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Abstract: We discuss the Simple Equations Method (SEsM) for obtaining exact solutions of a class of
nonlinear differential equations containing polynomial nonlinearities. We present an amended ver-
sion of the methodology, which is based on the use of composite functions. The number of steps of the
SEsM was reduced from seven to four in the amended version of the methodology. For the case of non-
linear differential equations with polynomial nonlinearities, SEsM can reduce the solved equations to
a system of nonlinear algebraic equations. Each nontrivial solution of this algebraic system leads to
an exact solution of the solved nonlinear differential equations. We prove the theorems and present
examples for the use of composite functions in the methodology of the SEsM for the following three
kinds of composite functions: (i) a composite function of one function of one independent variable;
(ii) a composite function of two functions of two independent variables; (iii) a composite function of
three functions of two independent variables.

Keywords: nonlinear partial differential equations; exact solutions; Simple Equations Method (SEsM);
composite functions; Faa di Bruno formula

1. Introduction

We discuss in this article the mathematical problem for obtaining exact analytical
solutions of nonlinear differential equations. The discussion is based on an amended
version of a methodology called the SEsM. The emphasis in this amended version is on
the use of the composite functions and their derivatives. The motivation of the study is
as follows:

1. Complex systems are widespread in Nature and in human societies [1–8]. Nonlinear-
ity is an important characteristic of most complex systems [9–13];

2. Often, the effects connected to the nonlinearity are studied by means of time series
analysis or by means of models based on differential or difference equations [14–19].
The corresponding model equations are nonlinear differential equations.

The following points from the history of the methodology for obtaining exact solutions
of nonlinear differential equations are relevant for our study:

1. Initially, the efforts were directed toward removing the nonlinearity of the solved
equation by means of an appropriate transformation. An example is the Hopf–Cole
transformation [20,21]. It transforms the nonlinear Burgers equation to the linear
heat equation;

2. Another transformation connects the Korteweg–de Vries equation to the famous
equation of Schrödinger. Thus, the method of inverse scattering transform was
born [22–24];

3. Almost at the same time, Hirota developed a method for obtaining exact solutions of
nonlinear partial differential equations [25,26]. The Hirota method is connected also
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to an appropriate transformation of the nonlinearity of the equation. The truncated
Painleve expansions may lead to many of these transformations [27–31].

We used the idea of the transformation of the nonlinearity of the equation in the SEsM
methodology discussed below. Our approach to this methodology was as follows:

1. We note the work of Kudryashov. He formulated the Method of the Simplest Equation
(MSE) [32]. The method is based on the determination of the singularity order n of
the solved equation. Then, a particular solution of this equation is searched as a
series containing powers of the solution of a simpler equation. This simpler equation
is called the simplest equation. The methodology was extended [33] and applied
to obtain traveling wave solutions of nonlinear partial differential equations (see,
e.g., [34–36]). Kudryashov [37] used various transformations in order to transform
the nonlinearity of a generalized evolution equation of the wave dynamics. Then, he
obtained exact solutions of this equation. This research was continued in [31,38,39].
For recent results connected to the application of the method of the simplest equation,
see [40–46];

2. We developed a methodology for obtaining the exact and approximate solutions
of nonlinear partial differential equations. The methodology is called the Simple
Equations Method (SEsM) [47–51]. Some elements of the methodology can be seen in
our publications written a long time ago [52–55]. At the beginning [56,57], we used
the ordinary differential equation of Bernoulli as the simplest equation [58]. This
version of the methodology was called the Modified Method of the Simplest Equation
(MMSE). It was used to obtain exact solutions of model nonlinear partial differential
equations from ecology and population dynamics [59];

3. In these early publications, we used the concept of the balance equation. This helped
us determine the kind of the simplest equations, as well as the form of the solution as
a series of the solution of the simplest equation [60,61]. We note that the MMSE leads
to results that are equivalent to the methodology of Kudryashov mentioned above.
Our contributions to the methodology and its application till 2018 were connected to
the MMSE [62–67]. We note especially the article [66]. It is connected to the part of
the topics discussed below in the text;

4. In the course of the years, the MMSE was extended to the SEsM [47]. The SEsM is
connected to the possibility of the use of more than one simple equation. Thus, the
solution of the solved nonlinear differential equation can be constructed on the basis
of many simple equations. A version of the SEsM based on two simple equations was
applied in [68]. The first description of the methodology was made in [48] and then
in [47,49–51,69]. For more applications of specific cases of the SEsM, see [70–72].

Our idea in this study is as follows. We used the SEsM to study the mathematical
problem for obtaining exact solutions of certain classes of nonlinear differential equations.
Below, we were not interested in imposing boundary conditions on the solved differential
equations. An important part of the SEsM is the construction of a solution of the solved
equation. This solution is presented as a composite function of the solutions of simpler
differential equations.

The text is organized as follows. We briefly describe the previous version of the SEsM
from [47] in Section 2. Our interest below was to search for exact traveling wave solutions
of one nonlinear differential equation. In Section 3, we discuss the amended version of
the SEsM. It has a simplified schema because of the use of the composite function and
its derivatives. One new theorem is discussed. In addition, a consequence of another
theorem (proved by us) is considered. The theorem and the consequence are connected to
the application of the SEsM to a specific case. This is the case of a nonlinear differential
equation with polynomial nonlinearities and simple equations containing polynomial
nonlinearities as well. Illustrative examples for the application of the amended version of
the SEsM are discussed. Finally, several concluding remarks are given in Section 4.
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2. Materials and Methods

Below, we discuss the simple equations method. It is an algorithm for obtaining exact
and approximate solutions of nonlinear differential equations. The method was designed
for the search of the solutions of systems of n nonlinear differential equations. The solution
was constructed by the solutions of m simpler differential equations (Figure 1). The most
applications of the algorithm up to now have been to obtain solutions of one nonlinear
differential equation. This solution is searched as a function of the solution of one simple
equation. The corresponding specific case of the SEsM is called the Modified Method
of Simplest Equation (MMSE). Other kinds of examples exist as well. They present the
solution of the solved nonlinear differential equation, which is a function of the solutions
of several simple equations. Such examples can be seen in Section 3 below.

SIMPLE EQUATIONS METHOD (SEsM) GENERAL CASE:

SYSTEM OF N DIFFERENTIAL EQUATIONS

1 DIFFERENTIAL EQUATION USE OF M SIMPLE EQUATIONS

(MODIFIED METHOD OF SIMPLEST EQUATION)

USE OF 1 SIMPLE EQUATION1 DIFFERENTIAL EQUATION

SPECIFIC CASE:

SPECIFIC CASE:

USE OF M SIMPLE EQUATIONS

Figure 1. The general case of the simple equations method and two of its specific cases. The general
case of the SEsM is to search for the solution of a system of N differential equations. The solution
is constructed on the basis of the solutions of M simpler differential equations (the parameter M
may depend on the parameter N). A specific case of the SEsM is the case when one has to solve
one differential equation and the solution is constructed on the basis of the solutions of M simpler
differential equations. The simplest case of the SEsM is as follows. One has to solve one differential
equation. The solution is constructed by the solution of one simple equation. This specific case is
known as the modified method of simplest equation.

The version of the SEsM discussed in [47] has 7 steps. They are shown in Figure 2. We
observed that this version of the methodology can be amended by the use of composite
functions and their derivatives. The result was that the number of steps of the SEsM
decreased from 7 to 4. This amended version is discussed below.
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TRANSFORMATION OF NONLINEARITIES

STEP 1:

SIMPLE EQUATIONS METHOD (SEsM)

M SIMPLE EQUATIONS

N DIFFERENTIAL EQUATIONS

BY TRANSFORMATION OF

UNKNOWN FUNCTIONS

STEP 4:

 THE LAST SOLUTIONS ARE

CONSTRUCTED BY SOLUTIONS OF

ORDINARY DIFFERENTIAL EQUATIONS

(ODEs)

STEP 5:

THE ODEs ARE SELECTED

(THEY ARE CALLED SIMPLE EQUATIONS)

STEP 6:

APPLICATION OF STEPS 1−6

TRANSFORMS IT TO A SYSTEM OF

NONLINEAR ALGEBRAIC EQUATIONS

STEP 7:

ANY NONTRIVIAL SOLUTION OF THE

SYSTEM OF ALGEBRAIC EQUATIONS

N DIFFERENTIAL EQUATIONS

TO SOLVED SYSTEM OF N DEs

DIFFERENTIAL EQUATIONS 

SOLUTIONS OF PARTIAL

ARE CONSTRUCTED BY

THE BASIC FUNCTIONS

STEP 3:

BY BASIC FUNCTIONS

ARE CONSTRUCTED

TRANSFORMED FUNCTIONS

STEP 2:

LEADS TO SOLUTION OF SOLVED SYSTEM OF

Figure 2. The 7 steps in the case of the SEsM from [47]. For details, see [47].

