
computation

Article

Self-Adjusting Variable Neighborhood Search
Algorithm for Near-Optimal k-Means Clustering

Lev Kazakovtsev *, Ivan Rozhnov , Aleksey Popov and Elena Tovbis

Reshetnev Siberian State University of Science and Technology, Institute of Informatics and Telecommunications,
Krasnoyarskiy Rabochiy av. 31, 660037 Krasnoyarsk, Russia; ris2005@mail.ru (I.R.); vm_popov@sibsau.ru (A.P.);
sibstu2006@rambler.ru (E.T.)
* Correspondence: levklevk@gmail.com

Received: 9 October 2020; Accepted: 2 November 2020; Published: 5 November 2020
����������
�������

Abstract: The k-means problem is one of the most popular models in cluster analysis that minimizes
the sum of the squared distances from clustered objects to the sought cluster centers (centroids).
The simplicity of its algorithmic implementation encourages researchers to apply it in a variety
of engineering and scientific branches. Nevertheless, the problem is proven to be NP-hard which
makes exact algorithms inapplicable for large scale problems, and the simplest and most popular
algorithms result in very poor values of the squared distances sum. If a problem must be solved
within a limited time with the maximum accuracy, which would be difficult to improve using known
methods without increasing computational costs, the variable neighborhood search (VNS) algorithms,
which search in randomized neighborhoods formed by the application of greedy agglomerative
procedures, are competitive. In this article, we investigate the influence of the most important
parameter of such neighborhoods on the computational efficiency and propose a new VNS-based
algorithm (solver), implemented on the graphics processing unit (GPU), which adjusts this parameter.
Benchmarking on data sets composed of up to millions of objects demonstrates the advantage of the
new algorithm in comparison with known local search algorithms, within a fixed time, allowing for
online computation.

Keywords: cluster analysis; k-means; variable neighborhood search; agglomerative clustering; GPU

1. Introduction

1.1. Problem Statement

The aim of a clustering problem solving is to divide a given set (sample) of objects (data vectors)
into disjoint subsets, called clusters, so that each cluster consists of similar objects, and the objects
of different clusters have significant dissimilarities [1,2]. The clustering problem belongs to a wide
class of unsupervised machine learning problems. Clustering models involve various similarity or
dissimilarity measures. The k-means model with the squared Euclidean distance as a dissimilarity
measure is based exclusively on the maximum similarity (minimum sum of squared distances) among
objects within clusters.

Clustering methods can be divided into two main categories: hierarchical and partitioning [1,3].
Partitioning clustering, such as k-means, aims at optimizing the clustering result in accordance with
a pre-defined objective function [3].

The k-means problem [4,5], also known as minimum sum-of-squares clustering (MSSC),
assumes that the objects being clustered are described by numerical features. Each object is represented
by a point in the feature space Rd (data vector). It is required to find a given number k of cluster centers

Computation 2020, 8, 90; doi:10.3390/computation8040090 www.mdpi.com/journal/computation

http://www.mdpi.com/journal/computation
http://www.mdpi.com
https://orcid.org/0000-0003-1143-048X
https://orcid.org/0000-0002-8500-2050
http://dx.doi.org/10.3390/computation8040090
http://www.mdpi.com/journal/computation
https://www.mdpi.com/2079-3197/8/4/90?type=check_update&version=2

Computation 2020, 8, 90 2 of 32

(called centroids), such as to minimize the sum of the squared distances from the data vectors to the
nearest centroid.

Let A1, . . . , AN ∈Rd be data vectors, N be the number of them, and S = {X1, . . . , Xk} ⊂Rd be the set
of sought centroids. The objective function (sum of squared errors, SSE) of the k-means optimization
problem formulated by MacQueen [5] is:

SSE(X1, . . . , Xk) = SSE(S) =
N∑

i=1

minX∈{X1,...,Xk}‖Ai −X‖2 → minX1,...,Xk∈Rd . (1)

Here, ‖ · ‖ is the Euclidean distance, integer k must be known in advance.
A cluster in the k-means problem is a subset of data vectors for which the specified centroid is the

nearest one:
C j =

{
Ai, i = 1, N

∣∣∣‖Ai −X j‖ = minX∈{X1,...,Xk}‖Ai −X‖
}
, j = 1, k.

We assume that a data vector cannot belong to two clusters at the same time. At an equal distance
for several centroids, the question of assignment to a cluster can be solved by clustering algorithms in
different ways. For example, a data vector belongs to a cluster lower in number:

C j =
{
Ai, i = 1, N

∣∣∣∣ @ j′ = 1, k : ‖Ai −X j′‖

< ‖Ai −X j‖ or
(
‖Ai −X j′‖ = ‖Ai −X j‖ and j′ > j

)}
,

j = 1, k.

(2)

Usually, for practical problems with sufficiently accurate measured values of data vectors,
the assignment to a specific cluster is not very important.

The objective function may also be formulated as follows:

SSE(X1, . . . , Xk) =
k∑

j=1

∑
i=1,N:Ai∈C j

‖Ai −X j‖
2
→ minX1,...,Xk∈Rd , . (3)

or

SSE(C1, . . . , Ck) =
k∑

j=1

∑
i=1,N:Ai∈C j

‖Ai −X j‖
2
→ minC1,...,Ck⊂{A1,...,AN}. (4)

Equations (3) and (4) correspond to continuous and discrete statements of our problem, respectively.
Such clustering problem statements have a number of drawbacks. In particular, the number

of clusters k must be given in advance, which is hardly possible for the majority of practically
important problems. Furthermore, the adequacy of the result in the case of a complex cluster shapes
is questionable (this model is proved to work fine with the ball-shaped clusters [6]). The result is
sensitive to the outliers (standalone objects) [7,8] and depends on the chosen distance measure and
the data normalization method. This model does not take into account the dissimilarity between the
objects in different clusters, and the application of the k-means model results in some solution X1, . . . ,
Xk even in the cases with no cluster structure in the data [9,10]. Moreover, the NP-hardness [11,12] of
the problem makes the exact methods [6] applicable only for very small problems.

Nevertheless, the simplicity of the most commonly used algorithmic realization as well as the
interpretability of the results make the k-means problem the most popular clustering model. Developers’
efforts are focused on the design of heuristic algorithms that provide acceptable and attainable values
of the objective function.

Computation 2020, 8, 90 3 of 32

1.2. State of the Art

The most commonly used algorithm for solving problem (1) is the Lloyd’s procedure proposed in
1957 and published in 1982 [4], also known as the k-means algorithm, or alternate location-allocation
(ALA) algorithm [13,14]. This algorithm consists of two simple alternating steps, the first of which
solves the simplest continuous (quadratic) optimization problem (3), finding the optimal positions
of the centroids X1, . . . , Xk for a fixed composition of clusters. The second step solves the simplest
combinatorial optimization problem (4) by redistributing data vectors between clusters at fixed
positions of the centroids. Both steps aim at minimizing the SSE. Despite the theoretical estimation of
the computational complexity being quite high [15–17], in practice, the algorithm quickly converges
to a local minimum. The algorithm starts with some initial solution S = {X1, . . . , Xk}, for instance,
chosen at random, and its result is highly dependent on this choice. In the case of large-scale problems,
this simple algorithm is incapable of obtaining the most accurate solutions.

Various clustering models are widely used in many engineering applications [18,19], such as
energy loss detection [20], image segmentation [21], production planning [22], classification of products
such as semiconductor devices [23], recognition of turbulent flow patterns [24], and cyclical disturbance
detection in supply networks [25]. Clustering is also used as a preprocessing step for the supervised
classification [26].

In [27], Naranjo et al. use various clustering approaches including the k-means model for automatic
classification of traffic incidents. The approach proposed in [28] uses the k-means clustering model
for the optimal scheduling of public transportation. Sesham et al. [29] use factor analysis methods
in a combination with the k-means clustering for detecting cluster structures in transportation data
obtained from the interview survey. Such data include the geographic information (home addresses)
and general route information. The use of GPS sensors [30] for collecting traffic data provides us with
large data arrays for such problems as the travel time prediction, traffic condition recognition [31], etc.

The k-means problem can be classified as a continuous location problem [32,33]: it is aimed at
finding the optimal location of centroids in a continuous space.

If we replace squared distances with distances in (1), we deal with the very similar continuous
k-median location problem [34] which is also a popular clustering model [35]. The k-medoids [36,37]
problem is its discrete version where cluster centers must be selected among the data vectors only,
which allows us to calculate the distance matrix in advance [38]. The k-median problem was also
formulated as a discrete location problem [39] on a graph. The similarity of these NP-hard problems [40,41]
enables us to use similar approaches to solve them. In the early attempts to solve the k-median problem
(its discrete version) by exact methods, researchers used a branch and bound algorithm [42–44] for
solving very small problems.

Metaheuristic approaches, such as genetic algorithms [45], are aimed at finding the global
optimum. However, in large-scale instances, such approaches require very significant computational
costs, especially if they are adapted to solving continuous problems [46].

With regard to discrete optimization problems, local search methods, which include Lloyd’s
procedure, have been developed since the 1950s [47–50]. These methods have been successfully used
to solve location problems [51,52]. The progress of local search methods is associated with both new
algorithmic schemes and new theoretical results in the field of local search [50].

A standard local search algorithm starts with some initial solution S and goes to a neighboring
solution if this solution turns out to be superior. Moreover, finding the set of neighbor solutions n(S) is the
key issue. Elements of this set are formed by applying a certain procedure to a solution S. At each local
search step, the neighborhood function n(S) specifies the set of possible search directions. Neighborhood
functions can be very diverse, and the neighborhood relation is not always symmetric [53,54].

For a review of heuristic solution techniques applied to k-means and k-median problems,
the reader can refer to [32,55,56]. Brimberg, Drezner, and Mladenovic and Salhi [57–59] presented local
search approaches including the variable neighborhood search (VNS) and concentric search. In [58],
Drezner et al. proposed heuristic procedures including the genetic algorithm (GA), for rather small

Computation 2020, 8, 90 4 of 32

data sets. Algorithms for finding the initial solution for the Lloyd’s procedure [60,61] are aimed at
improving the average resulting solution. For example, in [62], Bhusare et al. propose an approach
to spread the initial centroids uniformly so that the distance among them is as far as possible.
The most popular kmeans++ initialization method introduced by Arthur and Vassilvitskii [60]
is a probabilistic implementation of the same idea. An approach proposed by Yang and Wang [63]
improves the traditional k-means clustering algorithm by choosing initial centroids with a min-max
similarity. Gu et al. [7] provide a density-based initial cluster center selection method to solve the
problem of outliers. Such smart initialization algorithms reduce the search area for local search
algorithms in multi-start modes. Nevertheless, they do not guarantee an optimal or near optimal
solution of the problem (1).

