5; 4.8 6.88 U-shape, positive 

 2; 1; 2 16 588,437 1,511,517 4,010,652 2.72; −1.08; 3.19 4.83 U-shape, positive 

 2.3; 1.15; 2.3  18 4,010,652 12,316,150 36,415,885 2.88; −7.9; 21.7 16.7 U-shape, positive 

 2.8; 0.6; 2 20 36,415,885 117,375,471 375,133,150 3.7; 4.1; −17 −9.2 Inverted U-shape, negative 

3.3. Distribution of the Daily Reproduction Numbers Rj’s. The Real Example of France 

Figure 3 gives the effective transmission rates Re calculated between 20–25 October 

2020 just before the second lockdown in France [28,29]. As the second wave of the 

epidemic is still in its exponential phase, it is more convenient (i) to consider the 

distribution of the marginal daily reproduction numbers and (ii) to calculate its entropy 

and simulate the epidemic dynamics using a Markovian model [4]. By using the daily new 

infected cases given in [30], we can calculate, as in Section 3.1, the inverse matrix M−1 for 
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the period from 20 to 25 October 2020 (exponential phase of the second wave), by choosing 

3 days for the duration of contagiousness period and the following raw data for new 

infected cases: 20,468 for 20 October, then 26,676, 41,622, 42,032, 45,422 and 52,010 for 25 

October. Then, for France between 15 February and 27 October 2020, we obtain the daily 

reproduction numbers given in Figure 3 with a U-shape as observed for influenza viruses. 

 

Figure 3. Top: estimation of the effective reproduction number Re’s for 20 October and the 25 October 2020 (in green, with 

their 95% confidence interval) [28,29]. Bottom left: daily new cases in France between 15 February and 27 October [30]. 

Bottom right: U-shape of the evolution of the daily Rj’s along the 3-day contagiousness period of an individual. 

We have:  

M−1 = [
45,422 42,032 41,622
42,032 41,622 26,676
41,622 26,676 20,468

]

−1

= [
−0.0000163989812 −0.0000292188776 0.00007142863
−0.0000292188776 0.0000938161392 −0.0000628537817

0.00007142863 −0.0000628537817 −0.00001447698
]  

Hence, we can deduce the daily Rj’s, i.e., the vector (R1, R2, R3): 

[
−0.0000163989812 −0.0000292188776 0.00007142863
−0.0000292188776 0.0000938161392 −0.0000628537817

0.00007142863 −0.0000628537817 −0.00001447698
] [

52,010
45,422
42,032

] = 

[
−0.852911911949567 −1.32717986039119 3.00228812555347
−1.51967382631645 4.26131667592337 −2.64187015405365
3.71500298367996 −2.85494447414886 −0.60849658654673

]

= [
0.82219725466

0.0997726955533
0.2515619229844

] = [

R1

R2

R3

] 

 

The effective reproduction number is equal to R0 ≈ 1.174, a value close to that 

calculated directly (Figure 3), giving V = (0.7, 0.085, 0.215), with a maximal daily 

reproduction number the first day of the contagiousness period. The entropy H of V is 

equal to: 

H = −k=1,r Vk Log(Vk) = 0.25 + 0.21 + 0.33 = 0.79. 
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3.4. Calculation of the Rj’s for Different Countries 

3.4.1. Chile 

By using the daily new infected cases given in [30], we can calculate M−1 for the period 

from 1 to 12 November 2020 (endemic phase), by choosing 6 days for the duration of the 

contagiousness period and the following 7-day moving average data for the new infected 

cases (Figure 4): 1400 for 1 November, then 1370, 1382, 1359, 1362, 1405, 1389, 1385, 1384, 

1387, 1394 and 1408 for 12 November. 

 

Figure 4. Top: estimation of the effective reproduction number Re’s for the 1 November and the 12 November 2020 (in 

green, with their 95% confidence interval) [28,29]. Bottom left: Daily new cases in Chile between 1 November and 12 

November [30]. Bottom right: U-shape of the evolution of the daily Rj’s along the infectious 6-day period of an individual. 

We have: 

M−1 =

[
 
 
 
 
 
1394 1387 1384 1385
1387 1384 1385 1389
1384 1385 1389 1405
1385 1389 1405 1362
1389 1405 1362 1359
1405 1362 1359 1382

    

1389 1405
1405 1362
1362 1359
1359 1382
1382 1370
1370 1400]

 
 
 
 
 
−1

= 

[
 
 
 
 
 
−0.05714222 0.01016059 −0.00901664 0.01474588
0.01016059 −0.01827291 0.0106261 −0.00763363

−0.00901664 0.0106261 −0.00544051 0.02150289
0.01474588 −0.00763363 0.02150289 −0.01796266
0.00640175 0.02139586 −0.01468484 −0.00553414
0.03539322 −0.01613675 −0.00286391 −0.00509801

    

0.00640175 0.03539322
0.02139586 −0.01613675

−0.01468484 −0.00286391
−0.00553414 −0.00509801
−0.00305831 −0.00452917
−0.00452917 −0.00686198]

 
 
 
 
 

 

 

Hence, after deconvolution, we obtain: 

R =  

[
 
 
 
 
 
−0.36256122
0.22645436
0.01488726
0.33918287
0.28557502
0.50696243 ]
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The effective reproduction number is equal to R0 ≈ 1.011, a value close to that 

calculated directly, with a maximal daily reproduction number the last day of the 

contagiousness period. Due to the negativity of R1, we cannot derive the distribution V 

and therefore calculate its entropy. As entropy is an indicator of non-uniformity, an 

alternative could be to calculate it by shifting values of Rj’s upwards by the value of their 

minimum. 

The quasi-endemic situation in Chile since the end of August, which corresponds to 

the increase of temperature and drought at this period of the year [4], gives a cyclicity of 

the new cases occurrence whose period equals the length of the contagiousness period of 

about 6 days, analogue to the cyclic phenomenon observed in simulated stochastic data 

of Section 3.2. with a similar U-shaped distribution of the Rj’s. 

3.4.2. Russia 

By using the daily new infected cases given in [30], we can calculate M−1 for the period 

from 30 September to 5 October 2020 (exponential phase of the second wave), by choosing 

3 days for the duration of the contagiousness period and the following raw data for new 

infected cases (Figure 5): 7721 for 30 September, then 8056, 8371, 8704, 9081, 9473 for 5 

October. 

 

Figure 5. Top: estimation of the effective reproduction number Re’s for 30 September and the 5 October 2020 (in green, 

with their 95% confidence interval) [28,29]. Bottom left: Daily new cases in Russia between 15 February and 21 November 

[30]. Bottom right: U-shape of the evolution of the daily Rj’s along the 3-day contagiousness period. 