3. Results
3.1. The Amended Version of the SEsM

The amended version of the method of simple equations consists of four steps (see
Figure 3). We unified Steps 2–4 from the previous version into Step 2 of the amended
version. In addition, Steps 5 and 6 from the previous version were unified into Step 3
of the amended version. The description of the amended version of the methodology in
is presented in more detail as follows.

 

 

 

DIFFERENTIAL EQUATIONS

SOLUTIONS OF MORE SIMPLE

FUNCTIONS WHICH ARE

FUNCTIONS OF OTHER

ARE CHOSEN AS COMPOSITE

TRANSFORMED FUNCTIONS

STEP 2:

UNKNOWN FUNCTIONS

BY TRANSFORMATION OF

TRANSFORMATION OF NONLINEARITIES

STEP 1:

M SIMPLE EQUATIONS

N DIFFERENTIAL EQUATIONS

SIMPLE EQUATIONS METHOD (SEsM)

STEP 3:

EQUATIONS ARE SELECTED

THE MORE SIMPLE DIFFERENTIAL 

N DIFFERENTIAL EQUATIONS

LEADS TO SOLUTION OF SOLVED SYTEM OF

SYSTEM OF ALGEBRAIC EQUATIONS

ANY NONTRIVIAL SOLUTION OF THE

(THEY ARE CALLED SIMPLE EQUATIONS)

THE RELATIONSHIPS FOR THE

COMPOSITE FUNCTIONS ARE FIXED

THE SOLVED SYSTEM OF N DEs

IS TRANSFORMED TO A SYSTEM OF

NONLINEAR ALGEBRAIC EQUATIONS

(IF THIS WAS NOT DONE IN STEP 2).

STEP 4:

Figure 3. The version of the SEsM based on the use of composite functions. The composite function
allows us to unify Steps 2–4 from Figure 2 into Step 2 here. In addition, Steps 5 and 6 from Figure 2
are unified into Step 3 here. Thus, the methodology becomes clearer. Instead of 7 steps, the new
version of the SEsM consists of 4 steps.

We considered a system of nonlinear partial differential equations:

Bi[u1(x, . . . , t), . . . , un(x, . . . , t)] = 0, i = 1, . . . , n. (1)



Computation 2021, 9, 104 5 of 28

In Equation (1), Bi[u1(x, . . . , t), . . . , un(x, . . . , t), . . . ] depend on the functions
u1(x, . . . , t), . . . , un(x, . . . , t) and some of their derivatives (ui can be a function of several
spatial coordinates). We performed four steps:

(1) We applied transformations:

ui(x, ..., t) = Ti[Fi(x, . . . , t), Gi(x, . . . , t), . . . ]. (2)

Ti(Fi, Gi, . . . ) is a function of other functions Fi, Gi, . . . . Fi(x, . . . , t), Gi(x, . . . , t), . . .
are functions of several spatial variables, as well as of time. The transformations Ti
have two goals:

(a) They can remove some nonlinearities if possible (an example is the Hopf–Cole
transformation, which leads to the linearization of the Burgers equation [20,21]);

(b) They can transform the nonlinearity of the solved differential equations to a
more treatable kind of nonlinearity (e.g., to polynomial nonlinearity).

In the case of one solved equation, the transformation T(F, G, . . . ) can be: the
Painleve expansion; u(x, t) = 4 tan−1[F(x, t)] in the case of the sine-Gordon equation;
u(x, t) = 4 tanh−1[F(x, t)] in the case of sh-Gordon (Poisson–Boltzmann equation)
(for applications of the last two transformations, see, e.g., [52–54]); u(x, t) = F(x,t)

G(x,t) ;

u(x, t) =

I
∑

i=0
ai [F(x,t)]i

J
∑

j=0
bj [G(x,t)]j

; or another transformation.

In numerous cases, one may skip this step (then, we have ui(x, . . . , t) = Fi(x, . . . , t)).
In many other cases, the transformation is needed to obtain a solution of the studied
nonlinear PDE. The application of Equation (2) to Equation (1) leads to a nonlinear
differential equations for the functions Fi, Gi, . . . .
No general form is known for the transformations Ti. The reason is that the nonlin-
earities in the solved equations can be of different kinds. The most studied cases of
transformations are transformations that result in differential equations containing
polynomial nonlinearities;

(2) This step is based on the use of composite functions. It unifies Steps 2–4 from the
version of the SEsM from [47]. In this step, the functions Fi(x, . . . , t), Gi(x, . . . , t),
. . . are chosen as composite functions of the functions fi1, . . . , fiN , gi1, . . . , giM, . . . ,
which are solutions of simpler differential equations (Step 2 in Figure 3). There are
two possibilities:

(a) The construction relationship for the composite function is not fixed. Then,
we have to use the Faa di Bruno relationship for the derivatives of a compos-
ite function;

(b) The construction relationship for the composite function is fixed. For example,
for the case of one solved equation and one function F, the construction
relationship can be chosen to be:

F = α +
N

∑
i1=1

βi1 fi1 +
N

∑
i1=1

N

∑
i2=1

γi1,i2 fi1 fi2 +
N

∑
i1=1

. . .
N

∑
iN=1

σi1,...,iN fi1 . . . fiN . (3)

Then, one can directly calculate the corresponding derivatives from the solved
differential equation;

(3) In this step, we have to select the simple equations for the functions fi1, . . . , fiN ,
gi1, . . . , giM, . . . . In addition, if we are in the hypothesis of Point (a) of Step 2, we
have to fix the relationship between the composite functions Fi(x, . . . , t), Gi(x, . . . , t),
. . . , and the functions fi1, . . . , fiN , gi1, . . . , giM, . . . . We note that the fixation of the
simple equations and the fixation of the relationships for the composite functions
are connected. The fixations transform the left-hand sides of Equation (1). The
result of this transformation can be functions that are the sum of terms. Each of
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these terms contains some function multiplied by a coefficient. This coefficient is a
relationship containing some of the parameters of the solved equations and some of
the parameters of the solutions of the simple equations used. The fixation mentioned
above is performed by a balance procedure that ensures that the relationships for the
coefficients contain more than one term. This balance procedure leads to one or more
additional relationships among the parameters of the solved equation and parameters
of the solutions of the simple equations used. These additional relationships are
known as balance equations;

(4) We may obtain a nontrivial solution of Equation (1) if all coefficients mentioned in
Step 3 are set to zero. This condition usually leads to a system of nonlinear algebraic
equations. The unknown variables in these equations are the coefficients of the solved
nonlinear differential equation and the coefficients of the solutions of the simple
equations. Any nontrivial solution of this algebraic system leads to a solution of the
studied nonlinear partial differential equation.

From the system of algebraic equations, we determined the relationships for the
parameters of the solution. Two possibilities exist:

(a) The number, which is the sum of the number of parameters of the solution and
the number of parameters of the equation, is larger than the number of algebraic
equations or equal to the number of algebraic equations. Then, the system usually
(but not in all of the cases) has a nontrivial solution (or solutions). Independent
parameters may be presented in this solution. The other parameters of the solution
are functions of the independent parameters;

(b) The number, which is the sum of the number of parameters of the solution and
the number of parameters of the equation, is smaller than the number of algebraic
equations. Then, the system of algebraic equations usually does not have a nontrivial
solution. However, there can be exceptions in this case. An exception occurs when
the number of equations of the algebraic system can be reduced and this number
becomes less than or equal to the number of available parameters. Then, Case (b) is
reduced to Case (a), and a nontrivial solution is possible.

3.2. Faa di Bruno Relationship for Derivatives of a Composite Function

The composite functions play an important role in the amended version of the SEsM.
Below, we provide information about the derivatives of the composite functions. These
derivatives were used in the process of the application of the SEsM.

3.3. The General Case: Composite Function of Many Functions of Many Independent Variables

Let us consider the function h(x1, . . . , xd). It is a function of d independent variables
x1, . . . , xd. We assumed that the function h is a composite function of m other functions
g(1)1 , . . . , g(m):

h(x1, . . . , xd) = f [g(1)(x1, . . . , xd), . . . , g(m)(x1, . . . , xd)].