Many authors propose approaches based on reducing the amount of data [64]: simplification of
the problem by random (or deterministic) selection of a subset of the initial data set for a preliminary
solution of the k-means problem, and using these results as an initial solution to the k-means algorithm
on the complete data set [65–67]. Such aggregation approaches, summarized in [68], as well as reducing
the number of the data vectors [69], enable us to solve large-scale problems within a reasonable time.
However, such approaches lead to a further reduction in accuracy. Moreover, many authors [70,71]
name their algorithm “exact” which does not mean the ability to achieve an exact solution of (1). In such
algorithms, the word “exact” means the exact adherence to the scheme of the Lloyd’s procedure, without
any aggregation, sampling, and relaxation approaches. Thus, such algorithms may be faster than the
Lloyd’s procedure due to the use of triangle inequality, storing the results of distance calculations in
multidimensional data sets or other tricks [72], however they are not intended to get the best value
of (1). In our research, aimed at obtaining the most precise solutions, we consider only the methods
which estimate the objective function (1) directly, without aggregation or approximation approaches.

The main idea of the variable neighborhood search algorithms proposed by Hansen and
Mladenovic [73–75] is the alternation of neighborhood functions n(S). Such algorithms include
Lloyd’s procedure, which alternates finding a locally optimal solution of a continuous optimization
problem (3) with a solution of a combinatorial problem (4). However, as applied to the k-means
problem, the VNS class traditionally involves more complex algorithms.

The VNS algorithms are used for a wide variety of problems [3,76,77] including clustering [78]
and work well for solving k-means and similar problems [50,79–82].

Agglomerative and dissociative procedures are separate classes of clustering algorithms.
Dissociative (divisive) procedures [83] are based on splitting clusters into smaller clusters.
Such algorithms are commonly used for small problems due to their high computing complexity [83–85],
most often in hierarchical clustering models. The agglomerative approach is the most popular in
hierarchical clustering, however, it is also applied in other models of cluster analysis. Agglomerative
procedures [86–90] combine clusters sequentially, i.e., in relation to the k-means problem, they sequentially
remove centroids. The elements of the clusters, related to the removed centroids, are redistributed among
the remaining clusters. The greedy strategies are used to decide which clusters are most similar to be
merged together [3] at each iteration of the agglomerative procedure. An agglomerative procedure starts
with some solution S containing an excessive number of centroids and clusters k + r, where integer r is
known in advance or chosen randomly. The r value (number of excessive centroids in the temporary
solution) is the most important parameter of the agglomerative procedure. Some algorithms, including
those based on the k-means model [91], involve both the agglomerative and dissociative approaches.
Moreover, such algorithms are not aimed at achieving the best value of the objective function (1), and their
accuracy is not high in this sense.

1.3. Research Gap

Many transportation and other problems (e.g., clustering problems related to computer vision)
require online computation within a fixed time. As mentioned above, Lloyd’s procedure, the most
popular k-means clustering algorithm, is rather fast. Nevertheless, for specific data sets including

Computation 2020, 8, 90 5 of 32

geographic/geometrical data, this algorithm results in a solution which is very far from the global
minimum of the objective function (1), and the multi-start operation mode does not improve the
result significantly. More accurate k-means clustering methods are much slower. Nevertheless,
recent advances in high-performance computing and the use of massively parallel systems enable us
to work through a large amount of computation using the Lloyd’s procedure embedded into more
complex algorithmic schemes. Thus, the demand for clustering algorithms that compromise on the
time spent for computations and the resulting objective function (1) value is apparent. Nevertheless,
in some cases, when solving problem (1), it is required to obtain a result (a value of the objective
function) within a limited fixed time, which would be difficult to improve on by known methods
without a significant increase in computational costs. Such results are required if the cost of error
is high, as well as for evaluating faster algorithms, as reference solutions.

Agglomerative procedures, despite their relatively high computational complexity, can be
successfully integrated into more complex search schemes. They can be used as a part of the crossover
operator of genetic algorithms [46,88] and as a part of the VNS algorithms. Moreover, such algorithms
are a compromise between the solution accuracy and time costs. In this article, by accuracy, we mean
exclusively the ability of the algorithm (solver) to obtain the minimum values of the objective function (1).

The use of VNS algorithms, that search in the neighborhoods, formed by applying greedy
agglomerative procedures to a known (current) solution S, enables us to obtain good results in a fixed
time acceptable for interactive modes of operation. The selection of such procedures, their sequence and
their parameters remained an open question. The efficiency of such procedures has been experimentally
shown on some test and practical problems. Various versions of VNS algorithms based on greedy
agglomerative procedures differ significantly in their results which makes such algorithm difficult to
use in practical problems. It is practically impossible to forecast the relative performance of a specific
VNS algorithm based on such generalized numerical features of the problem as the sample size and
the number of clusters. Moreover, the efficiency of such procedures depends on their parameters.
However, the type and nature of this dependence has not been studied.

1.4. Our Contribution

In this article, we systematize approaches to the construction of search algorithms in neighborhoods,
formed by the use of greedy agglomerative procedures.

In this work, we proceeded from the following assumptions:

(a) The choice of parameter r value (the number of excessive centroids, see above) of the greedy
agglomerative heuristic procedure significantly affects the efficiency of the procedure.

(b) Since it is hardly possible to determine the optimal value of this parameter based on such
numerical parameters of the k-means problem as the number of data vectors and the number of
clusters, reconnaissance (exploratory) search with various values of r can be useful.

(c) Unlike the well-known VNS algorithms that use greedy agglomerative heuristic procedures with
an increasing value of the parameter r, a gradual decrease in the value of this parameter may be
more effective.

Based on these assumptions, we propose a new VNS algorithm involving greedy agglomerative
procedures for the k-means problem, which, by adjusting the initial r parameter of such procedures,
enables us to obtain better results in a fixed time which exceed the results of known VNS algorithms.
Due to self-adjusting capabilities, such an algorithm should be more versatile, which should increase
its applicability to a wider range of problems in comparison with known VNS algorithms based on
greedy agglomerative procedures.

1.5. Structure of this Article

The rest of this article is organized as follows. In Section 2, we present an overview of the
most common local search algorithms for k-means and similar problems, and introduce the notion

Computation 2020, 8, 90 6 of 32

of neighborhoods SWAPr and GREEDYr. It is shown experimentally that the search result in these
neighborhoods strongly depends on the neighborhood parameter r (the number of simultaneously
alternated or added centroids). In addition, we present a new VNS algorithm which performs the
local search in alternating GREEDYr neighborhoods with the decreasing value of r and its initial
value estimated by a special auxiliary procedure. In Section 3, we describe our computational
experiments with the new and known algorithms. In Section 4, we consider the applicability of the
results on the adjustment of the GREEDYr neighborhood parameter in algorithmic schemes other
than VNS, in particular, in evolutionary algorithms with a greedy agglomerative crossover operator.
The conclusions are given in Section 5.

2. Materials and Methods

For constructing a more efficient algorithm (solver), we used a combination of such algorithms as
Lloyd’s procedure, greedy agglomerative clustering procedures, and the variable neighborhood search.
The most computationally expensive part of this new algorithmic construction, Lloyd’s procedure,
was implemented on graphic processing units (GPU).

2.1. The Simplest Approach

Lloyd’s procedure, the simplest and most popular algorithm for solving the k-means problem,
is described as follows (see Algorithm 1).

Algorithm 1. Lloyd(S)

Require: Set of initial centroids S = {X1, . . . , Xk}. If S is not given, then the initial centroids are selected
randomly from the set of data vectors {A1, . . . , AN}.
repeat
1. For each centroid Xj, j = 1, k, define its cluster in accordance with (2); // I.e. assign each data vector to the
nearest centroid
2. For each cluster Cj, j = 1, k, calculate its centroid as follows:

X j =

∑
i∈{1,N}:Ai∈Cj

Ai

|C j|
.

until all centroids stay unchanged.

Formally, the k-means problem in its formulation (1) or (3) is a continuous optimization problem.
With a fixed composition of clusters Cj, the optimal solution is found in an elementary way, see Step 2
in Algorithm 1, and this solution is the local optimum of the problem in terms of the continuous
optimization theory, i.e., local optimum in the ε-neighborhood. A large number of such optima forces
the algorithm designers to systematize their search in some way. The first step of Lloyd’s algorithm
solves a simple combinatorial optimization problem (3) on the redistribution of data vectors among
clusters, that is, it searches in the other neighborhood.

The simplicity of Lloyd’s procedure enables us to apply it to a wide range of problems, including face
detection, image segmentation, signal processing and many others [92]. Frackiewicz et al. [93] presented
a color quantization method based on downsampling of the original image and k-means clustering on
a downsampled image. The k-means clustering algorithm used in [94] was proposed for identifying
electrical equipment of a smart building. In many cases, researchers do not distinguish between the
k-means model and the k-means algorithm, as Lloyd’s procedure is also called. Nevertheless, the result
of Lloyd’s procedure may differ from the results of other more advanced algorithms many times
in the objective function value (1). For finding a more accurate solution, a wide range of heuristic
methods were proposed [55]: evolutionary and other bio-inspired algorithms, as well as local search in
various neighborhoods.

Computation 2020, 8, 90 7 of 32

Modern scientific literature offers many algorithms to speed up the solution of the k-means problem.
Algorithm named k-indicators [95] promoted by Chen et al. is a semi-convex-relaxation algorithm for
approximate solution of big-data clustering problems. In the distributed implementation of the k-means
algorithm proposed in [96], the algorithm considers a set of agents, each of which is equipped with
a possibly high-dimensional piece of information or set of measurements. In [97,98], the researchers
improved algorithms for the data streams. In [99], Hedar et al. present a hierarchical k-means method
for better clustering performance in the case of big data problems. This approach enables us to mitigate
the poor scaling behavior with regard to computing time and memory requirements. Fast adaptive
k-means subspace clustering algorithm with an adaptive loss function for high-dimensional data was
proposed by Wang et al. [100]. Nevertheless, the usage of the massively parallel systems is the most
efficient way to achieve the most significant acceleration of computations, and the original Lloyd’s
procedure (Algorithm 1) can be seamlessly parallelized on such systems [101,102].

Metaheuristic approaches for the k-means and similar problems include genetic algorithms [46,103,104],
the ant colony clustering hybrid algorithm proposed in [105], particle swarm optimization algorithms [106].
Almost all of these algorithms in one way or another use the Lloyd’s procedure or other local search
procedures. Our new algorithm (solver) is not an exception.

2.2. Local Search in SWAP Neighborhoods

Local search algorithms differ in forms of neighborhood function n(S). A local minimum in one
neighborhood may not be a local minimum in another neighborhood [50]. The choice of a neighborhood
of lower cardinality leads to a decrease in the complexity of the search step, however, a wider
neighborhood can lead to a better local minimum. We have to find a balance between these conflicting
requirements [50].