We have: 

M−1 = [
9081 8704 8371
8704 8371 8056
8371 8056 7721

]

−1

 and 

[
0.031553440566948 −0.027594779248393 −0.005417732076268

−0.027594779248393 −0.00482333528665 0.034950483895551
−0.005417732076268 0.034950483895551 −0.030463575061795

] [
9473
9081
8704

] = [

R1

R2

R3

], 
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where: 

R1 = 298.905742490698404 – 250.588190354656833 − 47.155939991836672 = 1.161612144205 

R2 = −261.405343820026889−43.80070773806865 + 304.209011826875904 = −0.997039731220 

R3 = −51.322175958486764 + 317.385344255498631 – 265.15495733786368 = 0.90821095914 

 

The effective reproduction number is equal to R0 ≈ 1.073, a value close to that 

calculated directly, with a maximal daily reproduction number the first day of the 

contagiousness period. Due to the negativity of R2, we cannot derive the distribution V 

and therefore calculate its entropy. The period studied corresponds to a local slow 

increase of new infected cases at the start of the second wave in Russia, which looks like 

a staircase succession of slightly inclined 4-day plateaus followed by a step: at the 

beginning of October, in Russia, new tightened restrictions (but avoiding lockdown) 

appeared [31], which could explain the change of the value of the slope observed in the 

new daily cases [30]. 

3.4.3. Nigeria 

By using the daily new infected cases given in [30], we can calculate M−1 for the period 

from 5 November to 10 November (endemic phase), by choosing 3 days for the duration 

of the contagiousness period and the following raw data for the new infected cases (Figure 

6): 141 for 5 November, then 149, 133, 161, 164, and 166 for 10 November. 

 

Figure 6. Top: estimation of the effective reproduction number Re’s for 5 November and 10 November 2020 (in green, with 

their 95% confidence interval) [28,29]. Bottom left: Daily new cases in Nigeria between 15 February and 21 November [30]. 

Bottom right: increasing evolution of the daily Rj’s along the 3-day contagiousness period of an individual. 

We have: 

M−1 = [
164 161 131
161 131 149
131 149 141

]

−1

= [
0.01796807 0.01502897 −0.03283028
0.01502897 −0.02832263 0.01575332

−0.03283028 0.01575332 0.02141264
]  
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After deconvolution, we obtain: 

R = [
0.16177513
0.38618314
0.58115333

]  

The effective reproduction number is equal to R0 ≈ 1.129, value close to that calculated 

directly, with a maximal daily reproduction number the last day of the contagiousness 

period. The distribution V equals (0.143, 0.342, 0.515) and its entropy H is equal to: 

H = −k=1,r Vk Log(Vk) = 0.29 + 0.37 + 0.34 = 1. 

In Appendix C, Table A1 gives the shape of the Rj’s distribution for 194 countries. 

3.5. Weekly Patterns in Daily Infected Cases 

Daily new infected cases are highly affected by weekdays, such that case numbers 

are lowest at the start of the week and increase afterwards. This pattern is observed at the 

world level, as well as at the level of almost every single country or USA state. Hence, in 

order to estimate biologically meaningful reproduction numbers, clean of weekly patterns 

due to administrative constraints, analyses have to be restricted to specific periods shorter 

than a week, or at rare occasions when patterns escape the administrative constraints. This 

weekly phenomenon occurs during exponential increase as well as decrease phases of the 

pandemic and during endemic periods in numbers of daily cases (Figure 6). In addition, 

the daily new infected case record is discontinuous for many countries/regions, which 

frequently publish, on Monday or Tuesday, a cumulative count for that day and the 

weekend days. For example, Sweden typically publishes only four numbers over one 

week, the one on Tuesday cumulating cases for Saturday, Sunday and the two first 

weekdays. Discontinuity in records further limits the availability of data enabling detailed 

analyses of daily reproduction numbers and can be considered as extreme weekday 

effects on new case records due to various administrative constraints. 

We calculated Pearson correlation coefficients r between a running window of daily 

new case numbers of 20 consecutive days and a running window of identical duration 

with different intervals between the two running windows. These Pearson correlation 

coefficients r typically peak with a lag of seven days between the two running windows. 

The mean of these correlations are for each day of the week from Tuesday (data 

making up for the weekend underestimation) to Monday: 0.571, 0.514 (0.081), 0.383 

(0.00008), 0.347 (0.000003), 0.381 (0.000006), 0.468 (0.000444) and 0.558 (0.03916), with, in 

parentheses, the p-value of the one-tailed paired t-test showing that the correlation 

observed with running windows starting Tuesday are more than the others (see also 

supplementary material). This could reflect a biological phenomenon of seven infection 

days. However, examination of the frequency distributions of lags for r maxima reveals, 

besides the median lag at 7 days, local maxima for multiples of 7 (14, 21, 28, 35, etc.). About 

50 percent of all local maxima in r involve lags that are multiples of seven (seven 

included). 

This excludes a biological causation, except if data periodicity comes from an 

entrainment by the weekly “Zeitgeber” of census, near the duration of the contagiousness 

interval. We tried to control for weekdays using two methods, and combinations thereof. 

For the first method, we calculated z-scores for each weekday, considering the mean 

number of cases for each weekday, and subtracted that mean from the observed number 

for a day (Figure 7). This delta was then divided by the standard deviation of the number 

of cases for that weekday. The mean and standard variation are calculated across the 

whole period of study for each weekday. 

The second method implies data smoothing using a running window of 5 

consecutive days, where the mean number of new cases calculated across the five days is 

subtracted from the number of new cases observed for the third day. Hence, data for a 

given day are compared to a mean including two previous, and two later days (Figure 8). 
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Figure 7. Confirmed world daily new cases (from [30]) as a function of days since 26 February until 23 August 2020 + 

indicates Sundays, X indicates Mondays. 

 

Figure 8. Z-transformed scores of confirmed world daily new cases [30], from Figure 6, as a function of days since 26 

February 2020 until 23 August 2020 + indicates Sundays, X indicates Mondays. Z-transformations are specific to each 

weekday. 

We constructed two further datasets, where z-scores are applied in the first to data 

after smoothing from the second method and are applied in the second data after 

smoothing from the first method (not shown) (Figures 9 and 10). 
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Figure 9. Smoothed confirmed world daily new cases [30], from Figure 7, as a function of days since 26 February 2020 

until 23 August 2020 + indicates Sundays, X indicates Mondays. For each specific day j, the mean number of confirmed 

daily new cases calculated for days j − 1, j − 2, j, j + 1 and j + 2 is subtracted from the number for day j. 

. 

Figure 10. Smoothed confirmed world daily new cases [30] applied to z-scores from Figure 8, as a function of days since 

26 February 2020 until 23 August 2020 + indicates Sundays, X indicates Mondays. Z-transformations are specific to each 

weekday. For specific day j, the mean number of confirmed new cases calculated for days j − 1, j − 2, j, j + 1, j + 2 is subtracted 

from the number for day j. 
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These four datasets from daily new cases database [30] transformed according to 

different methods and combinations thereof designed to control for weekday were 

analysed using the running window method. Despite attempts at controlling for weekday 

effects, the median lag was always seven days across all four transformed datasets, and 

local maxima in lag distributions were multiples of seven. After data transformations, 

about 50 percent of all local maxima were lags that are multiples of seven, seven included. 

Visual inspection of plots of these transformed data versus time for daily new 

infected cases from the whole world shows systematic local biases in daily new infected 

cases (after transformation) on Sundays and Mondays, for all four transformed datasets, 

with Sundays and/or Mondays as local minima and/or local maxima, according to which 

method or combination thereof was applied to the data. Hence, the methods we used 

failed to neutralize the weekly patterns in daily new cases due to administrative 

constraints. This issue highly limits the data available for detailed analyses of daily new 

cases aimed at estimating biologically relevant estimates of reproduction numbers at the 

level of short temporal scales. 