We introduce the following notations:

1. ~ν = (ν1, . . . , νd) is a d-dimensional index containing the integer non-negative numbers
ν1, . . . , νd;

2. ~z = (z1, . . . , zd) is a d-dimensional object containing the real numbers z1, . . . , zd;

3. | ~ν |=
d
∑

i=1
νi is the sum of the elements of the d-dimensional index~ν;

4. ~ν! =
d

∏
i=1

νi! is the factorial of the multicomponent index~ν;

5. ~z~ν =
d

∏
i=1

zνi
i is the~ν-th power of the multicomponent variable~z;
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6. D~ν
~x = ∂|~ν|

∂x
ν1
1 ...∂x

νd
d

, | ~ν |> 0 is the ~ν-th derivative with respect to the multicomponent

variable ~x. We note that in this notation, D~0
~x is the identity operator;

7. || ~z ||= max
1≤i≤d

| zi | is the maximum value component of the multicomponent vari-

able~z;
8. For the d-dimensional index~l = (l1, . . . , ld) (l1, . . . , ld are integers), we have~l ≤ ~ν

when li ≤ νi, i = 1, . . . , d. Then, we define:(
~ν
~l

)
=

d

∏
i=1

(
νi
li

)
=

~ν!
~l!(~ν−~l)!

;

9. Ordering of vector indexes: For two vector indexes ~µ = (µ1, . . . , µd) and ~ν =
(ν1, . . . , νd), we have ~µ ≺ ~ν when one of the following holds:

(a) | ~µ |<| ~ν |;
(b) | ~µ |=| ~ν | and µ1 < ν1;
(c) | ~µ |=| ~ν |, µ1 = ν1, . . . µk = νk and µk+1 < νk+1 for some 1 ≤ k < d.

Below, we also use the notation:

h(~ν) = D~ν
~xh; f(~λ) = D~λ

~y f ; g(i)
(~µ)

= D~µ
~x g(i); ~g(~µ) = (g(1)

(~µ)
, . . . , g(m)

(~µ)
).

Then, the Faa di Bruno relationship for the composite derivative of a function contain-
ing functions of many variables is [73]:

h(~ν) = ∑
1≤|~λ|≤n

f(~λ)
n

∑
s=1

∑
ps(~ν,~λ)

(~ν!)
s

∏
j=1

[~g
(~lj)

]
~kj

(~k j!)[~lj!]
|~kj |

. (4)

In Equation (4), n =| ~ν |. In addition,

ps(~ν,~λ) = {~k1, . . . ,~ks;~l1, . . . ,~ls}, |~ki |> 0.

Finally,

0 ≺~l1 · · · ≺~ls,
s

∑
i=1

~ki = ~λ,
s

∑
i=1
|~ki |~li = ~ν.

Equation (4) can be simplified by a change of the notation [73]. We introduce:

p(~ν,~λ) = {~k1, . . . ,~kn;~l1, . . . ,~ln}, 1 ≤ s ≤ n.

In addition:

~ki = 0; ~li = 0, 1 ≤ i ≤ n− s, |~ki |> 0, n− s + 1 ≤ i ≤ n.

Finally, 0 ≺ ~ln−s+1 · · · ≺ ~ln are such that
n
∑

i=1
~ki = ~λi and

n
∑

i=1
| ~ki | ~li = ~ν. Then,

Equation (4) can be written as:

h(~ν) = ∑
1≤|~λ|≤n

f(~λ) ∑
p(~ν,~λ)

(~ν!)
n

∏
j=1

[~g
(~lj)

]
~kj

(~k j!)[~lj!]
|~kj |

. (5)
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Several Specific Cases of the General Relationship

We discuss below the specific case when the composite function h is a function of two
independent variables x1 and x2. In this case:

h(x1, x2) = f [g(1)(x1, x2), . . . , g(m)(x1, x2)]

Then, from Equation (4), the Faa di Bruno formula for the composite function contain-
ing functions of two variables is:

h(~ν) =
∂ν1+ν2 h

∂xν1
1 ∂xν2

2
= ∑

1≤(λ1+···+λm)≤ν1+ν2

∂λ1+···+λm f

∂g(1)λ1 . . . ∂g(m)λm

{
ν1+ν2

∑
s=1

∑
ps(~ν,~λ)

(ν1!ν2!)×

s

∏
j=1

[
1

(k j,1! . . . k j,m!)(lj,1! + lj,2!)kj,1+···+kj,m

m

∏
i=1

 ∂lj,1+lj,2

∂x
lj,1
1 ∂x

lj,2
2

g(i)

kj,i]}
. (6)

The version of the formula that arises from Equation (5) is:

h(~ν) =
∂ν1+ν2 h

∂xν1
1 ∂xν2

2
= ∑

1≤(λ1+···+λm)≤ν1+ν2

∂λ1+···+λm f

∂g(1)λ1 . . . ∂g(m)λm

{
∑

p(~ν,~λ)

(ν1!ν2!)×

n

∏
j=1

[
1

(k j,1! . . . k j,m!)(lj,1! + lj,2!)kj,1+···+kj,m

m

∏
i=1

 ∂lj,1+lj,2

∂x
lj,1
1 ∂x

lj,2
2

g(i)

kj,i]}
. (7)

Let us consider the case of the composite function containing three functions of two
independent variables. In this case:

h(x1, x2) = f [g(1)(x1, x2), g(2)(x1, x2), g(3)(x1, x2)]

Then, from Equation (4), the Faa di Bruno formula for a composite function containing
three functions of two independent variables is:

h(~ν) =
∂ν1+ν2 h

∂xν1
1 ∂xν2

2
= ∑

1≤(λ1+λ2+λ3)≤ν1+ν2

∂λ1+λ2+λ3 f

∂g(1)λ1 ∂g(2)λ2 ∂g(3)λ3

{
ν1+ν2

∑
s=1

∑
ps(~ν,~λ)

(ν1!ν2!)×

s

∏
j=1

[
1

(k j,1!k j,2!k j,3!)(lj,1! + lj,2!)kj,1+kj,2+kj,3

3

∏
i=1

 ∂lj,1+lj,2

∂x
lj,1
1 ∂x

lj,2
2

g(i)

kj,i]}
. (8)

The version of Equation (8) arising from Equation (5) is:

h(~ν) =
∂ν1+ν2 h

∂xν1
1 ∂xν2

2
= ∑

1≤(λ1+λ2+λ3)≤ν1+ν2

∂λ1+λ2+λ3 f

∂g(1)λ1 ∂g(2)λ2 ∂g(3)λ3

{
∑

p(~ν,~λ)

(ν1!ν2!)×

n

∏
j=1

[
1

(k j,1!k j,2!k j,3!)(lj,1! + lj,2!)kj,1+kj,2+kj,3

3

∏
i=1

 ∂lj,1+lj,2

∂x
lj,1
1 ∂x

lj,2
2

g(i)

kj,i]}
. (9)

Next, we considered the case of the composite function containing two functions
of two independent variables. In this case, the composite function is a function of the
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functions g(1)(x1, x2) and g(2)(x1, x2). The Faa di Bruno formula for the composite function
containing two functions that are functions of two variables is:

h(~ν) =
∂ν1+ν2 h

∂xν1
1 ∂xν2

2
= ∑

1≤(λ1+λ2)≤ν1+ν2

∂λ1+λ2 f

∂g(1)λ1 ∂g(2)λ2

{
ν1+ν2

∑
s=1

∑
ps(~ν,~λ)

(ν1!ν2!)×

s

∏
j=1

[
1

(k j,1!k j,2!)(lj,1! + lj,2!)kj,1+kj,2

2

∏
i=1

 ∂lj,1+lj,2

∂x
lj,1
1 ∂x

lj,2
2

g(i)

kj,i]}
. (10)

The version of Equation (10) arising from Equation (5) is:

h(~ν) =
∂ν1+ν2 h

∂xν1
1 ∂xν2

2
= ∑

1≤(λ1+λ2)≤ν1+ν2

∂λ1+λ2 f

∂g(1)λ1 ∂g(2)λ2

{
∑

p(~ν,~λ)

(ν1!ν2!)×

n

∏
j=1

[
1

(k j,1!k j,2!)(lj,1! + lj,2!)kj,1+kj,2

2

∏
i=1

 ∂lj,1+lj,2

∂x
lj,1
1 ∂x

lj,2
2

g(i)

kj,i]}
. (11)

Finally, we considered the case of a composite function containing one function of
one variable. For the case of one function of one variable h = f [g(x)], the Faa di Bruno
formula is:

h(n) =
n

∑
k=1

f(k) ∑
p(k,n)

n!
n

∏
i=1

gλi
(i)

(λi!)(i!)λi
. (12)

In Equation (12):

• h(n) =
dnh
dxn is the n-th derivative of the function h;

• f(k) =
dk f
dgk is the k-th derivative of the function f ;

• g(i) =
di g
dxi is the i-th derivative of the function g;

• p(n, k) = {λ1, λ2, . . . , λn}: the set of numbers such that:

n

∑
i=1

λi = k;
n

∑
i=1

iλi = n.