A popular idea when solving k-means, k-medoids, k-median problems is to search for a better
solution in SWAP neighborhoods. This idea was realized, for instance, in the J-means procedure [80]
proposed by Hansen and Mladenovic, and similar I-means algorithm [107]. In SWAP neighborhoods,
the set n(S) is the set of solutions obtained from S by replacing one or more centroids with some
data vectors.

Let us denote the neighborhood, where r centroids must be simultaneously replaced, by SWAPr(S).
The SWAPr neighborhood search can be regular (all possible substitutions are sequentially enumerated),
as in the J-means algorithm, or randomized (centroids and data vectors for replacement are
selected randomly). In both cases, the search in the SWAP neighborhood always alternates with the
Lloyd’s procedure: if an improved solution is found in the SWAP neighborhood, the Lloyd’s procedure
is applied to this new solution, and then the algorithm returns to the SWAP neighborhood search.
Except for very small problems, regular search in SWAP neighborhoods, with the exception of the SWAP1

neighborhood and sometimes SWAP2, is almost never used due to the computational complexity:
in each of iterations, all possible replacement options must be tested. A randomized search in SWAPr

neighborhoods can be highly efficient for sufficiently large problems, which can be demonstrated by
the experiment described below. Herewith, the correct choice of r is of great importance.

As can be seen on Figure 1, for various problems from the clustering benchmark repository [108,109],
the best results are achieved with different values of r, although in general, such a search provides
better results in comparison with Lloyd’s procedure. Our computational experiments are described in
detail in Sections 2.5–2.7.

Computation 2020, 8, 90 8 of 32

Computation 2020, 8, x FOR PEER REVIEW 8 of 36

(a)

(b)

(c) (d)

Figure 1. Search in SWAPr neighborhoods. Dependence of the result on r: (a) BIRCH3 data set, 100
clusters, 105 data vectors, time limitation 10 s; (b–d) Mopsi-Joensuu data set, 30, 100 and 300 clusters,
6014 data vectors, time limitation 5 s.

2.3. Agglomerative Approach and GREEDYr Neyborhoods

When solving the k-means and similar problems, the agglomerative approach is often
successful. In [86], Sun et al. propose a parallel clustering method based on MapReduce model which
implements the information bottleneck clustering (IBC) idea. In the IBC and other agglomerative
clustering algorithms, clusters are sequentially removed one-by-one, and objects are redistributed
among the remaining clusters. Alp et al. [88] presented a genetic algorithm for facility location
problems, where evolution is facilitated by a greedy agglomerative heuristic procedure. A genetic
algorithm with a faster greedy heuristic procedure for clustering and location problems was also
proposed in [90]. In [46], two genetic algorithm approaches with different crossover procedures are
used to solve k-median problem in continuous space.

Greedy agglomerative procedures can be used as independent algorithms, as well as being
embedded into genetic operators [110] or VNS algorithms [79]. The basic greedy agglomerative
procedure for the k-means problem can be described as follows (see Algorithm 2).

Algorithm 2. BasicGreedy(S)

Figure 1. Search in SWAPr neighborhoods. Dependence of the result on r: (a) BIRCH3 data set,
100 clusters, 105 data vectors, time limitation 10 s; (b–d) Mopsi-Joensuu data set, 30, 100 and 300 clusters,
6014 data vectors, time limitation 5 s.

2.3. Agglomerative Approach and GREEDYr Neyborhoods

When solving the k-means and similar problems, the agglomerative approach is often successful.
In [86], Sun et al. propose a parallel clustering method based on MapReduce model which implements
the information bottleneck clustering (IBC) idea. In the IBC and other agglomerative clustering
algorithms, clusters are sequentially removed one-by-one, and objects are redistributed among
the remaining clusters. Alp et al. [88] presented a genetic algorithm for facility location problems,
where evolution is facilitated by a greedy agglomerative heuristic procedure. A genetic algorithm
with a faster greedy heuristic procedure for clustering and location problems was also proposed
in [90]. In [46], two genetic algorithm approaches with different crossover procedures are used to solve
k-median problem in continuous space.

Greedy agglomerative procedures can be used as independent algorithms, as well as being
embedded into genetic operators [110] or VNS algorithms [79]. The basic greedy agglomerative
procedure for the k-means problem can be described as follows (see Algorithm 2).

Algorithm 2. BasicGreedy(S)

Require: Set of initial centroids S = {X1, . . . , XK}, K > k, required final number of centroids k.
S← Lloyd(S);
while |S| > k do

for i = 1, K do
Fi ← SSE(S\{Xi});

end for
Select a subset S′ ⊂ S of rtoremove centroids with the minimum values of the corresponding
variables Fi; // By default, rtoremove = 1.

S← Lloyd(S \S′);
end while.

Computation 2020, 8, 90 9 of 32

In its most commonly used version, with rtoremove = 1, this procedure is rather slow for large-scale
problems. It tries to remove the centroids one-by-one. At each iteration, it eliminates such centroids
that their elimination results in the least significant increase in the SSE value. Further, this procedure
involves the Lloyd’s procedure which can be also slow in the case of rather large problems with many
clusters. To improve the performance of such a procedure, the number of simultaneously eliminated
centroids can be calculated as rtoremove = max

{
1, (|S| − k) · rcoe f

}
. In [90], Kazakovtsev and Antamoshkin

used the elimination coefficient value rcoe f = 0.2. This means that at each iteration, up to 20% of the
excessive centroids are eliminated, and such values are proved to make the algorithm faster. In this
research, we use the same value.

In [79,90,110], the authors embed the BasicGreedy() procedure into three algorithms which differ in
r value only. All of these algorithms can be described as follows (see Algorithm 3):

Algorithm 3. Greedy (S,S2,r)

Require: Two sets of centroids S, S2, |S| = |S2| = k, the number of centroids r of the solution S2 which are used
to obtain the resulting solution, r ∈

{
1, k

}
.

For i = 1, nrepeats do
1. Select a subset S′ ⊂ S2 : |S′| = r.

2. S′ ← BasicGreedy(S∪ S′);
3. if SSE(S’) < SSE(S) then S← S′ end if;

end for
return S.

Such procedures use various values of r from 1 up to k. If r = 1 then the algorithm selects a subset
(actually, a single element) of S2 regularly: {X1} in the first iteration, {X2} in the second one, etc. In this
case, nrepeats = k. If r = k then obviously S’ = S2, and nrepeat =1. Otherwise, r is selected randomly,
r ∈

{
2, k− 1

}
, and nrepeats depends on r: nrepeats = max{1,[k/r]}.

If the solution S2 is fixed, then all possible results of applying the Greedy(S,S2,r) procedure form
a neighborhood of the solution S, and S2 as well as r are parameters of such a neighborhood. If S2 is
a randomly chosen locally optimal solution obtained by Lloyd(S2’) procedure applied to a randomly
chosen subset S′2 ⊂ {A1, . . . , AN},

∣∣∣S2
′
∣∣∣ = k, then we deal with a randomized neighborhood.

Let us denote such a neighborhood by GREEDYr(S). Our experiments in Section 3 demonstrate
that the obtained result of the local search in GREEDYr neighborhoods strongly depends on r.

2.4. Variable Neighborhood Search

The dependence of the local search result on the neighborhood selection reduces if we use
a certain set of neighborhoods and alternate them. This approach is the basis for VNS algorithms.
The idea of alternating neighborhoods is easy to adapt to various problems [76–78] and highly efficient,
which makes it very useful for solving NP-hard problems including clustering, location, and vehicle
routing problems. In [111,112], Brimberg and Mladenovic and Miskovic et al. used the VNS for solving
various facility location problems. Cranic et al. [113] as well as Hansen and Mladenovic [114] proposed
and developed a parallel VNS algorithm for the k-median problem. In [115], a VNS algorithm was
used for a vehicle routing and driver scheduling problems by Wen et al.

The ways of neighborhood alternation may differ significantly. Many VNS algorithms are not
even classified by their authors as VNS algorithms. For example, the algorithm in [57] alternates
between discrete and continuous problems: when solving a discrete problem, the set of local optima
is replenished, and then such local optima are chosen as elements of the initial solution of the
continuous problem. A similar idea of the recombinator k-means algorithm was proposed by C.
Baldassi [116]. This algorithm restarts the k-means procedure, using the results of previous runs as
a reservoir of candidates for the new initial solutions, exploiting the popular k-means++ seeding

Computation 2020, 8, 90 10 of 32

algorithm to piece them together into new, promising initial configurations. Thus, the k-means search
alternates with the discrete problem of finding an optimal initial centroid combination.

VNS class includes a very efficient abovementioned J-Means algorithm [80], which alternates
search in a SWAP neighborhood and the use of Lloyd’s procedure. Even when searching only in
the SWAP1 neighborhood, the J-Means results can be many times better than the results of Lloyd’s
procedure launched in the multi-start mode, as shown in [62,97].

In [50], Kochetov et al. describe such basic schemes of VNS algorithms as variable neighborhood descent
(VND, see Algorithm 4) [117] and randomized Variable Neighborhood Search (RVNS, see Algorithm 5) [50].

Algorithm 4. VND(S)

Require: Initial solution S, selected neighborhoods nl, l =
{
1, lmax

}
.

repeat
l← 1 ;
whilel ≤ lmaxdo

search for S′ ∈ nl(S) : f (S′) = min
{
f (Y)

∣∣∣Y ∈ nl(S)
}
;

if f (S’) < f (S) then S← S′; l← 1 else l← l + 1 end if;
end while;

until the stop conditions are satisfied.

Algorithm 5. RVNS(S)

Require: Initial solution S, selected neighborhoods nl, l =
{
1, lmax

}
.

repeat
l← 1 ;
While l ≤ lmax do

select randomly S′ ∈ nl(S);
if f (S’) < f (S) then S← S′; l← 1 else l← l + 1 end if;

end while;
until the stop conditions are satisfied.

Algorithms of the RVNS scheme are more efficient when solving large-scale problems [50],
when the use of deterministic VND requires too large computational costs per each iteration. In many
efficient algorithms, lmax = 2. For example, the J-Means algorithm combines a SWAP neighborhood
search with Lloyd’s procedure.

As a rule, algorithm developers propose to move from neighborhoods of lower cardinality to wider
neighborhoods. For instance, in [79], the authors propose a sequential search in the neighborhoods
GREEDY1→GREEDYrandom→GREEDYk→GREEDY1→ . . . Here, GREEDYrandom is a neighborhood
with randomly selected r ∈

{
2, k− 1

}
. In this case, the initial neighborhood type has a strong influence on

the result [79]. However, the best initial value of parameter r is hardly predictable.
In this article, we propose a new RVNS algorithm which involves GREEDYr neighborhood search

with a gradually decreasing r and automatic adjustment of the initial r value. Computational experiments
show the advantages of this algorithm in comparison with the algorithms searching in SWAP
neighborhoods as well as in comparison with known search algorithms with GREEDYr neighborhoods.