By smoothing on five consecutive days of raw data (confirmed world daily new 

infected cases [24]) and applying the z-transformation, we obtain a better result in Figure 

11 than in Figure 10 in order to neutralize the weekly pattern. The reason is that the 

smoothing largely eliminates the counting defect during weekends due either to fewer 

hospital admissions and/or less systematic PCR tests or to a lack of staff at the end of the 

week to perform the counts. 

 

Figure 11. Z-transformed scores of smoothed confirmed world daily new cases [30] smoothed data from Figure 9, as a 

function of days since 26 February 2020 until 23 August 2020. + indicates Sundays, X indicates Mondays. Z-transformations 

are specific to each weekday. 
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4. Discussion 

The duration of the contagiousness period, as well as the daily virulence, are not 

constant over time. Three main factors, which are not constant during a pandemic, can 

explain this: 

- In the virus transmitter, the transition between the mechanisms of innate (the first 

defense barrier) and adaptive (the second barrier) immunity may explain a transient 

decrease in the emission of the pathogenic agent during the phase of contagiousness 

[15], 

- In the environmental transmission channel, many geophysical factors that vary over 

time can influence the transmission of the virus (temperature, humidity, altitude, 

etc.) [4–8], 

- In the recipient of the virus, individual or public policies of prevention, protection, 

eviction or vaccination, which evolve according to the epidemic severity and the 

awareness of individuals and socio-political forces, can change the sensitivity of the 

susceptible individuals [32]. 

It is therefore very important to seek to estimate the average duration of the period 

of contagiousness of individuals and the variations, during this phase of contagiousness, 

of the associated daily reproduction numbers [33–39]. If the duration of the 

contagiousness phase is more than 3–5 days, for example ±7 days, the periodicity of seven 

days observed for the new daily cases could result of an entrainment of the dynamics of 

new cases driven by the social “Zeitgeber” represented by the counting of new cases, less 

precise during the weekend (probably underestimated in many countries not working at 

this time). That questions the deconvolution over 3 and 5 days, giving some negative Rj. 

In a future work, we will compare our results with those obtained by deconvolutions on 

contagiousness durations between 3 and 12 days in order to obtain possibly more realistic 

values for the Rj’s, and hence, have perhaps a double explanation for the 7 days 

periodicity, both sociological and biological. Before this future work, we have extended 

our study using a duration r = 3 of contagiousness to r = 7. The results are given in 

Appendix B: they show the same existence of identical variations of U-shape type but they 

specify the values of Rj’s, more often positive and of more realistic magnitude, while 

keeping a sum approximately equal to R0. 

Rhodes and Demetrius have pointed out the interest of the distribution of the daily 

reproduction numbers [24] with respect to the classical unique R0, even time-dependent 

[25]. In particular, they found that this distribution was generally not uniform, which we 

have confirmed here by showing many cases where we observe the biphasic form of the 

virulence already observed in respiratory viruses, such as influenza. The entropy of the 

distribution makes it possible to evaluate the intensity of its corresponding U-shape. This 

entropy is high if the daily reproduction numbers are uniform, and it is low if the 

contagiousness is concentrated over one or two days. If some Rj are negative, it is still 

possible to calculate this uniformity index, by shifting their distribution by a translation 

equal to the inverse of the negative minimum value. 

We have neglected in the present study the natural birth and death rates by 

supposing them identical, but we could have taken into account the mortality due to the 

COVID-19. The discrete dynamics of new cases can be considered as Leslie dynamics 

governed by the matrix equation: 

Xj = L Xj−1, 

where Xj is the vector of the new cases living at day j and L is the Leslie matrix given by: 
where Xj is the vector of the new cases living at day j and L is the Leslie matrix given by: 
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L =

[
 
 
 
 
 
R1 R2 R3 … …
b1 0 0 … …
0 b2 0 … …
⋮ ⋮ ⋱ … …
⋮ ⋮ ⋮ ⋱ …
0 0 0 … br−1

    

R𝑟

0
0
⋮
⋮
 0 ]

 
 
 
 
 

 and Xj−1 = 

[
 
 
 
 
 
 
Xj−1

Xj−2

Xj−3

⋮
⋮

Xj−r]
 
 
 
 
 
 

,  

where bj = 1 − μj ≤ 1,  i = 1, ..., r, is the recovering probability between days j and j + 1. 

The dynamical stability for L2 distance to the stationary infection age pyramid P = 

limj Xj/i=j,j−r+1Xi is related toλ − λ′, the modulus of the difference between the dominant 

and sub-dominant eigenvalues of L, namely λ = eR and λ′, where R is the Malthusian 

growth rate and P is the left eigenvector of L corresponding to λ. The dynamical stability 

for the distance (or symmetrized divergence) of Kullback–Leibler to P considered as 

stationary distribution is related to the population entropy H [26–32], which is defined if 

lj = ∏i=1,j−1 bi and pj = ljRj/λj, as follows: 

H = −j=1,rpj Log(pj)/j=1,r jpj (18) 

The mathematical characterization by the population entropy defined in Equation 

(16) of the stochastic stability of the dynamics described by Equation (16) has its origin in 

the theory of large deviations [40–42]. This notion of stability pertains to the rate at which 

the system returns to its steady state after a random exogenous and/or endogenous 

perturbation and it could be useful to quantify further the variations of the distribution of 

the daily reproduction numbers observed for many countries [43–53]. 

In summary, the main limitations of the present study are: 

- The hypothesis of spatio-temporal stationarity of the daily reproduction numbers is 

no longer valid in the case of rapid geo-climatic changes, such as sudden temperature 

rises, which decrease the virulence of SARS CoV-2 [4], or mutations affecting its 

transmissibility. 

- The still approximate knowledge of the duration r of the period of contagiousness 

necessitates a more in-depth study at variable durations, by retaining the value of r, 

which makes all of the daily reproduction numbers positive. 

- The choice of uniform random fluctuations of the daily reproduction numbers is 

based on arguments of simplicity. A more precise study would undoubtedly lead to 

a unimodal law varying throughout the contagious period, the average of which 

following a U-shaped curve, of the type observed in the literature on a few real 

patients [10,54–58]. 

5. Conclusions and Perspectives 

Concerning contagious diseases, public health physicians are constantly faced with 

four challenges. The first concerns the estimation of the basic reproduction number R0. 

The systematic use of R0 simplifies the decision-making process by policymakers, advised 

by public health authorities, but it is too much of a caricature to account for the biology 

behind the viral spread. We have observed in the COVID-19 outbreak that it was non-

constant during an epidemic wave due to exogenous and endogenous factors influencing 

both the duration of the contagiousness period and the daily transmission rate during this 

phase [54–56]. Then, the first challenge concerns the estimation of the mean duration of 

the infectious period for infected patients. As for the transmission rate, realistic 

assumptions made it possible to obtain an upper limit to this duration [45], mainly due to 

the lack of viral load data in large patient cohorts (see Figure 11 in Appendix A from [57–

59]), in order to better guide the individual quarantine measures decided by the 

authorities in charge of public health. This upper bound also makes it possible to obtain a 

lower bound for the percentage of unreported infected patients, which gives an idea of 

the quality of the census of cases of infected patients, which is the second challenge facing 

specialists of contagious diseases. The third challenge is the estimation of the daily 

reproduction number over the contagiousness period, which was precisely the topic of 
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the present paper. A fourth interesting challenge for this community is the extension of 

the methods developed in the present paper to the contagious non-infectious diseases (i.e., 

without causal infectious agent), such as social contagious diseases [59–61], the best 

example being that of the pandemic linked to obesity, for which many concepts and 

modelling methods remain available. 