3.4. Several Results Relevant for Applications of the SEsM

Here, we present two theorems. They are for some features of the SEsM connected
to the use of composite functions by this methodology. Theorem 1 is for the case of a
differential equation containing polynomial nonlinearities where the unknown function
h depends on two independent variables. The theorem states that for the case when the
unknown function is a composite function, constructed by exponential functions, the solved
equation can be reduced to a system of nonlinear algebraic equations. The theorem ensures
that the SEsM is applicable in this case. The theorem is connected to the solutions of (1 + 1)-
dimensional equations constructed on the basis of exponential functions. Many equations
that have multisoliton solutions are of this class. The applicability of the discussed version
of the SEsM to such equations is shown on the basis of a classic example—the Korteweg–de
Vries equation. Another application is connected to obtaining standing wave solutions of
differential equations for the case when these solutions are constructed by trigonometric
and hyperbolic functions.

Theorem 2 shows that the SEsM can be applied also when the composite function is
constructed by a function of a single variable and this function of a single variable satisfies
the differential equation containing polynomial nonlinearities. We discuss a consequence of
this theorem for the case when the simple equation used contains the equations of Bernoulli
and Riccati as specific cases. This case ensures that the SEsM can be applied for the solution
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of differential equations containing polynomial nonlinearities for the cases when the simple
equations used are the equations of Bernoulli, Riccati, Jacobi elliptic functions, etc. In such
a way, we show why a large number of methods for obtaining exact solutions of nonlinear
differential equations can be treated as specific cases of the SEsM.

Theorem 1. Let us consider a nonlinear partial differential equation that contains a polynomial P
of the function h(x1, x2) and its derivatives. The relationship for this equation is:

P(h, h~ν1
, . . . , h~νN

) = 0. (13)

Above, N can be any natural number. We searched for the solution of the above equation in
the form:

h(x1, x2) = f [g(1)(x1, x2), . . . , g(m)(x1, x2)]

where h is the polynomial of the functions g(1)(x1, x2), . . . , g(m)(x1, x2). Let each function
g(i)(x1, x2) satisfy the simple equation:

g(i)
(xj)

= αi,jg(i) (14)

where αi,j is a constant parameter. Then, the solved nonlinear partial differential equation is reduced
to a polynomial of the functions g(1)(x1, x2), . . . , g(m)(x1, x2).

Proof. Let us consider Equation (7). We substituted Equation (2) in (7). The result is:

h(~ν) =
∂ν1+ν2 h

∂xν1
1 ∂xν2

2
= ∑

1≤(λ1+···+λm)≤ν1+ν2

∂λ1+···+λm f

∂g(1)λ1 . . . ∂g(m)λm

{
∑

p(~ν,~λ)

(ν1!ν2!)×

n

∏
j=1

[
1

(k j,1! . . . k j,m!)(lj,1! + lj,2!)kj,1+···+kj,m
×

α
lj,1kj,1
1,1 . . . α

lj,1kj,m
m,1 α

lj,2kj,1
1,2 . . . α

lj,2kj,m
m,2 g(1)

kj,1 . . . g(m)kj,m

]}
. (15)

We looked at Equation (15). The term:

∑
p(~ν,~λ)

(ν1!ν2!)
n

∏
j=1

[
1

(k j,1! . . . k j,m!)(lj,1! + lj,2!)kj,1+···+kj,m
α

lj,1kj,1
1,1 . . .

α
lj,1kj,m
m,1 α

lj,2kj,1
1,2 . . . α

lj,2kj,m
m,2 g(1)

kj,1 . . . g(m)kj,m

]
,

is a polynomial of g(1), . . . , g(m). It is multiplied by another polynomial of g(1), . . . , g(m),

namely by ∂λ1+···+λm f

∂g(1)
λ1 ...∂g(m)λm . Thus, h(~ν) is a polynomial of g(1), . . . , g(m). Then, any of

h~ν1
, . . . , h~νN

is a polynomial of g(1), . . . , g(m). This means that P(h, h~ν1
, . . . , h~νN

) is a polyno-
mial of g(1), . . . , g(m).

We note that the resulting polynomial P(h, h~ν1
, . . . , h~νN

) contains monomials multi-
plied by coefficients that are nonlinear algebraic relationships between the parameters of
the solved nonlinear partial differential equation and parameters αi,j. We can set these
coefficients to zero and obtain a system of nonlinear algebraic equations. Any nontriv-
ial solution of this algebraic system (if such a solution exists) leads to a solution of the
solved nonlinear partial differential Equation (13). Thus, Theorem 1 ensures that we can
reduce to a nonlinear algebraic system any nonlinear differential equation that depends
on two independent variables and has polynomial nonlinearities. In order to do this, we
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have to search for the solution as a composite function containing exponential functions.
Theorem 1 is an indication of how to apply the SEsM in such cases. The class of equations
concerned is a large one. Many important equations are in this class (e.g., many equations
that have multisoliton solutions). For the convenience of the reader, we write the form
of the derivatives of the composite function constructed by the exponential function for
two cases. For the case of a composite function containing three exponential functions that
are functions of two independent variables, we considered Equation (9) and substituted
Equation (2) in (9). The result is:

h(~ν) =
∂ν1+ν2 h

∂xν1
1 ∂xν2

2
= ∑

1≤(λ1+λ2+λ3)≤ν1+ν2

∂λ1+λ2+λ3 f

∂g(1)λ1 ∂g(2)λ2 ∂g(3)λ3

{
∑

p(~ν,~λ)

(ν1!ν2!)×

n

∏
j=1

[
1

(k j,1!k j,2!k j,3!)(lj,1! + lj,2!)kj,1+kj,2+kj,3
×

α
lj,1kj,1
1,1 α

lj,1kj,2
2,1 α

lj,1kj,3
3,1 α

lj,2kj,1
1,2 α

lj,2kj,2
2,2 α

lj,2kj,3
3,2 g(1)

kj,1 g(2)
kj,2 g(3)

kj,3

]}
.

For the case of a composite function containing two exponential functions that are
functions of two independent variables, we considered Equation (11). We substituted
Equation (2) in (11). The result is:

h(~ν) =
∂ν1+ν2 h

∂xν1
1 ∂xν2

2
= ∑

1≤(λ1+λ2)≤ν1+ν2

∂λ1+λ2 f

∂g(1)λ1 ∂g(2)λ2

{
∑

p(~ν,~λ)

(ν1!ν2!)×

n

∏
j=1

[
1

(k j,1!k j,2!)(lj,1! + lj,2!)kj,1+kj,2
α

lj,1kj,1
1,1 α

lj,1kj,2
2,1 ×

α
lj,2kj,1
1,2 α

lj,2kj,2
2,2 g(1)

kj,1 g(2)
kj,2

]}
.

We can use simple equations that are more complicated than the equation for the
exponential function (Equation (2)) in the SEsM. Let us consider the case of the composite
function of one function, which depends on a single independent variable. Let us consider
a nonlinear partial differential equation with nonlinearities that are polynomials of the
unknown function h(x, t) and its derivatives. We searched for a solution of the kind:

h(x, t) = h(ξ); ξ = µx + νt,

where µ and ν are parameters. The basis of our search is a solution g(ξ) of a certain simplest
equation. Hence:

h = f [g(ξ)] (16)

h from Equation (16) is a composite function. For the n-th derivative of h, we have the Faa
di Bruno formula (12). Let us assume that f is a polynomial of g. Then:

f =
q

∑
r=0

brgr. (17)

We used the following simple equation:

gl
(k) =

(
dkg
dξk

)l

=
m

∑
j=0

ajgj. (18)
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In Equation (18), k, l, m are integers. The nonlinearity in Equation (18) is of the
polynomial kind. As mentioned above, this simple equation is more complicated than
Equation (2). The solution of Equation (18) defines the function Va0,a1,...,am(ξ; k, l, m) where:

• k: order of the derivative of g;
• l: degree of the derivative in the defining ODE;
• m: highest degree of the polynomial of g in the defining ODE.

This function V has interesting properties. Its specific cases are trigonometric, hy-
perbolic, elliptic functions of Jacobi, etc. Below, we used the function Va0,a1,...,am(ξ; 1, 2, m),
which is the solution of the simple equation:

g2
(1) =

(
dg
dξ

)2
=

m

∑
j=0

ajgj. (19)

We have proven the following theorem [66].