2.5. New Algorithm

A search in a GREEDYr neighborhood with a fixed r values, on various practical problems listed
in the repositories [108,109,118], shows that the result (the value of the objective function) essentially
depends on r, and this dependence differs for various problems, even if the problems have similar basic
numerical characteristics, such as the number of data vectors N, their dimension d, and the number of
clusters k. The results are shown on Figures 2 and 3. At the same time, our experiments show that at
the first iterations, the use of Algorithm 3 almost always leads to an improvement in the SSE value,

Computation 2020, 8, 90 11 of 32

and then the probability of such a success decreases. Moreover, the search in neighborhoods with
large r values stops giving improving results sooner, while the search in neighborhoods with small r,
in particular, with r = 1, enables us to obtain the improved solutions during a longer time. The search
in the GREEDY1 neighborhood corresponds to the adjustment of individual centroid positions. Thus,
the possible decrement of the objective function value is not the same for different values of r.

Computation 2020, 8, x FOR PEER REVIEW 11 of 36

SWAP neighborhoods as well as in comparison with known search algorithms with GREEDYr
neighborhoods.

2.5. New Algorithm

A search in a GREEDYr neighborhood with a fixed r values, on various practical problems listed
in the repositories [108,109,118], shows that the result (the value of the objective function) essentially
depends on r, and this dependence differs for various problems, even if the problems have similar
basic numerical characteristics, such as the number of data vectors N, their dimension d, and the
number of clusters k. The results are shown on Figures 2 and 3. At the same time, our experiments
show that at the first iterations, the use of Algorithm 3 almost always leads to an improvement in the
SSE value, and then the probability of such a success decreases. Moreover, the search in
neighborhoods with large r values stops giving improving results sooner, while the search in
neighborhoods with small r, in particular, with r = 1, enables us to obtain the improved solutions
during a longer time. The search in the GREEDY1 neighborhood corresponds to the adjustment of
individual centroid positions. Thus, the possible decrement of the objective function value is not the
same for different values of r.

(a) (b)

(c)

(d) Computation 2020, 8, x FOR PEER REVIEW 12 of 36

(e)

(f)
Figure 2. Search in GREEDYr neighborhoods. Dependence of the result on r: (a) BIRCH3 data set, 100
clusters, 105 data vectors, time limitation 10 s; (b–d) Mopsi-Joensuu data set, 30, 100 and 300 clusters,
6014 data vectors, time limitation 5 s; (e–f) Mopsi-Finland data set, 100 and 300 clusters, 13,467 data
vectors, time limitation 5 s.

Figure 3. Search in GREEDYr neighborhoods. Dependence of the result on r: Individual Household
Electric Power Consumption (IHEPC) data set, 50 clusters, 2,075,259 data vectors, time limitation 5
min.

We propose the following sequence of neighborhoods: GREEDYr0→GREEDYr1→ GREEDYr2→… →GREEDY1 →GREEDYk→ ⋯. Here, r values gradually decrease: r0 > r1 > r2…. After reaching r = 1,
the search continues in the GREEDYk neighborhood, and after that the value of r starts decreasing
again. Moreover, the r value fluctuates within certain limits at each stage of the search.

This algorithm can be described as follows (Algortithm 6).

Algorithm 6. DecreaseGreedySearch(S,r0)
Require: Initial solution S, initial = ∈ {1, }.
select randomly ⊂ { , … , }, | |=k; ← ();
repeat
 nrepeats←max{1, / };
 for = 1, do

 1. select randomly ∈ 1, , ;
 2. ′ ← (, , ′);

Figure 2. Search in GREEDYr neighborhoods. Dependence of the result on r: (a) BIRCH3 data set,
100 clusters, 105 data vectors, time limitation 10 s; (b–d) Mopsi-Joensuu data set, 30, 100 and 300 clusters,
6014 data vectors, time limitation 5 s; (e–f) Mopsi-Finland data set, 100 and 300 clusters, 13,467 data
vectors, time limitation 5 s.

Computation 2020, 8, 90 12 of 32

Computation 2020, 8, x FOR PEER REVIEW 12 of 36

(e)

(f)
Figure 2. Search in GREEDYr neighborhoods. Dependence of the result on r: (a) BIRCH3 data set, 100
clusters, 105 data vectors, time limitation 10 s; (b–d) Mopsi-Joensuu data set, 30, 100 and 300 clusters,
6014 data vectors, time limitation 5 s; (e–f) Mopsi-Finland data set, 100 and 300 clusters, 13,467 data
vectors, time limitation 5 s.

Figure 3. Search in GREEDYr neighborhoods. Dependence of the result on r: Individual Household
Electric Power Consumption (IHEPC) data set, 50 clusters, 2,075,259 data vectors, time limitation 5
min.

We propose the following sequence of neighborhoods: GREEDYr0→GREEDYr1→ GREEDYr2→… →GREEDY1 →GREEDYk→ ⋯. Here, r values gradually decrease: r0 > r1 > r2…. After reaching r = 1,
the search continues in the GREEDYk neighborhood, and after that the value of r starts decreasing
again. Moreover, the r value fluctuates within certain limits at each stage of the search.

This algorithm can be described as follows (Algortithm 6).

Algorithm 6. DecreaseGreedySearch(S,r0)
Require: Initial solution S, initial = ∈ {1, }.
select randomly ⊂ { , … , }, | |=k; ← ();
repeat
 nrepeats←max{1, / };
 for = 1, do

 1. select randomly ∈ 1, , ;
 2. ′ ← (, , ′);

Figure 3. Search in GREEDYr neighborhoods. Dependence of the result on r: Individual Household
Electric Power Consumption (IHEPC) data set, 50 clusters, 2,075,259 data vectors, time limitation 5 min.

We propose the following sequence of neighborhoods: GREEDYr0→ GREEDYr1→ GREEDYr2→

. . . →GREEDY1→GREEDYk → Here, r values gradually decrease: r0 > r1 > r2 After reaching
r = 1, the search continues in the GREEDYk neighborhood, and after that the value of r starts decreasing
again. Moreover, the r value fluctuates within certain limits at each stage of the search.

This algorithm can be described as follows (Algortithm 6).

Algorithm 6. DecreaseGreedySearch(S,r0)

Require: Initial solution S, initial r = r0 ∈
{
1, k

}
.

select randomly S2 ⊂ {A1, . . . , AN}, |S2|= k; S2 ← Lloyd(S2);
repeat

nrepeats ←max{1,[k/r]};
for i = 1, nrepeats do

1. select randomly r′ ∈
{

max
{
1,

[
r0
2

]}
, r0

}
;

2. S′ ← Greedy(S, S2, r′);
3. if SSE(S’) < SSE(S) then S← S′ end if;

endfor;
select randomly S2 ⊂ {A1, . . . , AN}, |S2| = k; S2 ← Lloyd(S2);

if Steps 1–3 have not changed S
then

if r = 1 then r0 ← k else r0 ← max
{
1,

[
r
2

]
− 1

}
end if;

end if;
until the stop conditions are satisfied (time limitation).

Genetic algorithms with greedy agglomerative heuristics are known to perform better than VNS
algorithms with sufficient computation time [79,90] which results in better SSE values. Despite this,
the limited time and computational complexity of the Greedy() procedure as a genetic crossover operator
leads to a situation when genetic algorithms may have enough time to complete a very limited number
of crossover operations and often only reach the second or third generation of solutions. Under these
conditions, VNS algorithms are a reasonable compromise of the computation cost and accuracy.

The choice of the initial value of parameter r0 is highly important. Such a choice is quite simply
carried out by a reconnaissance search with different r0 values. The algorithm with such an automatic
adjustment of the parameter r0 by performing a reconnaissance search is described as follows
(Algorithm 7).

Computation 2020, 8, 90 13 of 32

Algorithm 7. AdaptiveGreedy (S) solver

Require: the number of reconnaissance search iterations nrecon.
select randomly S ⊂ {A1, . . . , AN}, |S| = k; S← Lloyd(S);
for i = 1, nrecon do

select randomly Si ⊂ {A1, . . . , AN}, |Si| = k; Si ← Lloyd(Si);
end for;
r ← k;
repeat

Sr
′′
← S ; nrepeats ←max{1,[k/r]};

for i = 1, nrecon do
for i = 1, nrepeats do

S′ ← Greedy(Sr
′′ , Si, r); if SSE(S’) < SSE(Sr

′′) then Sr
′′
← S′ end if;

end for;
end for;

r← max
{
1,

[
r
2

]
− 1

}
;

until r = 1 ;
select the value r with minimum value of SSE(Sr

′′);
r0 ← min{1.5r, k} ;
DecreaseGreedySearch(S′′r , r0).

Results of computational experiments described in the next Section show that our new algorithm,
which sequentially decreases the value of the parameter r0, has an advantage over the known
VNS algorithms.

2.6. CUDA Implementation

The greedy agglomerative procedure (BasicGreedy) is computationally expensive. In Algorithm 2,
the objective function calculation Fi′←SSE(S\{Xi}) is performed more than (K − k) · k times in each
iteration, and after that, Lloyd() procedure is executed. Therefore, such algorithms are traditionally
considered as methods for solving comparatively small problems (hundreds of thousands of data
points and hundreds of clusters). However, the rapid development of the massive parallel processing
systems (GPUs) enables us to solve the large-scale problems with reasonable time expenses (seconds).
Parallel (CUDA) implementation of the algorithms for the Lloyd() procedure is known [101,102], and we
used this approach in our experiments.

Graphic processing units (GPUs) accelerate computations with the use of multi-core computing
architecture. The CUDA (compute unified device architecture) is the most popular programming
platform which enables us to use general-purpose programming languages (e.g., C++) for compiling
GPU programs. The programming model uses the single instruction multiple thread (SIMT) principle [119].
We can declare a function in the CUDA program a “kernel” function and run this function on the steaming
multiprocessors. The threads are divided into blocks. Several instances of a kernel function are executed
in parallel on different nodes (blocks) of a computation grid. Each thread can be identified by special
threadIdx variable. Each thread block is identified by blockIdx variable. The number of threads in a block
is identified by blockDim variable. All these variables are 3-dimensional vectors (dimensions x, y, z).
Depending on the problem solved, the interpretation of these dimensions may differ. For processing 2D
graphical data, x and y are used for identifying pixel coordinates.