Eventually, our approach using marginal daily reproduction numbers involving a 

certain level of noise in the dynamics of new daily infected cases defines a stochastic 

framework which describes phenomenologically the exponential phase as our results 

show for countries such as France, Russia, Sweden, etc. This stochastic modelling allows 

a better understanding of the role of the contagiousness period length and of the 

heterogeneity (e.g., the U-shape) of its daily reproduction number distribution in the 

COVID-19 outbreak dynamics [62–65]. On the medical level, the important message about 

the U-shape is that COVID-19 is similar to other viral diseases, such as influenza, with 

two successive reactions from the two immune defense barriers, innate cellular immunity 

first, which is not sufficient if symptoms persist, then adaptive immunity (cellular and 

humoral), which results in a transient decrease in contagiousness between the two phases. 

The medical recommendations are, in this case, never to take a transient improvement for 

a permanent disappearance of the symptoms. One could indeed, for a public health use, 

be satisfied after estimating the sum of the Rj’s, that is to say, R0 or the effective Re. For an 

individual health use, it is important to know the existence of a minimum of the Rj’s, which 

generally corresponds to a temporary clinical improvement, after the partial success of 

the innate immune defenses. This makes it possible to prevent the patient from continuing 

to respect absolute isolation and therapeutic measures, even if a transient improvement 

occurs; otherwise, they risk, as in the flu, a bacterial pulmonary superinfection (a frequent 

cause of death in the case of COVID-19). On the theoretical level, the interest of the 

proposed method is its generic character: it can be applied to all contagious diseases, 

within the very general framework of Equation (1), which makes no assumption about the 

spatial heterogeneity or the longitudinal constancy of the daily reproduction numbers. 

The deconvolution of Equation (1) poses a new theoretical problem when it is offered in 

this context, and our future research will propose new avenues of research in this field. 
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Appendix A 

Figure A1 shows a U-shaped evolution for the viral load in real [57] and in simulated 

[58] COVID-19 patients, and in real influenza-infected animals for the viral load and the 

body temperature [59]. 
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Figure A1. (a) Viral load in real COVID-19 patients [10], (b) in influenza-simulated patients [57] and (c) in real influenza-

infected animals (red curve [58]), and (d) body temperature in real influenza-infected animals (red curve [58]). 

Appendix B 

1. Beginning of the pandemic in France from 21 February 2020 to 9 March 2020 

The numbers of new cases are: 

21 February 2, 4, 19, 18, 39, 27, 56, 20, 67, 126, 209, 269, 236, 185 9 March 

Then, the matrix M is defined by: 

M =

[
 
 
 
 
 
 
236 269 209 126
269 209 126 67
209 126 67 20
126 67 20 56
67 20 56 27
20 56 27 39
56 27 39  18

    

67 20 56
20 56 27
56 27 39
27 39  18
39  18 19
 18 19 4
19 4 2 ]

 
 
 
 
 
 

  

and we have: 

M−1 = 

[
 
 
 
 
 
 
 −5.884 × 10−5 5.399 × 10−5 −1.555 × 10−4 7.241 × 10−3

5.399 × 10−5 −1.714 × 10−4 7.324 × 10−3 −6.862 × 10−3

−1.555 × 10−4 7.324 × 10−3 −6.862 × 10−3 −1.177 × 10−2 
7.241 × 10−3 −6.862 × 10−3 −1.177 × 10−2 2.164 × 10−2

−5.146 × 10−3 −1.139 × 10−2 1.592 × 10−2 −6.654 × 10−3

−1.255 × 10−2 1.560 × 10−2 −2.441 × 10−3 −1.078 × 10−2

1.277 × 10−2 −3.242 × 10−3 −4.780 × 10−4   9.514 × 10−3

    

−5.146 × 10−3 −1.255 × 10−2 1.277 × 10−2

−1.139 × 10−2 1.560 × 10−2 −3.242 × 10−3

1.592 × 10−2 −2.441 × 10−3 −4.780 × 10−4

 −6.654 × 10−3 −1.078 × 10−2 9.514 × 10−3

−3.692 × 10−3 2.797 × 10−2 2.637 × 10−2

2.797 × 10−2 2.555 × 10−2 −3.125 × 10−2

2.637 × 10−2 −3.125 × 10−2 −7.828 × 10−2]
 
 
 
 
 
 

 
 

Because, X =  

[
 
 
 
 
 
 
185
236
269
209
126
67
20 ]

 
 
 
 
 
 

, hence R = M−1 X = 

[
 
 
 
 
 
 

0.239
 0.052
−0.783
−0.295
 1.189
3.060
3.122 ]

 
 
 
 
 
 

 and we can represent the evolution 

of Xj’s on Figure A2. 
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Figure A2. Values of the daily reproduction numbers Rj along the period of contagiousness of length 

7 days. 

The evolution of the Xj’s along the period of contagiousness shows at day 4 a sharp 

increase and a saturation. 

2. Exponential phase in France from 25 October 2020 to 7 November 2020 

The numbers of new cases are: 

7 November 83,334, 58,581, 56,292, 39,880, 35,912, 51,104, 45,258, 33,447, 46,185, 

44,705, 34,194, 31,360, 25,123, 48,808 25 October 

Then, the matrix M is defined by: 

M =

[
 
 
 
 
 
 
58,581 56,292 39,880 35,912
56,292 39,880 35,912 51,104
39,880 35,912 51,104 45,258
35,912 51,104 45,258 33,447
51,104 45,258 33,447 46,185
45,258 33,447 46,185 44,705
33,447 46,185 44,705 34,194

    

51,104 45,258 33,447
45,258 33,447 46,185
33,447 46,185 44,705
46,185 44,705 34,194
144,705 34,194 31,360
34,194 31,360 25,123
31,360 25,123 48,808]

 
 
 
 
 
 

  

and we obtain  

R = 

[
 
 
 
 
 
 

2.867
−1.231
1.351

−2.705
−0.155
0.223
0.769 ]

 
 
 
 
 
 

  

The Figure A3 shows an evolution of the Xj’s with a U-shape on the three first days 

along the period of contagiousness with a sum of Rj’s equal to 1.11, close to the effective 

reproduction number Re = 1.13 [28]. 
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Figure A3. Values of the daily reproduction numbers Rj along the period of contagiousness of length 

7 days. 

3. Beginning of the pandemic in the USA from 21 February 2020 to 5 March 2020 

The number of new cases are: 

21 February 20, 0, 0, 18, 4, 3, 0, 3, 5, 7, 25, 24, 34, 63 5 March 

Then, we have: 

R = 

[
 
 
 
 
 
 

0.466
0.584
1.547

−1.044
0.174
0.297
0.692 ]

 
 
 
 
 
 

  

The evolution of the Xj’s shows in Figure A4 a U-shape on day 4 with a sum of Rj’s 

equal to 2.72, less than the effective reproduction number Re = 3.27 [28]. 