Theorem 2. If g2
(1) is given by Equation (19) and f is a polynomial of g given by Equation (17),

then for h[ f (g)], the following relationship holds:

h(n) = Kn(q, m)(g) + g(1)Zn(q, m)(g)

where Kn(q, m)(g) and Zn(q, m)(g) are polynomials of the function g(ξ).

The polynomials Kn(q, m)(g) and Zn(q, m)(g) can be calculated as follows.

K0 =
q

∑
r=0

brgr

Z0 = 0 (20)

Then, starting from Equation (20), we obtain:

Kn+1 =
Zn

2

m

∑
j=0

jajgj−1 +
dZn

dg

m

∑
j=0

ajgj

Zn+1 =
dKn

dg
. (21)

Several of the polynomials Kn and Zn from Equation (21) are calculated in Appendix A.
Theorem 2 can explain why many methods for obtaining exact traveling wave so-

lutions of nonlinear partial differential equations that contain polynomial nonlinearities
are specific cases of the SEsM. Many of these methods use simple equations, which are
the equation of Bernoulli or the equation of Riccati. These equations are specific cases of
Equation (19). This can be proven as follows. The equations of Bernoulli and Riccati are
specific cases of the simple equation:

g(1) =
n

∑
j=0

cjgj. (22)

In Equation (22), n and cj are constant parameters. However, Equation (22) is a specific
case of (19). We prove this as follows. The idea is that Equation (19) contains all cases of
(22). From Equation (22):

g2
(1) = (

n

∑
i=0

cigi)(
n

∑
j=0

cjgj) =
n

∑
i=0

n

∑
j=0

cicjgi+j =
2n

∑
k=0

akgk. (23)
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In Equation (23), ak are appropriate combinations of the coefficients ci. Equation (23)
is of the kind (19). Then, Equation (19) contains all possible relationships of the kind (22).
However, Equation (19) contains more than this. For example, Equation (19) contains
the case:

g2
(1) = a0 + a1g. (24)

Equation (24) cannot be reduced to a relationship of the kind (22). Then, Equation (22)
is a specific case of (19).

Thus, the methods based on the use of the equations of Bernoulli and Riccati for the
construction of solutions of nonlinear differential equations with polynomial nonlinearities
are specific cases of the SEsM where the composite function can be represented according
to Theorem 2. The discussed consequence of Theorem 2 shows, for example, that the
homogeneous balance method [74] and tanh method [75] are specific cases of the SEsM.

The direct application of Theorem 2 is convenient when, for example, the simple
equation is an equation for a Jacobi elliptic function. Theorem 2 shows that, for example,
the Jacobi elliptic function expansion method [76] and the F-expansion method [77] are
specific cases of the SEsM.

For the case when the simple equation has the specific form of Equation (22), we have
a simpler situation. Instead of the two kinds of polynomials Zn and Kn, we have a single
kind of polynomial Ln. In other words, for the case when the simple equation is of the kind
(Equation (22)), h(n) is a polynomial of g: h(n) = Ln(g). These polynomials can be calculated
as follows. We start from:

L0 =
q

∑
r=0

brgr.

Then, we use the recurrence relationship:

Li+1 =
dLi
dg

m

∑
j=0

cjgj. (25)

Several of the polynomials Li are calculated in Appendix B. In addition, we present in
Appendix C several derivatives of a composite function that is function of two functions of
two independent variables. In Appendix D, we present several derivatives of a composite
function that is function of three functions of two independent variables. The information
from these appendices are used in the examples below.

3.5. Illustrative Examples

The goal of the discussion below is to show how the methodology of the SEsM works.
For an example, multisoliton solutions can be obtained. We show this for the Korteweg–de
Vries equation. In addition, we show that the methodology can lead to specific solutions of
nonlinear partial differential equations that are not integrable.

Below, we used the composite functions in the SEsM as follows. We used Equation (3)
to fix the relationship for the composite function. On the basis of Equation (3), h can be
written as:

h = T0 + T1 + · · ·+ TN . (26)
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N can be any natural number. Note that the value of N can also be equal to ∞. The
relationships for Ti are:

T0 = α = const

T1 =
N

∑
i1=1

βi1 g(i1)

T2 =
N

∑
i1=1

N

∑
i2=1

γi1,i2 g(i1)g(i2)

T3 =
N

∑
i1=1

N

∑
i2=1

N

∑
i3=1

δi1,i2,i3 g(i1)g(i2)g(i3)

. . .

TN =
N

∑
i1=1

N

∑
i2=1
· · ·

N

∑
iN=1

σi1,i2,...,iN g(i1)g(i2) . . . g(iN) (27)

We note that the functions g(in) are the solutions of the corresponding simple equations.
For the cases considered below, we used the following specific forms of Equations (26)
and (27). For the case of the composite function of a function of one variable h = f [g(1)(ξ)]:

h =
N

∑
i=0

βig(1)
i
. (28)

In Equation (28), N is a parameter, which is fixed by means of balance equation.
For the case of the composite function of a function of two variables h = f [g(1)(x, t),

g(2)(x, t)], we used the simple relationship:

h = α + β1g(1) + β2g(2) + γ1g(1)
2
+ γ2g(2)

2
+ γ3g(1)g(2). (29)

For the case of the composite function of a function of three variables h = f [g(1)(x, t),
g(2)(x, t), g(3)(x, t)], we used the simple relationship:

h = α +
3

∑
i=1

βig(i1) +
3

∑
i=1

3

∑
j=1

γi,jg(i)g(j) +
3

∑
i=1

3

∑
j=1

3

∑
k=1

δi,j,kg(i)g(j)g(k). (30)

Equations (28) and (29) were obtained by selecting only several terms from the large
number of possible terms in Equation (26).

Next, we considered illustrative examples for the case of the composite function that
is a function of one function of one variable. First of all, we considered the Korteweg–de
Vries equation:

∂u
∂t

+ 6u
∂u
∂x

+
∂3u
∂x3 = 0. (31)

Following the steps of the SEsM, we applied the transformation:

u(x, t) = 2
∂2

∂x2 [ln h(x, t)] = 2

 h ∂2h
∂x2 −

(
∂h
∂x

)2

h2

. (32)

This is Step 1 of the SEsM. The Korteweg–de Vries Equation (31) was transformed to:

h
∂2h
∂x∂t

− ∂h
∂x

∂h
∂t

+ h
∂4h
∂x4 − 4

∂h
∂x

∂3h
∂x3 + 3

(
∂2h
∂x2

)2

= 0. (33)
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Next, we considered h as a composite function of one function of one variable ξ = λx+
ωt + σ. λ, ω, and σ are parameters (Step 2 of the SEsM). Equation (33) was transformed to:

λωh
d2h
dξ2 − λω

(
dh
dξ

)2
+ λ4h

d4h
dξ4 − 4λ4 dh

dξ

d3h
dξ3 + 3λ4

(
d2h
dξ2

)2

= 0. (34)

In Step 3 of the SEsM, we used Equation (28) as the relationship for the composite
function h. We set N = 1 in (28). In addition, the simple function g(1)(ξ) was assumed to
satisfy the simple Equation (22) for the case n = 1 and c0 = 0. Then, the derivatives h(n) of
the composite function h are given by the polynomials Li discussed above in the text (the
relationships for Li are given in Appendix D).

In such a way, the Korteweg–de Vries Equation (34) was reduced to a polynomial that
has to be equal to zero. This was achieved by setting the coefficients of the terms of the
polynomial to zero. The result is a system of algebraic equations (Step 4 of the SEsM). This
system of algebraic equations contains one equation:

ω + λ3c2
1 = 0, (35)

in addition to β0 = 1. Equation (35) can be solved for ω, for example. The solution is
nontrivial. This, nontrivial solution leads to the one-soliton solution of the Korteweg–de
Vries equation.