The most computationally expensive part of Lloyd’s procedure is distance computation and
comparison (Step 1 of Algorithm 1). This step can be seamlessly parallelized if we calculate
distances from each individual data vector in a separate thread. Thus, threadIdx.x and blockIdx.x
must indicate a data vector. The same kernel function prepares data needed for centroid calculation
(Step 2 of Algorithm 1). Such data are the sum of data vector coordinates in a specific cluster
sum j =

∑
i∈{1,N}:Ai∈C j

Ai and the cardinality of the cluster counterj =
∣∣∣C j

∣∣∣. Here, j is the cluster number.

Variable sumj is a vector (1-dimensional array in program realization).

Computation 2020, 8, 90 14 of 32

To perform Step 1 of Algorithm 1 on a GPU, after initialization sumj ← 0 and counterj ← 0 ,
the following procedure (Algorithm 8) runs on (N + blockDim.x)/ blockDim.x nodes of computation grid,
with blockDim.x threads in each block (in our experiments, blockDim.x = 512):

Algorithm 8. CUDA kernel implementation of Step 1 in Lloyd’s procedure (Algorithm 1)

i← blockIdx.x ·blockDim.x + threadIdx.x;
if i > N then return end if;
Dnearest ← +∞; // distance from Ai to the nearest centroid
for j = 1, k do

if ‖A j −Xi‖ < Dnearest then
Dnearest ← A j −Xi;
n ← j;

end if
end for;
sumn ← sumn + An;
countern ← countern + 1;
SSE← SSE+ D2

nearest . // objective function adder

If sumj and counterj are pre-calculated for each cluster then Step 2 of Algorithm 1 is reduced to
a single arithmetic operation for each cluster: Xj = sumj/counterj. If the number of clusters is not huge,
this operation does not take significant computation resources. Nevertheless, its parallel implementation
is even simpler: we organize k treads, and each thread calculates Xj for an individual cluster.
Outside Lloyd’s procedure, we use Algorithm 8 for SSE value estimation (variable SSE must be
initialized by 0 in advance).

The second computationally expensive part of the BasicGreegy() algorithm is estimation of the
objective function value after eliminating a centroid [120]: Fi′ = SSE(S\{Xi}). Having calculated SSE(S),
we may calculate as SSE(S\{Xi}) as

Fi′ = SSE(S\{Xi}) = SSE(S) +
∑N

l=1∆Dl (5)

where

∆Dl =

0, Al < Ci,(

min j∈{1,k}, j,i ‖X j −Al‖

)2
− ‖Xi −Al‖

2, Al ∈ Ci.

For calculating (5) on a GPU, after initializing Fi ← SSE(S) , the following kernel function
(Algorithm 9) runs for each data vector.

Algorithm 9. CUDA kernel implementation of calculating Fi ← SSE(S\{Xi}) in BasicGreedy procedure (Algorithm 2)

Require: index i of centroid being eliminated.
l← blockIdx.x ·blockDim.x + threadIdx.x;
if l > N then return end if;
Dnearest ← +∞; // distance from Al to the nearest centroid except Xi
for j = 1, k do

if l , i and A j −Xi < Dnearest then
Dnearest ← ‖A j −Xi‖;

end if
end for;
Fi ← Fi + D2

nearest − ‖Xi −Al‖
2;

Computation 2020, 8, 90 15 of 32

All distance calculations for GREEDYr neighborhood search are performed by Algorithms 8 and 9.
A similar kernel function was used for accelerating the local search in SWAP neighborhoods. In this
function, after eliminating a centroid, a data point is included in solution S as a new centroid.

All other parts of new and known algorithms were implemented on the CPU.

2.7. Benchmarking Data

In all our experiments, we used the classic data sets from the UCI Machine Learning and Clustering
basic benchmark repositories [108,109,118]:

(a) Individual household electric power consumption (IHEPC)—energy consumption data of
households during several years (more than 2 million data vectors, 7 dimensions), 0–1 normalized
data, “date” and “time” columns removed;

(b) BIRCH3 [121]: one hundred of groups of points of random size on a plane (105 data vectors,
2 dimensions);

(c) S1 data set: Gaussian clusters with cluster overlap (5000 data vectors, 2 dimensions);
(d) Mopsi-Joensuu: geographic locations of users (6014 data vectors, 2 dimensions) in Joensuu city;
(e) Mopsi-Finland: geographic locations of users (13,467 data vectors, 2 dimensions) in Finland.

Mopsi-Joensuu and Mopsi-Finland are “geographic” data sets with a complex cluster structure,
formed under the influence of natural factors such as the geometry of the city, transport communications,
and urban infrastructure (Figure 4).Computation 2020, 8, x FOR PEER REVIEW 16 of 36

Figure 4. Mopsi-Joensuu data set visualization.

In our study, we do not take into account the true labeling provided by the data set (if it is
known), i.e., the given predictions for known classes, and focus on the minimization of SSE only.

2.8. Computational Environment

For our computational experiments, we used the following test system: Intel Core 2 Duo E8400
CPU, 16GB RAM, NVIDIA GeForce GTX1050ti GPU with 4096 MB RAM, floating-point performance
2138 GFLOPS. This choice of the GPU hardware was made due to its prevalence, and also one of the
best values of the price/performance ratio. The program code was written in C++. We used Visual
C++ 2017 compiler embedded into Visual Studio v.15.9.5, NVIDIA CUDA 10.0 Wizards, and NVIDIA
Nsight Visual Studio Edition CUDA Support v.6.0.0.

Figure 4. Mopsi-Joensuu data set visualization.

In our study, we do not take into account the true labeling provided by the data set (if it is known),
i.e., the given predictions for known classes, and focus on the minimization of SSE only.

2.8. Computational Environment

For our computational experiments, we used the following test system: Intel Core 2 Duo
E8400 CPU, 16GB RAM, NVIDIA GeForce GTX1050ti GPU with 4096 MB RAM, floating-point
performance 2138 GFLOPS. This choice of the GPU hardware was made due to its prevalence, and also
one of the best values of the price/performance ratio. The program code was written in C++. We used
Visual C++ 2017 compiler embedded into Visual Studio v.15.9.5, NVIDIA CUDA 10.0 Wizards,
and NVIDIA Nsight Visual Studio Edition CUDA Support v.6.0.0.

Computation 2020, 8, 90 16 of 32

3. Results

For all data sets, 30 attempts were made to run each of the algorithms (see Tables 1 and A1,
Tables A2–A11 in Appendix A).

Table 1. Comparative results for all data sets (best of known algorithms vs. new algorithm).

Algorithm or
Neighborhood

Achieved SSE Summarized After 30 Runs p-Values and Statistical
Significance of

Difference in ResultsMin (Record) Max (Worst) Average Median Std.dev

BIRCH3 data set. 105 data vectors in R2, k = 300 clusters, time limitation 10 s

GREEDY200 1.30773 × 1013 1.31172 ×
1013

1.30916 ×
1013

1.30912 ×
1013

1.08001 ×
1010 pt = 0.4098↔

AdaptiveGreedy 1.30807 × 1013 1.31113 ×
1013

1.30922 ×
1013

1.30925 ×
1013

0.87731 ×
1010 pU = 0.2337⇔

BIRCH3 data set. 105 data vectors in R2, k = 100 clusters, time limitation 10 s

GREEDY5 3.71485 × 1013 3.72087 ×
1013

3.71644 ×
1013

3.71518 ×
1013

2.22600 ×
1010 pt = 0.0701↔

AdaptiveGreedy 3.71484 × 1013 3.72011 ×
1013

3.71726 ×
1013

3.71749 ×
1013

2.02784 ×
1010 pU = 0.1357⇔

Mopsi-Joensuu data set. 6014 data vectors in R2, k = 300 clusters, time limitation 5 s
GH-VNS3 0.4321 0.6838 0.6024 0.6139 0.0836 pU = 0.00005⇑

GREEDY200 0.4555 1.0154 0.6746 0.5882 0.2163 pt < 0.00001↑
AdaptiveGreedy 0.3128 0.6352 0.4672 0.4604 0.1026

Mopsi-Joensuu data set. 6014 data vectors in R2, k = 100 clusters, time limitation 5 s
GREEDY100 1.8021 2.2942 2.0158 1.9849 0.1860 pt = 0.0910↔
GH-VNS3 1.7643 2.7357 2.0513 1.9822 0.2699 pU = 0.0042⇑

AdaptiveGreedy 1.7759 2.3265 1.9578 1.9229 0.1523
Mopsi-Joensuu data set. 6014 data vectors in R2, k = 30 clusters, time limitation 5 s

GH-VNS1 18.3147 18.3255 18.3238 18.3253 0.0039 pt = 0.4118↔
AdaptiveGreedy 18.3146 18.3258 18.3240 18.3253 0.0037 pU = 0.2843⇔

Mopsi- Finland data set.13,467 data vectors in R2, k = 300 clusters, time limitation 5 s
GH-VNS3 5.33373 × 108 7.29800 × 108 5.74914 × 108 5.48427 × 108 5.05346 × 107 pt = 0.1392↔

AdaptiveGreedy 5.27254 × 108 7.09410 × 108 5.60867 × 108 5.38952 × 108 4.89257 × 107 pU = 0.0049⇑
Mopsi-Finland data set. 13,467 data vectors in R2, k = 30 clusters, time limitation 5 s

GH-VNS3 3.42528 × 1010 3.47955 ×
1010

3.43826 ×
1010

3.43474 ×
1010 1.02356 × 108 pt = 0.0520↔

AdaptiveGreedy 3.42528 × 1010 3.47353 ×
1010

3.43385 ×
1010

3.43473 ×
1010 1.03984 × 108 pU = 0.0001⇑

S1 data set. 5000 data vectors in R2, k = 15 clusters, time limitation 1 second

GH-VNS2 8.91703 × 1012 8.91703 ×
1012

8.91703 ×
1012

8.91703 ×
1012 0.0000 pt = 0.5↔

AdaptiveGreedy 8.91703 × 1012 8.91703 ×
1012

8.91703 ×
1012

8.91703 ×
1012 0.0000 pU = 0.5⇔

S1 data set. 5000 data vectors in R2, k = 50 clusters, time limitation 1 second

GH-VNS1 3.74310 × 1012 3.76674 ×
1012

3.74911 ×
1012

3.74580 ×
1012 6.99859 × 109 pt = 0.3571↔

AdaptiveGreedy 3.74340 × 1012 3.76313 ×
1012

3.74851 ×
1012

3.75037 ×
1012 5.56298 × 109 pU = 0.28434⇔

IHEPC data set. 2,075,259 data vectors in R7, k = 50 clusters, time limitation 5 min
GREEDY10 5154.2017 5176.4502 5162.0460 5160.4014 7.2029 pt = 0.008↑

AdaptiveGreedy 5153.5640 5163.9316 5157.0822 5155.5198 3.6034 pU = 0.001⇑

Note: “↑”, “⇑”: the advantage of the new algorithms over known algorithms is statistically significant (“↑” for t-test
and “⇑” for Mann–Whitney U test), “↓”, “⇓”: the disadvantage of the new algorithm over known algorithms is
statistically significant; “↔”, “⇔”: the advantage or disadvantage is statistically insignificant. Significance level is 0.01.