 

Figure A4. Values of the daily reproduction numbers Rj along the period of contagiousness of length 

7 days. 
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4. USA exponential phase from 1 November 2020 to 4 November 2020 

The numbers of new cases are: 

N 14 163,961, 183,792, 167,665, 150,535, 159,565, 120,924, 108,248, 135,385, 136,292, 

129,663, 113,709, 105,745, 86,030, 75,285 N 1 

Then, we have: 

R = 

[
 
 
 
 
 
 

0.020
−0.439
0.583

−0.367
0.497

−0.056
1.113 ]

 
 
 
 
 
 

  

The evolution of the Xj’s shows in Figure A5 a U-shape on the four last days with a 

sum of Rj’s equal to 1.35, close to the effective reproduction number Re = 1.24 [28]. 

 

Figure A5. Values of the daily reproduction numbers Rj along the period of contagiousness of length 

7 days. 

5. Beginning of the pandemic in the UK from 23 February 2020 to 7 March 2020 

The number of new cases are: 

23 February 4, 0, 0, 0, 3, 4, 3, 12, 3, 11, 33, 26, 43, 41 7 March 

Then, we have: 

R = 

[
 
 
 
 
 
 
−0.388
−1.189
1.334
1.960
4.862

−0.170
3.479 ]

 
 
 
 
 
 

  

Figure A6 shows an evolution of the Xj’s with a U-shape on the three last days along 

the period of contagiousness with a sum of Rj’s equal to 9.88, higher than the effective 

reproduction number Re = 2.95 [28]. 
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Figure A6. Values of the daily reproduction numbers Rj along the period of contagiousness of length 

7 days. 

6. UK exponential phase from 17 October 2020 to 30 October 2020 

The numbers of new cases are: 

30 October 24,350, 23,014, 24,646, 22,833, 20,843, 19,746, 22,961, 20,484, 21,195, 26,624, 

21,282, 18,761, 16,943, 16,133 17 October 

Then, we have: 

R = 

[
 
 
 
 
 
 

0.020
0.334
0.462

−0.098
−0.134
−0.043
0.526 ]

 
 
 
 
 
 

  

Figure A7 shows an evolution of the Xj’s with a U-shape on the five last days along 

the period of contagiousness with a sum of Rj’s equal to 1.07, close to the effective 

reproduction number Re = 1.06 [28]. 

 

Figure A7. Values of the daily reproduction numbers Rj along the period of contagiousness of length 

7 days. 

Appendix C 

Table A1 is built from new COVID-19 cases at the start of the first and second waves 

for 194 countries; it shows 42 among these 194 countries having a U-shape evolution of 

their daily Rj’s twice, for 12.12 ± 6 expected with 0.95 confidence (p < 10−12), and 189 times, 

a U-shape evolution for all countries and waves (397), for 99.3 ± 9 expected with 0.95 
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confidence (p < 10−24). Hence, the U-shape is the most frequent evolution of daily Rj’s, 

which confirms the comparison with the behavior of seasonal influenza (see Section 2.2). 

Table A1. Calculation of the daily Rj’s and shape of their distribution for 194 countries and for the two first waves. 

 All Countries First Wave  Second Wave  

No Country Name R0 Rj’s U-Shape R0 Rj’s U-Shape  

1 AFGHANISTAN 0.65 0.17; 0.09; 0.39 YES 0.04 −1.38; −0.36; 1.78 INCR 

 