Another example is for the equation of the class:

p1
∂h
∂x

+ p2h
∂2h
∂x∂t

+ p3h
∂2h
∂x2 + p4

∂3h
∂x3 + p5h3 + p6h2 + p7 + p8 = 0. (36)

In Equation (36), p1, p2, p3, p4, p5, p6, p7, p8 are parameters. We skipped Step 1 of the
SEsM (no transformation of the nonlinearity). In Step 2 of the SEsM, we used Equation (28)
as the relationship for the composite function h. In Step 3 of the SEsM, we fixed the value
of N. The form of the composite function h[g(1)(ξ)] (ξ = α1x + α2t) becomes:

h = β2g(1)
2
+ β1g(1) + β0. (37)

At the same time, the form of the simple equation for g(1) was fixed by means of a
balance equation:

dg(1)

dξ
= αg(1)

2
− αg(1). (38)

By means of Equations (37) and (38), Equation (36) was reduced to a system of seven
nonlinear algebraic equations (Step 4 of the SEsM). One nontrivial solution of this system is:
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β0 =
5β2

2 + 11β2β1 + 6β2
1

2β2
,

A = 55β2
2 + 108β2β1 + 54β2

1,

B = 5β2
2 + 11β2β1 + 6β2

1,

C = 25β3
2 +

25
2
(β2 + β1)B + 64β2

2β1 + 44β2β2
1 + 6β3

1,

p1 =
p8β2

2 A
3αα1BC

,

D = 95β3
2 + 126β3

1 + 317β2
2β1 + 348β2β2

1 − 30(β2 + β1)B,

p2 = −
4 p8β4

2 A
BCD + p3α2α2

1
α2α1α2

,

p4 = −
5p8β4

2(β2 + β1)A
3α3α3

1BCD
,

p5 =
24p8β3

2 A
BCD

,

p6 = −
2p8β2

2(97β2
2 + 198β2β1 + 99β2

1)A
BCD

,

p7 = −60
p8β2(17β2

2 + 36β2β1 + 18β2
1)

(5β2 + 6β1)(175β3
2 + 528β2

2β1 + 513β2β2
1 + 162β3

1)
.

The solution of the simple Equation (38) is:

g(1)(ξ) =
1

1 + exp(αξ)
.

Then, a particular exact solution of the equation:

p8β2
2 A

3αα1BC
∂h
∂x
−

4 p8β4
2 A

BCD + p3α2α2
1

α2α1α2
h

∂2h
∂x∂t

+ p3h
∂2h
∂x2 −

5p8β4
2(β2 + β1)A

3α3α3
1BCD

∂3h
∂x3 +

24p8β3
2 A

BCD
h3 −

2p8β2
2(97β2

2 + 198β2β1 + 99β2
1)A

BCD
h2 − 60

p8β2(17β2
2 + 36β2β1 + 18β2

1)

(5β2 + 6β1)(175β3
2 + 528β2

2β1 + 513β2β2
1 + 162β3

1)
+

p8 = 0,

is:

h(ξ) = β2

(
1

1 + exp(αξ)

)2
+ β1

1
1 + exp(αξ)

+
5β2

2 + 11β2β1 + 6β2
1

2β2
,

where:
ξ = α1x + α2t.

Next, we present examples for the case of the composite function that is a function of
two functions of two variables. First, we considered again the Korteweg–de Vries equation.
In this case, we applied the SEsM as follows. We used the transformation (32) and ob-
tained Equation (33) from (31) (Step 1 of the SEsM). Then, we considered h as a composite
functions of two functions of two variables. We used the relationship (29) (Step 2 of the
SEsM). In addition, the simple functions g(1)(η1) and g(2)(η2) satisfy simple equations of
the kind (22) for the case n = 1 and c0 = 0 (Step 3 of the SEsM) ηi = λix + ωit + σi, i = 1, 2.
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The further application of the methodology (Step 4 of the SEsM) led to γ1 = γ2 = 0 and
reduced the Korteweg–de Vries equation to the system of two algebraic equations:

ωi + λ3
i = 0, i = 1, 2, (39)

in addition to α = 1; β1 = β2 = β, γ3 = β2µ, where µ is a parameter. Equation (39) can be
solved for ωi, i = 1, 2, for example. The solutions are nontrivial. These nontrivial solutions
lead to the two-soliton solution of the Korteweg–de Vries equation.

Another example is connected to the equation:

(1 + h2)

(
∂2h
∂x2 −

∂2h
∂t2

)
− 2h

[(
∂h
∂x

)2
−
(

∂h
∂t

)2
]
= h(1− h2). (40)

We applied the SEsM and skipped Step 1 (no transformation of the nonlinearity). The
composite function h is of the kind (29) where α = 0, β1 = β2 = 0, γ1 = γ2 = 0 (Step 2
of the SEsM). In addition, g(1) does not depend on t and g(2) does not depend on x. Let
γ3 = A. The composite function becomes:

h(x, t) = Ag(1)(αx)g(2)(δγt), δ = ±1. (41)

We note that the composite function (41) allows for complicated simple equations for
g(1) and g(2). These equations can be of the kind of equations for the elliptic functions of
Jacobi (Step 3 of the SEsM):(

dg(1)

dx

)2

= α(a1g(1)
4
+ b1g(1)

2
+ c1)(

dg(2)

dx

)2

= β(a2g(2)
4
+ b2g(2)

2
+ c2). (42)

In Step 4 of the SEsM, Equation (40) is reduced to a system of algebraic equations:

α2b1 − γ2b2 = 1

α2a1 + γ2 A2c2 = 0

γ2a2 + α2 A2c1 = 0. (43)

Equation (43) has various nontrivial solutions. For example, one of these solutions is
when α2 − γ2 < 1. We can consider A as a free parameter. Then, α2 = γ2 + A2−1

A2+1 . Thus,

h(x, t) = Acn
{

αx;
A2[α2(A2 + 1) + 1]

α2(A2 + 1)2

}
cn
{

δγt;
A2[γ2(A2 + 1)− 1]

γ2(A2 + 1)2

}
. (44)

In Equation (44), cn(αx; k1) and cn(γt; k2) are the corresponding Jacobi elliptic func-
tions of modulus 0 ≤ k1 ≤ 1 and 0 ≤ k2 ≤ 1, respectively.

Equation (43) has an interesting specific case when k1 = 1 and k1 = 0. In this case,
cn(αx; k1) = sech(αx) and cn(δγt) = cos(δγt). Then,

h(x, t) =

cos

[
δ

(A2 + 1)1/2

]
t

cosh

[
A2

A2 + 1

]1/2

x

. (45)
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Equation (45) can also be obtained straightforwardly on the basis of the composite
function (41) if one takes for g(1) and g(2) the corresponding simple equations for the
trigonometric and hyperbolic functions, respectively.

Finally, we discuss an example use case of the composite function that is a func-
tion of three functions of two variables. This led us to the three-soliton solution of the
Korteweg–de Vries equation. In this case, we applied the SEsM as follows. We used the
transformation (32) and obtained Equation (33) from (31). Then, we considered h as the
composite function of three functions of two variables. We used the relationship (30). In
addition, the simple functions g(1)(η1), g(2)(η2), and g(3)(η3) satisfy simple equations of
the kind of Equation (22) for the case n = 1 and c0 = 0. ηi = λix + ωit + σi, i = 1, 2, 3. The
application of the SEsM led to γ1 = γ2 = 0 and reduced the Korteweg–de Vries equation
to the system of three algebraic equations:

ωi + λ3
i = 0, i = 1, 2, 3, (46)

in addition to α = 1; β1 = β2 = β3 = β, γi,i = 0, δi,j,k = 0 except for δ1,2,3. Moreover,

γi,j = βai,j where ai,j =
(λi−λj)

2

(λi+λj)2 , i, j = 1, 2, 3, i < j. Finally, δ1,2,3 = βa1,2a1,3a2,3.

Equation (46) can be solved for ωi, i = 1, 2, 3, for example. The solutions are non-
trivial. These nontrivial solutions led to the three-soliton solution of the Korteweg–de
Vries equation.