For comparison, we ran local search in various GREEDYr neighborhoods at fixed r value.
In addition, we ran various known Variable Neighborhood Search (VNS) algorithms with GREEDYr
neighborhoods [79], see algorithms GH-VNS1-3. These algorithms use the same sequence of
neighborhood types (GREEDY1→GREEDYrandom→GREEDYk) and differ in the initial neighborhood type:
GREEDY1 for GH-VNS1, GREEDYrandom for GH-VNS2, and GREEDYk GH-VNS3. Unlike our new
AdaptiveGreedy() algorithm, GH-VNS1-3 algorithms increase r values, and this increase is not gradual.
In addition, we included the genetic algorithm (denoted “GA-1” in Tables A1–A11) with the
single-point crossover [103], real-valued genes encoded by centroid positions, and the uniform random
mutation (probability 0.01). For algorithms launched in the multi-start mode (j-Means algorithm and

Computation 2020, 8, 90 17 of 32

Lloyd’s procedure), only the best results achieved in each attempt were recorded. In Tables A1–A11,
such algorithms are denoted Lloyd-MS and j-Means-MS, respectively.

The minimum, maximum, average, and median objective function values and its standard
deviation were summarized after 30 runs. For all algorithms, we used the same realization of the
Lloyd() procedure which consume the absolute majority of the computation time.

The best average and median values of the objective function (1) are underlined. We compared
the new AdaptiveGreedy() algorithm with the known algorithm which demonstrated the best median
and average results (Table 1). For comparison, we used the t-test [122,123] and non-parametric
Wilcoxon-Mann-Whitney U test (Wilcoxon rank sum test) [124,125] with z approximation.

To compare the results obtained by our new algorithm, we tested the single-tailed null
hypothesis H0: SSEAdaptiveGreedy = SSEknown (the difference in the results is statistically insignificant)
and the research hypothesis H1: SSEAdaptiveGreedy < SSEknown (statistically different results, the new
algorithm has an advantage). Here, SSEAdaptiveGreedy are results ontained by AdaptiveGreedy() algorithm,
SSEknown are results of the best-known algorithm. For t-test comparison, we selected the algorithm
lowest in average SSE value, and for Wilcoxon–Mann–Whitney U test comparison, we selected the
algorithm with the lowest SSE median value. For both tests, we calculated the p-values (probability of
the null-hypothesis acceptance), see pt for the t-test and pu for the Wilcoxon–Mann–Whitney U test in
Table 1, respectively. At the selected significance level psig = 0.01, the null hypothesis is accepted if
pt > 0.01 or pU > 0.01. Otherwise, the difference in algorithm results should be considered statistically
significant. If the null hypothesis was accepted, we also tested a pair of single-tailed hypotheses
SSEAdaptiveGreedy = SSEknown and SSEAdaptiveGreedy > SSEknown.

In some cases, the Wilcoxon–Mann–Whitney test shows the statistical significance of the differences
in results, while the t-test does not confirm the benefits of the new algorithm. Figure 5 illustrates such
a situation. Both algorithms demonstrate approximately the same results. Both algorithms periodically
produce results that are far from the best SSE values, which is expressed in a sufficiently large value of
the standard deviation. However, the results of the new algorithm are often slightly better, which is
confirmed by the rank test.

Computation 2020, 8, x FOR PEER REVIEW 18 of 36

AdaptiveGreedy() algorithm, GH-VNS1-3 algorithms increase r values, and this increase is not gradual.
In addition, we included the genetic algorithm (denoted “GA-1” in Tables A1–A11) with the single-
point crossover [103], real-valued genes encoded by centroid positions, and the uniform random
mutation (probability 0.01). For algorithms launched in the multi-start mode (j-Means algorithm and
Lloyd’s procedure), only the best results achieved in each attempt were recorded. In Tables A1–A11,
such algorithms are denoted Lloyd-MS and j-Means-MS, respectively.

The minimum, maximum, average, and median objective function values and its standard
deviation were summarized after 30 runs. For all algorithms, we used the same realization of the
Lloyd() procedure which consume the absolute majority of the computation time.

The best average and median values of the objective function (1) are underlined. We compared
the new AdaptiveGreedy() algorithm with the known algorithm which demonstrated the best median
and average results (Table 1). For comparison, we used the t-test [122,123] and non-parametric
Wilcoxon-Mann-Whitney U test (Wilcoxon rank sum test) [124,125] with z approximation.

To compare the results obtained by our new algorithm, we tested the single-tailed null
hypothesis H0: SSEAdaptiveGreedy = SSEknown (the difference in the results is statistically insignificant) and
the research hypothesis H1: SSEAdaptiveGreedy < SSEknown (statistically different results, the new algorithm
has an advantage). Here, SSEAdaptiveGreedy are results ontained by AdaptiveGreedy() algorithm, SSEknown are
results of the best-known algorithm. For t-test comparison, we selected the algorithm lowest in
average SSE value, and for Wilcoxon–Mann–Whitney U test comparison, we selected the algorithm
with the lowest SSE median value. For both tests, we calculated the p-values (probability of the null-
hypothesis acceptance), see pt for the t-test and pu for the Wilcoxon–Mann–Whitney U test in Table 1,
respectively. At the selected significance level psig = 0.01, the null hypothesis is accepted if pt > 0.01 or
pU > 0.01. Otherwise, the difference in algorithm results should be considered statistically significant.
If the null hypothesis was accepted, we also tested a pair of single-tailed hypotheses SSEAdaptiveGreedy =
SSEknown and SSEAdaptiveGreedy > SSEknown.

In some cases, the Wilcoxon–Mann–Whitney test shows the statistical significance of the
differences in results, while the t-test does not confirm the benefits of the new algorithm. Figure 5
illustrates such a situation. Both algorithms demonstrate approximately the same results. Both
algorithms periodically produce results that are far from the best SSE values, which is expressed in a
sufficiently large value of the standard deviation. However, the results of the new algorithm are often
slightly better, which is confirmed by the rank test.

Figure 5. Frequency diagram of the results (our new algorithm vs. the best of other tested algorithms,
GH-VNS3), Mopsi-Finland data set, 300 clusters, 13,467 data vectors, time limitation 5 s, 30 runs of
each algorithm.

In the comparative analysis of algorithm efficiency, the choice of the unit of time plays an
important role. The astronomical time spent by an algorithm strongly depends on its implementation,

Figure 5. Frequency diagram of the results (our new algorithm vs. the best of other tested algorithms,
GH-VNS3), Mopsi-Finland data set, 300 clusters, 13,467 data vectors, time limitation 5 s, 30 runs of
each algorithm.

In the comparative analysis of algorithm efficiency, the choice of the unit of time plays
an important role. The astronomical time spent by an algorithm strongly depends on its implementation,
the ability of the compiler to optimize the program code, and the fitness of the hardware to execute the
code of a specific algorithm. Algorithms are often estimated by comparing the number of iterations
performed (for example, the number of population generations for a GA) or the number of evaluations
of the objective function.

Computation 2020, 8, 90 18 of 32

However, the time consumption for a single iteration of a local search algorithm depends on
the neighborhood type and number of elements in the neighborhood, and this dependence can be
exponential. Therefore, comparing the number of iterations is unacceptable. Comparison of the objective
function calculations is also not quite correct. Firstly, the Lloyd() procedure which consumes almost all of
the processor time, does not calculate the objective function (1) directly. Secondly, during the operation
of the greedy agglomerative procedure, the number of centroids changes (decreases from k + r down
to k), and the time spent on computing the objective function also varies. Therefore, we nevertheless
chose astronomical time as a scale for comparing algorithms. Moreover, all the algorithms use the
same implementation of the Lloyd() algorithm launched under the same conditions.

In our computational experiments, the time limitation was used as the stop condition for all
algorithms. For all data sets except the largest one, we have chosen a reasonable time limit to use the
new algorithm in interactive modes. For IHEPC data and 50 clusters, a single run of the BasicGreedy()
algorithm on the specified hardware took approximately 0.05 to 0.5 s. It is impossible to evaluate the
comparative efficiency of the new algorithm in several iterations, since in this case, it does not have
enough time to change the neighborhood parameter r at least once. We have increased the time to a few
minutes. This time limit does not correspond to modern concepts of interactive modes of operation.
Nevertheless, the rapid development of parallel computing requires the early creation of efficient
algorithmic schemes. Our experiments were performed on a mass-market system. Advanced systems
may cope with such large problems much faster.

As can be seen from Figure 6, the result of each algorithm depends on the elapsed time.
Nevertheless, an advantage of the new algorithm is evident regardless of the chosen time limit.

Computation 2020, 8, x FOR PEER REVIEW 20 of 36

(a)

(b)

(c)

Figure 6. Comparative analysis of the convergence speed. Dependence of the median result on
computation time for: (a) Individual Household Electric Power Consumption (IHEPC) data set, 50
clusters, 2,075,259 data vectors, time limitation 5 min; (b) Mopsi-Joensuu data set, 300 clusters, 6014
data vectors, time limitation 5 s; (c) Mopsi-Finland data set, 300clusters, 13,467 data vectors, time
limitation 5 s.

4. Discussion

The advantages of our algorithm are statistically significant for a large problem (IHEPC data),
as well as for problems with a complex data structure (Mopsi-Joensuu and Mopsi-Finland data). The
Mopsi data sets contain geographic coordinates of Mopsi users, which are extremely unevenly

Figure 6. Cont.

Computation 2020, 8, 90 19 of 32

Computation 2020, 8, x FOR PEER REVIEW 20 of 36

(a)

(b)

(c)

Figure 6. Comparative analysis of the convergence speed. Dependence of the median result on
computation time for: (a) Individual Household Electric Power Consumption (IHEPC) data set, 50
clusters, 2,075,259 data vectors, time limitation 5 min; (b) Mopsi-Joensuu data set, 300 clusters, 6014
data vectors, time limitation 5 s; (c) Mopsi-Finland data set, 300clusters, 13,467 data vectors, time
limitation 5 s.