2 ALGERIA 1.25 3.93; −6.21; 3.53 YES 0.91 1.28; −1.06; 0.69 YES 

3 ARUBA 5.46 10.31; −39.32; 34.47 YES 1.10 1.54; −1.60; 1.16 YES 

4 ANDORRA 1.36 1.00; 0.79; −0.43 DECR 0.12 4.34; −1.63; −2.59 DECR 

5 ANGOLA 0.63 0.33; 1.42; −1.12 INV 1.70 9.22; −1.58; −5.94 DECR 

6 ANTIGUA 1.92 0.00; 1.25; 0.67 INV 2.13 −0.40; 1.33; 1.20 INV 

7 ALBANIA 0.96 0.48; 0.50; −0.02 INV 0.66 1.98; −0.56; −0.76 DECR 

8 ARGENTINA 0.73 0.57; −1.28; 1.44 YES 0.36 1.27; 0.75; −1.66 DECR 

9 ARMENIA 4.43 17.99; −36.99; 23.43 YES 0.86 1.41; −0.97; 0.42 YES 

10 AUSTRALIA 2.79 −1.02; 3.47; 0.34 YES 1.50 −0.88; 0.68; 1.70 INCR 

11 AUSTRIA 1.17 −1.78; −0.05; 3.00 INCR 2.08 0.62; −3.55; 5.01 YES 

12 AZERBAIJAN 1.16 1.23; −1.32; 1.25 YES 0.37 10.36; −6.45; −3.54 YES 

13 BAHAMAS 0.57 −0.13; −0.98; 1.68 YES 1.22 0.22; −0.86; 1.86 YES 

14 BAHRAIN 1.10 −0.74; 0.28; 1.56 INCR 1.14 1.98; −2.69; 1.85 YES 

15 BANGLADESH 1.04 2.37; −2.97; 1.64 YES 0.99 0.86; −0.69; 0.82 YES 

16 BARBADOS 1.86 0.86; −0.64; 1.64 YES 1.14 0.22; −0.81; 1.73 YES 

17 BELARUS 1.57 −2.37; −4.58; 8.52 YES 1.07 −0.33; 0.24; 1.16 INCR 

18 BELGIUM 0.43 11.66; −15.63; 4.41 YES 2.23 1.17; −2.39; 3.45 YES 

19 BELIZE 0.99 0.80; 0.42; −0.23 DECR 0.51 1.77; −0.21; −1.05 DECR 

20 BENIN 0.85 0.81; 0.47; −0.43 DECR 0.85 1.17; 0.22; −0.54 DECR 

21 BHUTAN 15.00 14.00; 15.00; −14.00 INV 1.08 0.80; 0.57; −0.29 DECR 

22 BOLIVIA 2.17 8.47; −1.17; −5.13 DECR 1.61 0.96; −0.30; 0.95 YES 

23 BOSNIA 0.09 −1.06; −1.05; 2.20 INCR 1.56 −0.57; −0.51; 2.64 INCR 

24 BOTSWANA 28.47 0.22; 0.00; 28.25 YES 28.43 0.22; −0.05; 28.26 YES 

25 BRAZIL 0.77 0.31; 1.08; −0.62 INV 0.46 1.21; 0.16; −0.91 DECR 

26 BRUNEI 1.08 0.10; −0.15; 1.13 YES 1.00 1.00; −1.00; 1.00 YES 

27 BULGARIA 5.06 14.73; −66.02; 56.35 YES 0.75 1.34; −0.98; 0.39 YES 

28 BURKINA FASO 1.08 0.72; −0.34; 0.70 YES 0.94 0.31; 0.24; 0.39 YES 

29 BURUNDI 1.33 1.33; −0.67; 0.67 YES 2.18 0.53; 1.80; −0.15 INV 

30 CABO VERDE 0.82 −0.08; −0.26; 1.16 YES 0.19 0.56; 1.37; −1.74 INV 

31 CAMBODIA 0.34 0.08; 0.25; 0.01 INV 0.27 0.06; 0.15; 0.06 INV 

32 CAMEROON 2.17 2.36; 1.25; −1.44 DECR 2.48 0.50; −0.25; 2.23 YES 

33 CANADA 1.10 −0.55; −0.72; 2.37 YES 0.44 2.36; −0.44; −1.48 DECR 

34 CAR 1.66 −0.07; 0.64; 1.09 INCR 0.33 0.44; −0.22; 0.11 YES 

35 CHAD 1.19 0.77; −1.15; 1.57 YES 0.77 1.19; 0.25; −0.67 DECR 

36 CHILE 1.00 0.72; 0.17; 0.11 DECR 1.64 0.37; −4.45; 5.72 YES 

37 CHINA 1.10 0.90; −0.49; 0.69 YES 0.87 1.16; 0.60; −0.89 DECR 

38 COLUMBIA 1.00 1.75; −0.86; 0.11 YES 1.47 −1.14; 3.08; −0.47 INV 

39 COMOROS 3.75 0.00; −2.75; 6.5 YES 1.65 −0.58; 1.24; 0.99 INV 

40 CONGO DEM  0.03 −0.37; −0.39; 0.79 YES 0.88 0.66; 0.74; −0.52 INV 

41 CONGO REP 0.92 0.92; 0.92; −0.92 DECR 0.39 −0.12; 0.19; 0.32 INCR 

42 COSTA RICA 0.50 −2.79; −3.84; 7.13 YES 1.26 1.21; −0.85; 0.90 YES 

43 COTE D’VOIRE 1.18 −0.49; −0.63; 2.30 YES 2.09 4.32; −7.09; 4.86 YES 

44 CROTIA 0.75 0.53; 0.79; −0.57 INV 0.57 0.68; −0.64; 0.53 YES 

45 CUBA 0.48 −37.25; 16.17; 21.56 INCR 0.78 0.34; −0.73; 1.17 YES 

46 CURACAO 0.50 3.00; −1.00; −1.50 DECR 4.19 1.93; −4.01; 6.27 YES 

47 CYPRUS 0.69 0.27; 2.49; −2.07 INV 0.45 −0.42; 1.76; −0.89 INV 

48 CZECH  0.16 −0.16; 3.88; −3.56 INV 0.88 1.88; −1.41; 0.41 YES 

49 DENMARK 0.80 −0.11; 0.41; 0.50 INCR 0.64 −0.03; 4.65; −3.98 INV 

50 DJIBOUTI 0.17 1.23; 0.24; −1.30 DECR 0.36 0.64; 0.41; −0.69 DECR 

51 DOMINICAN  1.02 1.05; −0.31; 0.28 YES 1.57 0.32; −0.06; 1.31 YES 

52 DOMINICA 7.75 2.00; −4.00; 9.75 YES 0.67 −0.36; 0.72; 0.31 INV 

53 ECUADOR 1.46 −0.47; 1.06; 0.87 INV 1.14 0.73; −0.14; 0.55 YES 

54 EGYPT  0.84 0.30; 0.37; 0.17 INV 0.51 11.99; −3.76; −7.72 DECR 

55 EL SALVADOR 1.70 −0.20; 0.59; 1.31 INCR 0.66 −0.76; −14.49; 15.91 YES 

56 EQUITORIAL G. 0.38 0.85; −0.20; −0.27 DECR 1.48 0.81; −0.66; 1.33 YES 

57 ERITREA 1.18 1.44; −0.05; −0.21 DECR 0.80 1.02; 0.20; −0.42 DECR 

1
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58 ESTONIA 0.87 1.96; 0.82; −1.91 DECR 3.04 −0.70; −1.80; 5.54 YES 