4. Concluding Remarks

This article was devoted to a discussion of the methodology called the Simple Equa-
tions Method (SEsM) and several results connected to this methodology. The new results
were as follows:

1. We presented an amended version of the SEsM in comparison to the version from
[47]. The amended version was based on the use of composite functions and their
derivatives. In such a way, the number of steps of the SEsM was reduced from
seven to four. In the amended version of the SEsM, we determined the form of the
composite functions used. This increased the amount of computations with respect
to the amount of computations for the version of the SEsM with seven steps. In the
last version, we made assumptions about the form of the relationships among the
solutions of the solved equations and the solutions of the simple equations. This led
to the intermediate steps, but decreased the amount of computation. However, if the
assumptions are not appropriate, we may miss the solutions of the solved equations;

2. We discussed a theorem that states that under certain conditions, a nonlinear dif-
ferential equation with polynomials nonlinearities can be reduced to a polynomial
containing monomials consisting of exponential functions. This theorem justified
the application of the SEsM as the setting of the coefficients of the obtained polyno-
mial to zero led to a system of nonlinear algebraic equation, which led exactly to
Step 4 of the SEsM. We note that in such a way, the SEsM can lead to multisoliton
solutions of a large class of equations. An illustrative example for the Korteweg–de
Vries equation was given;

3. A consequence of a theorem proven in [66] was used in order to show that the simple
equation of the SEsM can contain polynomial nonlinearities of large power for the
case when the composite function used in the SEsM is a function of one independent
variable. This consequence showed that many methods that search for exact traveling
wave solutions of nonlinear differential equations on the basis, for example, of the
equations of Riccati and Bernoulli are specific cases of the SEsM;

4. We presented many illustrative examples for the application of the amended version
of the SEsM.

Finally, we want to stress that the SEsM is an interesting methodology for obtaining
exact solutions of nonlinear differential equations. We showed already that the SEsM is
connected to the inverse scattering transform method and to the method of Hirota [47]. The
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SEsM can lead to specific solutions also of nonintegrable differential equations. The use
of composite functions in the methodology of the SEsM opens possibilities for obtaining
additional results on the methodology, as well as specific solutions of many nonlinear
differential equations. In addition, the kinds of nonlinearities different from polynomial
ones can be treated. This will be one of the goals of our future research.
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Appendix A. Several Polynomials Kn and Zn

The derivatives h(1), h(2), h(3), h(4), h(5), h(6), and h(7) are often used in the model
nonlinear partial differential equations. Below, we calculated the polynomials Kn and Zn
connected to these derivatives. We start from:

K0 =
q

∑
r=0

brgr

Z0 = 0 (A1)

From Equation (21), we obtain:

K1 = 0; Z1 =
q

∑
r=0

rbrgr−1 (A2)

Then:

K2 =
q

∑
r=0

m

∑
j=0

[
1
2

jr + r(r− 1)
]

ajbrgj+r−2

Z2 = 0. (A3)

K3 = 0;

Z3 =
q

∑
r=0

m

∑
j=0

[
1
2

jr + r(r− 1)
]
(j + r− 2)ajbrgj+r−3

(A4)
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K4 =
q

∑
r=0

m

∑
j=0

m

∑
u=0

[(
1
2

jr + r(r− 1)
)
(j + r− 2)

(
1
2

u + j + r− 3
)]

ajbraugj+r+u−4

Z4 = 0. (A5)

K5 = 0;

Z5 =
q

∑
r=0

m

∑
j=0

m

∑
u=0

[(
1
2

jr + r(r− 1)
)
(j + r− 2)

(
1
2

u + j + r− 3
)]

(j +

r + u− 4)ajbraugj+r+u−5 (A6)

K6 =
q

∑
r=0

m

∑
j=0

m

∑
u=0

m

∑
v=0

[(
1
2

jr + r(r− 1)
)
(j + r− 2)

(
1
2

u + j + r− 3
)
(j +

r + u− 4)
](

1
2

v + j + r + u− 5
)

ajbrauavgj+r+u+v−6

Z6 = 0. (A7)

K7 = 0;

Z7 =
q

∑
r=0

m

∑
j=0

m

∑
u=0

m

∑
v=0

[(
1
2

jr + r(r− 1)
)
(j + r− 2)

(
1
2

u + j + r− 3
)
(j +

r + u− 4)
](

1
2

v + j + r + u− 5
)
(j + r + u + v− 6)ajbrauavgj+r+u+v−7,

(A8)

etc.

Appendix B. Polynomials Li

We write below several of the polynomials Li for the case (22) We start from:

L0 =
q

∑
r=0

brgr. (A9)

The application of the recurrence relationship (25) leads to the following relationships
for L1,L2, . . . .

L1 =
q

∑
r=0

m

∑
j=0

brrcjgr+j−1. (A10)

L2 =
q

∑
r=0

m

∑
j=0

m

∑
k=0

brr(r + j− 1)cjckgr+j+k−2. (A11)

L3 =
q

∑
r=0

m

∑
j=0

m

∑
k=0

m

∑
l=0

brr(r + j− 1)(r + j + k− 2)cjckcl gr+j+k+l−3. (A12)

L4 =
q

∑
r=0

m

∑
j=0

m

∑
k=0

m

∑
l=0

m

∑
n=0

brr(r + j− 1)(r + j + k− 2)(r + j + k + l − 3)cjckclcn ×

gr+j+k+l+n−4. (A13)
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L5 =
q

∑
r=0

m

∑
j=0

m

∑
k=0

m

∑
l=0

m

∑
n=0

m

∑
p=0

brr(r + j− 1)(r + j + k− 2)(r + j + k + l − 3)×

(r + j + k + l + n− 4)cjckclcncpgr+j+k+l+n+p−5. (A14)

L6 =
q

∑
r=0

m

∑
j=0

m

∑
k=0

m

∑
l=0

m

∑
n=0

m

∑
p=0

m

∑
u=0

brr(r + j− 1)(r + j + k− 2)(r + j + k + l − 3)×

(r + j + k + l + n− 4)(r + j + k + l + n + p− 5)cjckclcncpcugr+j+k+l+n+p+u−6. (A15)

L7 =
q

∑
r=0

m

∑
j=0

m

∑
k=0

m

∑
l=0

m

∑
n=0

m

∑
p=0

m

∑
u=0

m

∑
v=0

brr(r + j− 1)(r + j + k− 2)(r + j + k + l − 3)×

(r + j + k + l + n− 4)(r + j + k + l + n + p− 5)(r + j + k + l + n + p + u− 6)×
cjckclcncpcucvgr+j+k+l+n+p+u+v−7.

(A16)

Appendix C. Several Derivatives for the Case of a Function That Is a Composite
Function of Two Functions of Two Independent Variables

In this case, h = f [g(1)(x, t), g(2)(x, t)]. The derivatives up to order three are as follows:

∂h
∂x

=
∂ f

∂g(1)
∂g(1)

∂x
+

∂ f
∂g(2)

∂g(2)

∂x
, (A17)

∂h
∂t

=
∂ f

∂g(1)
∂g(1)

∂t
+

∂ f
∂g(2)

∂g(2)

∂t
. (A18)

∂2h
∂x2 =

∂2 f

∂g(1)2

(
∂g(1)

∂x

)2

+ 2
∂2 f

∂g(1)∂g(2)
∂g(1)

∂x
∂g(2)

∂x
+

∂ f
∂g(1)

∂2g(1)

∂x2 +

∂2 f

∂g(2)2

(
∂g(2)

∂x

)2

+
∂ f

∂g(2)
∂2g(2)

∂x2 . (A19)

∂2h
∂t2 =

∂2 f

∂g(1)2

(
∂g(1)

∂t

)2

+ 2
∂2 f

∂g(1)∂g(2)
∂g(1)

∂t
∂g(2)

∂t
+

∂ f
∂g(1)

∂2g(1)

∂t2 +

∂2 f

∂g(2)2

(
∂g(2)

∂t

)2

+
∂ f

∂g(2)
∂2g(2)

∂t2 . (A20)

∂2h
∂x∂t

=
∂2 f

∂g(1)2
∂g(1)

∂x
∂g(1)

∂t
+

∂2 f
∂g(1)∂g(2)

∂g(1)

∂x
∂g(2)

∂t
+

∂ f
∂g(1)

∂2g(1)

∂x∂t
+

∂2 f
∂g(1)∂g(2)

∂g(1)

∂t
∂g(2)

∂x
+

∂2 f

∂g(2)2
∂g(2)

∂x
∂g(2)

∂t
+

∂ f
∂g(2)

∂2g(2)

∂x∂t
. (A21)
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∂h
∂x3 =

∂3 f

∂g(1)3

(
∂g(1)

∂x

)3

+ 3
∂3 f

∂g(1)2
∂g(2)

(
∂g(1)

∂x

)2
∂g(2)

∂x
+ 3

∂2 f

∂g(1)2
∂g(1)

∂x
∂2g(1)

∂x2 +

3
∂2 f

∂g(1)∂g(2)
∂2g(1)

∂x2
∂g(2)

∂x
+ 3

∂3 f

∂g(1)∂g(2)2
∂g(1)

∂x

(
∂g(2)

∂x

)2

+ 3
∂2 f

∂g(1)∂g(2)
∂g(1)

∂x
∂2g(2)

∂x2 +

∂ f
∂g(1)

∂3g(1)

∂x3 +
∂3 f

∂g(2)3

(
∂g(2)

∂x

)3

+ 3
∂2 f

∂g(2)2
∂g(2)

∂x
∂2g(2)

∂x2 +
∂ f

∂g(2)
∂3g(2)

∂x3 . (A22)

∂h
∂t3 =

∂3 f

∂g(1)3

(
∂g(1)

∂t

)3

+ 3
∂3 f

∂g(1)2
∂g(2)

(
∂g(1)

∂t

)2
∂g(2)