4. Discussion

The advantages of our algorithm are statistically significant for a large problem (IHEPC data),
as well as for problems with a complex data structure (Mopsi-Joensuu and Mopsi-Finland data). The
Mopsi data sets contain geographic coordinates of Mopsi users, which are extremely unevenly

Figure 6. Comparative analysis of the convergence speed. Dependence of the median result on
computation time for: (a) Individual Household Electric Power Consumption (IHEPC) data set, 50 clusters,
2,075,259 data vectors, time limitation 5 min; (b) Mopsi-Joensuu data set, 300 clusters, 6014 data vectors,
time limitation 5 s; (c) Mopsi-Finland data set, 300clusters, 13,467 data vectors, time limitation 5 s.

To test the scalability of the proposed approach and the efficiency of the new algorithm on other
hardware, we carried out additional experiments with NVIDIA GeForce 9600GT GPU, 2048 MB
RAM, 336 GFLOPS. The declared performance of this simpler equipment is approximately 6 times
lower. The results of experiments with proportional increase of time limitation are shown in Table 2.
The difference with the results in Table 1 is obviously insignificant.

Table 2. Additional benchmarking on NVIDIA GeForce 9600GT GPU. Comparative results for Mopsi-
Finland data set.13,467 data vectors in R2, time limitation 30 s.

Algorithm or
Neighborhood

Achieved SSE Summarized After 30 Runs

Min (Record) Max (Worst) Average Median Std.dev

k = 300
GH-VNS3 5.33373 × 108 7.29800 × 108 5.85377 × 108 5.52320 × 108 5.59987 × 107

AdaptiveGreedy 5.27254 × 108 7.09410 × 108 5.59033 × 108 5.38888 × 108 4.60585 × 107

k = 30
GH-VNS2 3.42528 × 1010 3.48723 × 1010 3.43916 × 1010 3.43474 × 1010 1.46818 × 108

GH-VNS3 3.42528 × 1010 3.46408 × 1010 3.43731 × 1010 3.43474 × 1010 7.81989 × 107

AdaptiveGreedy 3.42528 × 1010 3.46274 × 1010 3.43337 × 1010 3.43473 × 1010 8.13882 × 107

The ranges of SSE values in the majority of Tables A1–A11 are narrow, nevertheless, the differences
are statistically significant in several cases, see Table 1. In all cases, our new algorithm outperforms
known ones or demonstrates approximately the same efficiency (difference in the results is statistically
insignificant). Moreover, the new algorithm demonstrates the stability of its results (narrow range of
objective function values).

Search results in both SWAPr and GREEDYr neighborhoods depend on a correct choice of
parameter r (the number of replaced or added centroids). However, in general, local search algorithms
with GREEDYr neighborhoods outperform the SWAPr neighborhood search. A simple reconnaissance
search procedure enables the further improvement of the efficiency.

4. Discussion

The advantages of our algorithm are statistically significant for a large problem (IHEPC data),
as well as for problems with a complex data structure (Mopsi-Joensuu and Mopsi-Finland data).
The Mopsi data sets contain geographic coordinates of Mopsi users, which are extremely unevenly
distributed in accordance with the natural organization of the urban environment, depending on street
directions and urban infrastructure (Figure 6). In this case, the aim of clustering is to find some natural

Computation 2020, 8, 90 20 of 32

groups of users according to a geometric/geographic principle for assigning them to k service centers
(hubs) such as shopping centers, bus stops, wireless network base stations, etc.

Often, geographical data sets show such a disadvantage of Lloyd’s procedure as its inability to
find a solution close to the exact one. Often, on such data, the value of the objective function found
by the Lloyd’s procedure in the multi-start mode turns out to be many times greater than the values
obtained by other algorithms, such as J-Means or RVNS algorithms with SWAP neighborhoods. As can
be seen from Tables A2, A3 and A5 in Appendix A, for such data, GREEDYrneighborhoods search
provides significant advantages within a limited time, and our new self-adjusting AdaptiveGreedy()
solver enhances these advantages.

The VNS algorithmic framework is useful for creating effective computational tools intended
to solve complex practical problems. Embedding the most efficient types of neighborhoods in this
framework depends on the problem type being solved. In problems such as k-means, the search
in neighborhoods with specific parameters strongly depends not only on the generalized numerical
parameters of the problems, such as the number of clusters, number of data vectors, and the search
space dimensionality, but also on the internal data structure. In general, the comparative efficiency of
the search in GREEDYr neighborhoods for certain types of practical problems and for specific data sets
remains an open question. Nevertheless, the algorithm presented in this work, which automatically
performs the adjustment of the most important parameter of such neighborhoods, enables its user
to obtain the best result which the variable neighborhood search in GREEDYr is able to provide,
without preliminary experiments in all possible GREEDYr neighborhoods. Thus, the new algorithm is
a more versatile computational tool in comparison with the known VNS algorithms.

Greedy agglomerative procedures are widely used as crossover operators in genetic algorithms
[46,88,90,110]. In this case, most often, the “parent” solutions are merged completely to obtain
an intermediate solution with an excessive number of centers or centroids [46,88], which corresponds to
the search in the GREEDYk neighborhood (one of the crossed “parent” solutions acts as the parameter S2),
although, other versions of the greedy agglomerative crossover operator are also possible [90,110].
Such algorithms successfully compete with the advanced local search algorithms discussed in this article.

Self-configuring evolutionary algorithms [126–128] have been widely used for solving various
optimization problems. An important direction of the further research is to study the possibility
of adjusting the parameter r in greedy agglomerative crossover operators of genetic algorithms.
Such procedures with self-adjusting parameter r could lead to a further increase in the accuracy of solving
the k-means problem with respect to the achieved value of the objective function. Such evolutionary
algorithms could also involve a reconnaissance search, which would then continue by applying the
greedy agglomerative crossover operator with r values chosen from the most favorable range.

In addition, the similarity in problem statements of the k-means, k-medoids and k-median
problems promises us a reasonable hope for the applicability of the same approaches to improving the
accuracy of algorithms, including VNS algorithms, by adjusting the parameter r of the neighborhoods
similar with GREEDYr.

5. Conclusions

The process of introducing machine learning methods into all spheres of life determines the
need to develop not only fast, but also the most accurate algorithms for solving related optimization
problems. As practice shows, including this study, when solving some problems, the most popular
clustering algorithm gives a result extremely far from the optimal k-means problem solution.

In this research, we introduced GREEDYr search neighborhoods and found that searching in both
SWAP and GREEDYr neighborhoods has advantages over the simplest Lloyd’s procedure. However,
the results strongly depend on the parameters of such neighborhoods, and the optimal values of these
parameters differ significantly for test problems. Nevertheless, searching in GREEDYr neighborhoods
outperforms searching in SWAP neighborhoods in terms of accuracy.

Computation 2020, 8, 90 21 of 32

We hope that our new variable neighborhood search algorithm (solver) for GPUs, which is more
versatile due to its self-adjusting capability and has an advantage with respect to the accuracy of
solving the k-means problem over known algorithms, will encourage researchers and practitioners
in the field of machine learning to build competitive systems with the lowest possible error within
a limited time. Such systems should be in demand when clustering geographic data, as well as when
solving a wide range of problems with the highest cost of error.

Author Contributions: Conceptualization, L.K. and I.R.; methodology, L.K.; software, L.K.; validation, I.R. and E.T.;
formal analysis, I.R. and A.P.; investigation, I.R.; resources, L.K. and E.T.; data curation, I.R.; writing—original draft
preparation, L.K. and I.R.; writing—review and editing, L.K., E.T., and A.P.; visualization, I.R.; supervision, L.K.;
project administration, L.K.; funding acquisition, L.K. and A.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by The Ministry of Science and Higher Education of the Russian Federation,
project No. FEFE-2020-0013.

Conflicts of Interest: The authors declare no conflict of interest. The funder had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish
the results.

Abbreviations

The following abbreviations are used in this manuscript:

NP Non-deterministic polynomial-time
MSSC Minimum Sum-of-Squares Clustering
SSE Sum of Squared Errors
ALA algorithm Alternate Location-Allocation algorithm
VNS Variable Neighborhood Search
GA Genetic Algorithm
IBC Information Bottleneck Clustering
VND Variable Neighborhood Descent
RVNS Randomized Variable Neighborhood Search
GPU Graphics Processing Unit
CPU Central Processing Unit
RAM Random Access Memory
CUDA Compute Unified Device Architecture
IHEPC Individual Household Electric Power Consumption
Lloyd-MS Lloyd’s procedure in a multi-start mode
J-means-MS J-Means algorithm in a multi-start mode (SWAP1+Lloyd VND)

GREEDYr

A neighborhood formed by applying greedy agglomerative
procedures with r excessive clusters, and the RVNS algorithm which
combines search in such neighborhood with Lloyd’s procedure

SWAPr

A neighborhood formed by replacing r centroids by data vectors,
and the RVNS algorithm which combines search in such
neighborhood with Lloyd’s procedure

GH-VNS1
VNS algorithm with GREEDYr neighborhoods and GREEDY1 for
the initial neighborhood type

GH-VNS2
VNS algorithm with GREEDYr neighborhoods and GREEDYrandom
for the initial neighborhood type

GH-VNS3
VNS algorithm with GREEDYr neighborhoods and GREEDYk for
the initial neighborhood type

GA-1
Genetic algorithm with the single-point crossover, real-valued genes
encoded by centroid positions, and the uniform random mutation

AdaptiveGreedy New algorithm proposed in this article

Computation 2020, 8, 90 22 of 32

Appendix A. Results of Computational Experiments

Table A1. Comparative results for Mopsi-Joensuu data set. 6014 data vectors in R2, k = 30 clusters,
time limitation 5 s.

Algorithm or
Neighborhood

Achieved SSE Summarized After 30 Runs

Min (Record) Max (Worst) Average Median Std.dev

Lloyd-MS 35.5712 43.3993 39.1185 38.7718 2.9733
j-Means-MS 18.4076 23.7032 20.3399 19.8533 1.8603
GREEDY1 18.3253 27.6990 21.4555 21.6629 3.1291
GREEDY2 18.3253 21.7008 19.3776 18.3254 1.6119
GREEDY3 18.3145 21.7007 18.5817 18.3254 0.9372
GREEDY5 18.3253 21.7007 18.5129 18.3254 0.7956
GREEDY7 18.3253 21.7008 18.5665 18.3255 0.9021
GREEDY10 18.3253 21.7010 18.5666 18.3255 0.9021
GREEDY12 18.3254 21.7009 18.5852 18.3256 0.9362
GREEDY15 18.3254 18.3257 18.3255 18.3255 0.0001
GREEDY20 18.3254 18.3263 18.3257 18.3257 0.0002
GREEDY25 18.3254 18.3257 18.3255 18.3255 0.0001
GREEDY30 18.3254 18.3261 18.3258 18.3258 0.0002
GH-VNS1 18.3147 18.3255 18.3238 18.3253 0.0039
GH-VNS2 18.3253 21.7008 19.3776 18.3254 1.6119
GH-VNS3 18.3146 21.6801 18.5634 18.3254 0.8971

SWAP1 (the best of SWAPr) 18.9082 20.3330 19.4087 18.9967 0.6019
GA-1 18.6478 21.1531 19.9555 19.9877 0.6632

AdaptiveGreedy 18.3146 18.3258 18.3240 18.3253 0.0037

Table A2. Comparative results for Mopsi-Joensuu data set. 6014 data vectors in R2, k = 100 clusters,
time limitation 5 s.