59 ESWATINI 0.94 1.41; −1.42; 0.95 YES 0.71 −0.02; 1.52; −0.79 INV 

60 ETHIOPIA 0.80 −0.56; −1.45; 2.81 YES 1.24 0.34; 0.13; 0.77 YES 

61 FIJI  2.00 0.00; 1.00; 1.00 INCR 0.50 0.75; −0.50; 0.25 YES 

62 FINLAND 1.14 0.91; −0.42; 0.65 YES 2.41 0.56; −2.38; 4.23 YES 

63 FRANCE 1.17 0.82; 0.10; 0.25 YES 2.17 0.88; −0.86; 2.15 YES 

64 GABON 0.97 0.20; 0.47; 0.30 INV 0.19 −0.51; 0.00; 0.70  INCR 

65 GAMBIA 0.83 −0.25; 0.43; 0.65 INCR 0.37 −0.38; 0.00; 0.75 INCR 

66 GEORGIA 1.23 0.16; 0.43; 0.64 INCR 0.79 1.52; −0.49; −0.24 YES 

67 GERMANY 0.73 0.15; −1.04; 1.62 YES 0.79 1.15; −0.56; 0.20 YES 

68 GHANA 1.48 0.55; 0.70; 0.23 INV 0.62 0.13; −0.81; 1.30 YES 

69 GREECE 0.71 0.33; −0.27; 0.65 YES 0.71 0.95; 0.28; −0.52 DECR 

70 GRENADA 14.00 −5.00; 3.00; 16.00 INCR 0.10 −0.15; 0.00; 0.25 INCR 

71 GUADELOUPE 1.35 0.00; 0.76; 0.59 INV 1.35 0.00; 0.76; 0.59 YES 

72 GUATEMALA 0.25 2.01; −0.70; −1.06 YES 0.27 1.19; −0.11; −0.81 DECR 

73 GUIANA FRENCH 0.88 1.30; −0.38; −0.04 YES 0.43 0.99; 0.27; −0.83 DECR 

74 GUINEA 0.46 0.65; −0.56; 0.37 YES 1.68 0.21; 0.68; 0.79 INCR 

75 GUINEA BISSAU 1.14 0.06; 1.59; −0.51 INV 4.20 −0.11; 0.04; 4.27 INCR 

76 GUYANA 2.38 −3.45; −0.20; 6.03 INCR 4.23 −0.53; 0.58; 4.18 INCR 

77 HAITI 0.60 0.30; −0.13; 0.43 YES 0.61 0.32; 0.42; −0.13 INV 

78 HONDURAS 0.57   −2.94; 3.12; 0.39 INV 1.64 0.13; 0.54; 0.97 INCR 

79 HONGKONG 0.04 0.95; −0.69; −0.22 YES 0.24 2.50; −8.79; 6.53 YES 

80 HUNGARY 0.90 0.66; −0.12; 0.36 YES 1.93 1.91; −2.72; 2.74 YES 

81 ICELAND 2.28 −0.85; 3.93; −0.80 INV 0.66 0.84; 0.22; −0.40 NO 

82 INDIA 0.98 1.82; 0.53; −1.37 DECR 0.96 1.08; −0.57; 0.45 YES 

83 INDONESIA 0.95 0.67; 0.88; −0.60 INV 0.99 1.06; −0.03; −0.03 YES 

84 IRAN  1.04 1.73; −0.67; −0.02 YES 0.90 6.62; −6.62; 0.90 YES 

85 IRAQ 0.77 0.15; −0.35; 0.96 YES 0.96 0.77; −0.40; 0.59 YES 

86 IRELAND 2.16 −2.83; −5.64; 10.63 YES 1.12 1.12; −0.39; 0.39 YES 

87 ISRAEL 0.21 −1.39; 1.08; 0.52 INV 1.16 −0.16; 0.44; 0.88 INCR 

88 ITALY 1.04 2.24; −1.85; 0.65 YES 3.69 1.65; −7.89; 9.93 YES 

89 JAMAICA 0.43 0.13; 0.06; 0.24 YES 2.47 −0.34; 2.06; 0.75 INV 

90 JAPAN 1.02 0.69; 0.88; −0.55 INV 1.16 0.61; 0.42; 0.13 DECR 

91 JORDAN 2.53 10.82; −18.20; 9.91 YES 0.93 1.28; 0.57; −0.92 DECR 

92 KAZAKHSTAN 0.60 0.53; −5.45; 5.52 YES 2.06 −0.05; 2.37; −1.26 INV 

93 KENYA 1.14 0.05; 0.65; 0.44 INV 1.18 0.47; 1.34; −0.63 INV 

94 KOREA REP. 1.00 0.12; 0.87; 0.01 INV 1.04 0.60; −0.03; 0.47 YES 

95 KOSOVO 1.02 1.00; 1.02; −1.00 INV 0.99 1.31; −0.29; −0.03 YES 

96 KUWAIT 0.88 0.5; −0.34; 0.67 YES 1.10 0.58; −0.84; 1.36 YES 

97 KYRGYZSTAN 0.17 −0.73; 0.26; 1.64 INCR 1.05 0.28; −0.32; 1.09 YES 

98 LAO PDR  0.50 0.50; 0.50; −0.50 DECR 0.15 0.33; 0.74; −0.92 INV 

99 LATVIA 0.74 1.97; −0.76; −0.47 YES 0.50 0.40; −0.22; 0.32 YES 

100 LEBANON 1.03 0.57; 0.12; 0.34 YES 0.90 0.23; 0.06; 0.61 YES 

101 LESOTHO 7.08 −2.86; 7.22; 2.72 INV 1.42 0.37; 1.51; −0.46 INV 

102 LIBERIA 0.31 0.18; −0.04; 0.17 YES 4.56 0.14; 4.61; −0.19 INV 

103 LIBYA 0.96 0.19; −0.71; 1.48 YES 0.79 −0.42; 0.56; 0.65 INCR 

104 LITHUANIA 0.83 0.56; 0.11; 0.16 YES 2.49 −0.90; −0.52; 3.91 INCR 

105 LUXEMBOURG 0.24 −8.55; −3.75; 12.54 INCR 1.48 1.16; −0.91; 1.23 YES 

106 MACAO 0.29 1.14; 2.29; −3.14 INV - - - 

107 MADAGASCAR 0.94 0.61; −0.16; 0.49 YES 0.75 0.38; −1.54; 1.91 YES 

108 MALAWI 1.12 −0.23; 0.53; 0.82 INCR 6.46 −0.41; 0.99; 5.88 INCR 

109 MALAYSIA 1.25 0.38; 2.79; −1.92 INV 1.30 −0.57; 1.82; 0.05 INV 

110 MALDIVES 0.83 0.60; −0.53; 0.76 YES 1.05 −0.27; 0.70; 0.62 INV 

111 MALI 0.64 0.59; 0.42; −0.37 DECR 7.78 −2.64; −4.96; 15.38 YES 

112 MALTA 1.06 1.15; 0.24; −0.33 DECR 0.99 −0.73; 1.81; −0.09 INV 

113 MAURITANIA 1.76 −0.94; 0.29; 2.41 INCR 1.14 0.73; −0.41; 0.82 YES 

114 MAURITIUS 4.49 −4.05; 0.36; 8.18 INCR 0.35 1.41; 0.53; −1.59 DECR 

115 MAYOTTE 5.46 −9.46; −2.50; 17.42 INCR 1.05 0.72; −0.17; 0.50 YES 

116 MEXICO 0.86 −1.39; 3.07; −0.82 INV 2.53 −0.55; 0.10; 2.98 INCR 

117 MOLDOVA 1.03 2.73; −0.67; −1.03 DECR 0.36 1.27; 0.66; −1.57 DECR 

118 MONACO 3.15 0.52; −1.93; 4.56 YES 0.54 1.02; −0.12; −0.36 DECR 

119 MONGOLIA 10.25 1.25; 19.25; −10.25 INV 0.68 0.91; 0.25; −0.48 DECR 

120 MONTENEGRO 1.37 2.94; −3.90; 2.33 YES 0.66 2.36; 0.26; −1.96 DECR 

121 MOROCCO 0.90 0.36; 1.41; −0.87 INV 0.95 0.95; −0.15; 0.15 YES 
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122 MOZAMBIQUE 0.72 0.92; 0.001; −0.20 DECR 0.70 2.46; −2.45; 0.69 YES 