∂t
+ 3

∂2 f

∂g(1)2
∂g(1)

∂t
∂2g(1)

∂t2 +

3
∂2 f

∂g(1)∂g(2)
∂2g(1)

∂t2
∂g(2)

∂t
+ 3

∂3 f

∂g(1)∂g(2)2
∂g(1)

∂t

(
∂g(2)

∂t

)2

+ 3
∂2 f

∂g(1)∂g(2)
∂g(1)

∂t
∂2g(2)

∂t2 +

∂ f
∂g(1)

∂3g(1)

∂t3 +
∂3 f

∂g(2)3

(
∂g(2)

∂t

)3

+ 3
∂2 f

∂g(2)2
∂g(2)

∂t
∂2g(2)

∂t2 +
∂ f

∂g(2)
∂3g(2)

∂t3 . (A23)

∂h
∂x2∂t

=
∂3 f

∂g(1)3

(
∂g(1)

∂x

)2
∂g(1)

∂t
+

∂3 f

∂g(1)2
∂g(2)

(
∂g(1)

∂x

)2
∂g(2)

∂t
+ 2

∂2 f

∂g(1)2
∂g(1)

∂x
∂2g(1)

∂x∂t
+

2
∂2 f

∂g(1)∂g(2)
∂2g(1)

∂x∂t
∂g(2)

∂x
+ 2

∂3 f

∂g(1)2
∂g(2)

∂g(1)

∂x
∂g(2)

∂x
∂g(1)

∂t
+ 2

∂3 f

∂g(1)∂g(2)2
∂g(1)

∂x
∂g(2)

∂x
∂g(2)

∂t
+

2
∂2 f

∂g(1)∂g(2)
∂g(1)

∂x
∂2g(2)

∂x∂t
+

∂2 f

∂g(1)2
∂2g(1)

∂x2
∂g(1)

∂t
+

∂2 f
∂g(1)∂g(2)

∂2g(1)

∂x2
∂g(2)

∂t
+

∂ f
∂g(1)

∂3g(1)

∂x2∂t
+

∂3 f

∂g(1)∂g(2)2

(
∂g(2)

∂x

)2
∂g(1)

∂t
+

∂3 f

∂g(2)3

(
∂g(2)

∂x

)2
∂g(2)

∂t
+ 2

∂2 f

∂g(2)2
∂g(2)

∂x
∂2g(2)

∂x∂t
+

∂2 f
∂g(1)∂g(2)

∂2g(2)

∂x2
∂g(1)

∂t
+

∂2 f

∂g(2)2
∂2g(2)

∂x2
∂g(2)

∂t
+

∂ f
∂g(2)

∂3g(2)

∂x2∂t
.

(A24)

∂h
∂x∂t2 =

∂3 f

∂g(1)3
∂g(1)

∂x

(
∂g(1)

∂t

)2

+ 2
∂2 f

∂g(1)2
∂2g(1)

∂x∂t
∂g(1)

∂t
+ 2

∂3 f

∂g(1)2
∂g(2)

∂g(1)

∂x
∂g(1)

∂t
∂g(2)

∂t
+

∂2 f

∂g(1)2
∂g(1)

∂x
∂2g(1)

∂t2 + 2
∂2 f

∂g(1)∂g(2)
∂g(1)

∂x∂t
∂g(2)

∂t
+

∂3 f

∂g(1)∂g(2)2
∂g(1)

∂x

(
∂g(2)

∂t

)2

+

∂2 f
∂g(1)∂g(2)

∂g(1)

∂x
∂2g(2)

∂t2 +
∂ f

∂g(1)
∂3g(1)

∂x∂t2 + 2
∂2 f

∂g(1)∂g(2)
∂2g(2)

∂x∂t
∂g(1)

∂t
+

∂3 f

∂g(1)2
∂g(2)

∂g(2)

∂x

(
∂g(1)

∂t

)2

+ 2
∂3 f

∂g(1)∂g(2)2
∂g(2)

∂x
∂g(1)

∂t
∂g(2)

∂t
+

∂2 f
∂g(1)∂g(2)

∂g(2)

∂x
∂2g(1)

∂t2 +

2
∂2 f

∂g(2)2
∂2g(2)

∂x∂t
∂g(2)

∂t
+

∂3 f

∂g(2)3
∂g(2)

∂x

(
∂g(2)

∂t

)2

+
∂2 f

∂g(2)2
∂g(2)

∂x
∂2g(2)

∂t2 +
∂ f

∂g(2)
∂3g(2)

∂x∂t2 .

(A25)
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We considered the specific case:

∂g(i)

∂xj
= αi,jg(i), (A26)

where x1 = x and x2 = t. For this case, the above relationships are as follows:

∂h
∂x

= α1,1g(1)
∂ f

∂g(1)
+ α2,1g(2)

∂ f
∂g(2)

, (A27)

∂h
∂t

= α1,2g(1)
∂ f

∂g(1)
+ α2,2g(2)

∂ f
∂g(2)

. (A28)

∂2h
∂x2 = α2

1,1g(1)
2 ∂2 f

∂g(1)2 + 2α1,1α2,1g(1)g(2)
∂2 f

∂g(1)∂g(2)
+ α2

1,1g(1)
∂ f

∂g(1)
+

α2
2,1g(2)

2 ∂2 f

∂g(2)2 + α2
2,1g(2)

∂ f
∂g(2)

. (A29)

∂2h
∂t2 = α2

1,2g(1)
2 ∂2 f

∂g(1)2 + 2α1,2α2,2g(1)g(2)
∂2 f

∂g(1)∂g(2)
+ α2

1,2g(1)
∂ f

∂g(1)
+

α2
2,2g(2)

2 ∂2 f

∂g(2)2 + α2
2,2g(2)

∂ f
∂g(2)

. (A30)

∂2h
∂x∂t

= α1,1α1,2g(1)
2 ∂2 f

∂g(1)2 + α1,1α2,2g(1)g(2)
∂2 f

∂g(1)∂g(2)
+ α1,1α1,2g(1)

∂ f
∂g(1)

+

α1,2α2,1g(1)g(2)
∂2 f

∂g(1)∂g(2)
+ α2,1α2,2g(2)

2 ∂2 f

∂g(2)2 + α2,1α2,2g(2)
∂ f

∂g(2)
. (A31)

∂h
∂x3 = α3

1,1g(1)
2 ∂3 f

∂g(1)3 + 3α2
1,1α2,1g(1)

2
g(2)

∂3 f

∂g(1)2
∂g(2)

+ 3α3
1,1g(1)

2 ∂2 f

∂g(1)2 +

3α2
1,1α2,1g(1)g(2)

∂2 f
∂g(1)∂g(2)

+ 3α1,1α2
2,1g(1)g(2)

2 ∂3 f

∂g(1)∂g(2)2 + 3α1,1α2
2,1g(1)g(2)

∂2 f
∂g(1)∂g(2)

+

α3
1,1g(1)

∂ f
∂g(1)

+ α3
2,1g(2)

3 ∂3 f

∂g(2)3 + 3α3
2,1g(2)

2 ∂2 f

∂g(2)2 + α3
2,1g(2)

∂ f
∂g(2)

.

(A32)

∂h
∂t3 = α3

1,2g(1)
3 ∂3 f

∂g(1)3 + 3α2
1,2α2,2g(1)

2
g(2)

∂3 f

∂g(1)2
∂g(2)

+ 3α3
1,2g(1)

2 ∂2 f

∂g(1)2 +

3α2
1,2α2,2g(1)g(2)

∂2 f
∂g(1)∂g(2)

+ 3α1,2α2
2,2g(1)g(2)

2 ∂3 f

∂g(1)∂g(2)2 + 3α1,2α2
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Appendix D. Several Derivatives for the Case of a Function That Is a Composite
Function of Three Functions of Two Independent Variables

In this case, h = f [g(1)(x, t), g(2)(x, t), g(3(x, t)]. The derivatives up to order two are
as follows:

∂h
∂x

=
∂ f

∂g(1)
∂g(1)

∂x
+

∂ f
∂g(2)

∂g(2)

∂x
+

∂ f
∂g(3)

∂g(3)

∂x
, (A36)
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∂t
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∂ f
∂g(2)

∂g(2)

∂t
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∂ f
∂g(3)

∂g(3)

∂t
. (A37)
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We considered the specific case:

∂g(i)

∂xj
= αi,jg(i), (A41)

where x1 = x and x2 = t. For this case, the above relationships are as follows:

∂h
∂x

= α1,1
∂ f

∂g(1)
+ α2,1

∂ f
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+ α3,1
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, (A42)
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