123 MYANMAR 1.12 −0.75; 1.07; 0.80 INV 1.15 −1.36; −2.17; 4.68 YES 

124 NAMIBIA 0.68 1.37; −1.82; 1.13 YES 1.22 −0.26; 0.95; 0.53 INV 

125 NEPAL 0.74 0.35; 0.76; −0.37 INV 0.78 0.11; 0.58; 0.09 INV   

126 NETHERLAND 1.19 0.11; 0.11; 0.97 YES 1.04 1.05; −0.99; 0.98 YES 

127 NEW CALEDONIA 5.00 −2.00; 2.00; 5.00 YES 1.00 1.00; −1.00; 1.00 YES 

128 NEW ZEALAND 0.74 2.30; −3.40; 1.84 YES 0.72 −0.52; 0.43; 0.81 INCR 

129 NICARAGUA 0.97 −0.03; 0.97; 0.03 INV 1.02 0.86; 0.14; 0.02 DECR 

130 NIGER 0.63 0.28; −0.12; 0.47 YES 2.21 −0.14; 0.39; 1.96 INCR 

131 NIGERIA 1.13 0.16; 0.39; 0.58 INCR 1.02 1.38; −0.65; 0.29 YES 

132 MACEDONIA 0.74 1.83; −1.16; 0.07 YES 0.74 1.26; −0.10; −0.42 DECR 

133 NORWAY 0.77 −0.19; −0.61; 1.57 YES 2.13 6.02; −10.80; 6.91 YES 

134 OMAN 3.70 0.39; 0.12; 3.19 YES 9.80 −16.87; 39.41; −12.74 INV 

135 PAKISTAN 1.22 −0.61; 1.07; 0.76 INV 1.19 0.55; −0.11; 0.75 YES 

136 PALESTINE 0.96 −0.18; −0.23; 1.37 YES 1.06 −0.21; 0.18; 1.09 INCR 

137 PANAMA 0.96 0.16; 0.56; 0.24 INV 0.79 1.22; −0.16; −0.27 DECR 

138 PAPAU NEW G. 0.49 0.35; −1.96; 2.10 YES 0.88 −0.39; 0.04; 1.23 INCR 

139 PARAGUAY 0.59 −1.52; 1.90; 0.21 INV 1.20 −3.20;3.06; 1.34 INV 

140 PERU 0.89 8.30; −2.47; −4.94 DECR 0.53 3.98; −4.72; 1.27 YES 

141 PHILLIPPINES 1.15 0.89; −0.08; 0.34 YES 1.54 0.07; 2.84; −1.37 INV 

142 POLAND 0.92 2.32; −1.89; 0.49 YES 1.31 1.71; −1.63; 1.23 YES 

143 POLYNESIA 0.66 0.22; 0.20; 0.24 YES 0.21 −1.05; 1.09; 0.17 INV 

144 PORTUGAL 1.56 −1.34; −8.29; 11.19 YES 3.89 1.13; −4.00; 6.76 YES 

145 QATAR 0.80 −0.84; −1.99; 3.63 YES 1.03 0.62; 0.61; −0.20 INV 

146 ROMANIA 0.88 0.90; 0.06; −0.08 DECR 0.95 1.23; −0.48; 0.20 YES 

147 RUSSIA  1.07 1.16; −1.00; 0.91 YES 0.87 0.83; −5.77; 5.81 YES 

148 RWANDA 1.80 3.20; 2.20; −3.60 DECR 0.14 3.93; −2.75; −1.04 YES 

149 SAO TOME  1.44 0.44; 0.64; 0.36 INV 2.67 2.25; −3.45; 3.87 YES 

150 SAN MARINO 5.10 0.28; 1.14;3.68 INCR 0.26 −0.05; 2.32; −2.01 INV 

151 SAUDI ARABIA 0.90 −1.70; 2.94; −0.34 INV 0.98 −1.05; 0.54; 1.49 INCR 

152 SENEGAL  0.72 −0.19; 1.48; −0.57 INV 1.59 0.73; 0.23; 0.63 YES 

153 SERBIA 1.62 −0.40; 0.47; 1.55 INCR 0.82 2.02; −0.94; −0.26 YES 

154 SEYCHELLES 0.48 0.30; 0.51; −0.33 INV 0.54 0.38; −0.19; 0.35 YES 

155 SIERRA LEONE 2.23 −2.93; −0.80; 5.96 INCR 1.37 0.95; −1.25; 1.67 YES 

156 SINGAPORE 1.33 1.15; 0.51; −0.33 DECR 2.83 1.61; −2.44; 3.66 YES 

157 SLOVAK  0.99 −2.67; 1.90; 1.76 INV 0.74 0.97; −0.73; 0.50 YES 

158 SLOVENIA 0.75 1.56; −0.71; −0.10 DECR 0.64 1.47; −0.47; −0.36 YES 

159 SOMALIA 1.18 −0.16; 1.51; −0.17 INV 0.29 0.86; 0.57; −1.14 DECR 

160 SOUTH AFRICA 0.87 0.22; 0.73; −0.08 INV 1.49 0.20; −0.04; 1.33 YES 

161 SOUTH SUDAN 0.58 0.10; 0.16; 0.32 INCR 1.72 0.63; −0.63; 1.72 YES 

162 SPAIN 0.38 −0.18; 0.27; 0.29 INCR 0.51 1.21; −0.86; 0.16 YES 

163 SRI LANKA 2.13 2.73; −0.75; 0.15 YES 0.79 0.42; 1.00; −0.63 INV 

164 ST KITTS NEVIS 2.00 0.00; 1.00; 1.00 INCR 1.07 0.25; 0.18; 0.64 YES 

165 ST LUCIA 1.13 −0.53; −0.04; 1.70 INCR 1.00 1.00; −1.00; 1.00 YES 

166 ST VINCENT 0.04 −0.29; 0.24; 0.10 INV 0.69 −0.24; 0.35; 0.58 INCR 

167 SUDAN 0.36 −1.46; 2.34; −0.52 INV 2.00 0.00; 2.00; 0.00 INV 

168 SURINAME 10.34 2.70; 18.77; −11.13 INV 1.63 2.95; −1.25; −0.07 YES 

169 SWEDEN 0.56 0.58; −1.20; 1.18 YES 1.21 0.67; −0.91; 1.45 YES 

170 SWITZERLAND 1.21 1.25; 0.13; −0.17 DECR 0.28 0.89; 1.18; −1.79 INV 

171 SYRIA 1.43 1.39; 4.13; −4.09 INV 0.18 0.31; −0.68; 0.55 YES 

172 TAIWAN 1.88 −0.13; 1.38; 0.63 INV 0.66 −5.21; 13.83; −7.96 INV 

173 TAJIKISTAN 1.02 0.71; −0.60; 0.91 YES 1.49 1.83; −0.17; −0.17  YES 

174 TANZANIA 0.91 −1.50; 0.18; 2.23 INCR 1.89 3.42; 14.26; −15.79 INV 

175 THAILAND 0.69 0.42; 0.07; 0.20 YES 2.71 −1.77; −0.75; 5.23 INCR 

176 TIMOR LESTE  5.00 1.00; 0.00; 4.00 YES 1.33 0.00; 1.00; 0.33 INV 

177 TOGO 0.08 6.05; −6.18; 0.21 YES 1.14 0.18; 0.09; 0.87 YES 

178 TRINIDAD 0.32 −0.26; 1.46; −0.88 INV 0.55 0.26; 0.03; 0.26 YES 

179 TUNISIA 1.53 0.77; −0.04; 0.80 YES 2.77 −3.21; −2.41; 8.39 INCR 

180 TURKEY 1.15 −1.50; −1.13; 3.78 INCR 2.21 19.82; −47.90; 30.29 YES 

181 UAE 0.97 2.07; −1.11; 0.01 YES 1.15 1.25; −0.64; 0.54 YES 

182 UGANDA 0.95 0.87; −0.37; 0.45 YES 0.64 0.44; −0.06; 0.26 YES 

183 UKRAINE 0.96 1.35; −1.04; 0.65 YES 0.30 3.10; 1.07; −1.73 DECR 

184 UK 0.76 −0.02; −0.76; 1.54 YES 1.03 0.43; 0.82; −0.22 INV 

185 USA 8.42 31.42; −99.18; 76.18 YES 0.49 3.32; −0.38; −2.45 DECR 
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186 URUGUAY 0.63 0.71; 0.31; −0.39 DECR 1.03 −0.23; 0.35; 0.91 INCR 

187 UZBEKISTAN 0.95 0.04; 0.10; 0.81 INCR 0.90 −0.03; −0.39; 1.32 YES 

188 VENEZUELA 1.54 1.65; 2.95; −3.06 INV 0.82 1.09; −2.53; 2.26 YES 

189 VIETNAM 3.29 −0.84; −0.39; 4.52 YES 1.43 0.76; −0.11; 0.78 YES 

190 VIRGIN ISLANDS 0.51 0.01; −0.06; 0.56 YES 0.33 0.44; −0.22; 0.11 YES 

191 WEST GAZA 1.00 −1.00; −2.00; 4.00 YES 0.98 0.59; −0.11; 0.50 YES 

192 YEMEN 0.70 −0.34; 0.17; 0.86 INCR 1.50 1.00; 0.00; 0.50 YES 

193 ZAMBIA 0.75 0.25; −0.13; 0.63 YES 1.12 1.11; −0.44; 0.45 YES 

194 ZIMBABWE 1.44 0.24; 0.60; 0.60 INCR 1.62 1.08; −1.12; 1.66 YES 
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