Algorithm or Neighborhood
Achieved SSE Summarized After 30 Runs

Min (Record) Max (Worst) Average Median Std.dev

Lloyd-MS 23.1641 34.7834 27.5520 27.1383 3.6436
j-Means-MS 1.7628 31.8962 11.1832 2.4216 11.7961
GREEDY1 20.6701 35.5447 28.9970 29.2429 5.0432
GREEDY2 2.8264 29.0682 9.9708 5.3363 9.6186
GREEDY3 2.6690 10.5998 4.1444 3.0588 2.2108
GREEDY5 1.9611 4.3128 2.7385 2.7299 0.6135
GREEDY7 2.0837 4.6443 2.8730 2.6358 0.7431
GREEDY10 1.9778 3.8635 2.5613 2.3304 0.6126
GREEDY12 1.7817 4.3023 2.5639 2.2009 0.8730
GREEDY15 1.9564 3.1567 2.3884 2.2441 0.3620
GREEDY20 1.7937 3.2809 2.4542 2.3500 0.4746
GREEDY25 1.9532 3.3874 2.4195 2.2575 0.5470
GREEDY30 1.9274 2.4580 2.1723 2.1458 0.2171
GREEDY50 1.8903 9.3675 2.8047 2.1614 2.0838
GREEDY75 1.7878 2.8855 2.1775 2.0272 0.4023
GREEDY100 1.8021 2.2942 2.0158 1.9849 0.1860
GH-VNS1 2.8763 17.1139 7.3196 4.3341 5.7333
GH-VNS2 2.8264 29.0682 9.9708 5.3363 9.6186
GH-VNS3 1.7643 2.7357 2.0513 1.9822 0.2699

SWAP3 (the best of rand. SWAPr) 4.9739 23.6572 9.0159 8.3907 4.1351
GA-1 4.8922 19.1543 8.5914 7.1764 4.1096

AdaptiveGreedy 1.7759 2.3265 1.9578 1.9229 0.1523

Computation 2020, 8, 90 23 of 32

Table A3. Comparative results for Mopsi-Joensuu data set. 6014 data vectors in R2, k = 300 clusters,
time limitation 5 s.

Algorithm or
Neighborhood

Achieved SSE Summarized After 30 Runs

Min (Record) Max (Worst) Average Median Std.dev

Lloyd-MS 4.1789 14.7570 9.1143 9.3119 3.0822
j-Means-MS 7.0119 22.3126 14.2774 12.6199 5.5095
GREEDY1 7.1654 15.3500 9.6113 9.2176 2.5266
GREEDY2 4.9896 14.4839 8.9197 8.2013 3.3072
GREEDY3 5.8967 14.1110 8.3260 8.0441 2.2140
GREEDY5 2.9115 10.2536 5.8012 5.7305 2.2740
GREEDY7 2.6045 7.9868 4.4201 4.0548 1.4841
GREEDY10 2.5497 8.6758 4.1796 2.9639 1.8494
GREEDY12 2.0753 4.7134 3.0383 2.8777 0.8348
GREEDY15 1.8975 8.7890 3.8615 3.2661 1.8064
GREEDY20 1.1878 3.7944 2.4577 2.4882 0.9554
GREEDY25 1.1691 3.5299 1.8489 1.6407 0.7460
GREEDY30 1.1151 4.9425 2.3711 2.0582 1.1501
GREEDY50 1.3526 3.5471 1.8635 1.7114 0.6046
GREEDY75 1.0533 5.5915 1.9129 1.4261 1.2082
GREEDY100 0.8047 2.0349 1.2602 1.1994 0.3811
GREEDY150 0.6243 1.4755 0.8743 0.8301 0.2447
GREEDY200 0.4555 1.0154 0.6746 0.5882 0.2103
GREEDY250 0.4789 1.3368 0.7233 0.6695 0.2164
GREEDY300 0.5474 1.0472 0.7228 0.6657 0.1419
GH-VNS1 1.6219 5.2528 3.0423 3.1332 1.0222
GH-VNS2 1.2073 8.6144 3.2228 2.3501 2.4014
GH-VNS3 0.4321 0.6838 0.6024 0.6139 0.0836

SWAP12 (the best of SWAP
by median) 2.6016 5.5038 3.6219 3.3612 1.0115

SWAP20 (the best of SWAP
by avg.) 2.1630 5.1235 3.4958 3.4076 0.8652

GA-1 5.4911 12.6950 8.8799 7.7181 2.5384
AdaptiveGreedy 0.3128 0.6352 0.4672 0.4604 0.1026

Table A4. Comparative results for Mopsi-Finland data set. 13,467 data vectors in R2, k = 30 clusters,
time limitation 5 s.

Algorithm or
Neighborhood

Achieved SSE Summarized After 30 Runs

Min (Record) Max (Worst) Average Median Std.dev

Lloyd-MS 4.79217 × 1010 6.36078 × 1010 5.74896 × 1010 5.79836 × 1010 3.69760 × 109

j-Means-MS 3.43535 × 1010 4.26830 × 1010 3.66069 × 1010 3.60666 × 1010 1.75725 × 109

GREEDY1 3.43195 × 1010 3.70609 × 1010 3.51052 × 1010 3.48431 × 1010 7.42 636 × 108

GREEDY2 3.43194 × 1010 3.49405 × 1010 3.44496 × 1010 3.44140 × 1010 1.64 360 × 108

GREEDY3 3.43195 × 1010 3.49411 × 1010 3.44474 × 1010 3.44140 × 1010 1.71131 × 108

GREEDY5 3.43195 × 1010 3.48411 × 1010 3.44663 × 1010 3.44141 × 1010 1.65153 × 108

GREEDY7 3.42531 × 1010 3.47610 × 1010 3.44091 × 1010 3.43504 × 1010 1.76023 × 108

GREEDY10 3.42560 × 1010 3.48824 × 1010 3.45106 × 1010 3.43573 × 1010 2.36526 × 108

GREEDY12 3.42606 × 1010 3.48822 × 1010 3.44507 × 1010 3.43901 × 1010 1.68986 × 108

GREEDY15 3.42931 × 1010 3.47817 × 1010 3.43874 × 1010 3.43901 × 1010 8.31510 × 107

GREEDY20 3.42954 × 1010 3.48826 × 1010 3.44186 × 1010 3.43905 × 1010 1.28972 × 108

GREEDY25 3.43877 × 1010 3.44951 × 1010 3.43982 × 1010 3.43907 × 1010 2.57320 × 107

GREEDY30 3.43900 × 1010 3.48967 × 1010 3.45169 × 1010 3.43979 × 1010 1.93565 × 108

GH-VNS1 3.42626 × 1010 3.48724 × 1010 3.45244 × 1010 3.44144 × 1010 2.00510 × 108

GH-VNS2 3.42528 × 1010 3.48723 × 1010 3.44086 × 1010 3.43474 × 1010 1.54771 × 108

GH-VNS3 3.42528 × 1010 3.47955 × 1010 3.43826 × 1010 3.43474 × 1010 1.02356 × 108

SWAP1 (the best
of SWAPr)

3.43199 × 1010 3.55777 × 1010 3.46821 × 1010 3.46056 × 1010 3.22711 × 108

GA-1 3.48343 × 1010 3.81846 × 1010 3.65004 × 1010 3.64415 × 1010 1.00523 × 109

AdaptiveGreedy 3.42528 × 1010 3.47353 × 1010 3.43385 × 1010 3.43473 × 1010 1.03984 × 108

Computation 2020, 8, 90 24 of 32

Table A5. Comparative results for Mopsi- Finland data set. 13,467 data vectors in R2, k = 300 clusters,
time limitation 5 s.

Algorithm or
Neighborhood

Achieved SSE Summarized After 30 Runs

Min (Record) Max (Worst) Average Median Std.dev

Lloyd-MS 5.41643 × 109 6.89261 × 109 6.25619 × 109 6.24387 × 109 3.23827 × 108

j-Means-MS 6.75216 × 108 1.38889 × 109 8.92782 × 108 8.35397 × 108 1.86995 × 108

GREEDY1 4.08445 × 109 9.07208 × 109 5.89974 × 109 5.59903 × 109 1.47601 × 108

GREEDY2 1.11352 × 109 2.10247 × 109 1.59229 × 109 1.69165 × 109 2.89625 × 108

GREEDY3 9.63842 × 108 2.15674 × 109 1.61490 × 109 1.60123 × 109 3.06567 × 108

GREEDY5 9.11944 × 108 2.36799 × 109 1.66021 × 109 1.70448 × 109 3.68575 × 108

GREEDY7 1.17328 × 109 2.44476 × 109 1.77589 × 109 1.80948 × 109 2.68354 × 108

GREEDY10 1.14221 × 109 2.00426 × 109 1.67586 × 109 1.69601 × 109 2.14822 × 108

GREEDY12 9.41133 × 108 2.28940 × 109 1.59715 × 109 1.62288 × 109 3.01841 × 108

GREEDY15 8.86983 × 108 2.29776 × 109 1.53989 × 109 1.43319 × 109 3.70138 × 108

GREEDY20 1.02224 × 109 2.11636 × 109 1.62601 × 109 1.64029 × 109 2.45576 × 108

GREEDY25 9.07984 × 108 1.87134 × 109 1.42878 × 109 1.42864 × 109 2.74744 × 108

GREEDY30 8.44247 × 108 2.22882 × 109 1.50817 × 109 1.56015 × 109 3.52497 × 108

GREEDY50 7.98191 × 108 1.68198 × 109 1.26851 × 109 1.17794 × 109 2.67082 × 108

GREEDY75 6.97650 × 108 1.74139 × 109 1.16422 × 109 1.16616 × 109 2.82454 × 108

GREEDY100 6.55465 × 108 1.44162 × 109 1.03643 × 109 1.09001 × 109 1.95246 × 108

GREEDY150 5.94256 × 108 1.45317 × 109 8.88898 × 108 7.96787 × 108 2.33137 × 108

GREEDY200 5.60885 × 108 1.41411 × 109 7.96908 × 108 7.20282 × 108 2.26191 × 108

GREEDY250 5.58602 × 108 1.13946 × 109 7.58434 × 108 6.81196 × 108 1.65511 × 108

GREEDY300 5.68646 × 108 1.41338 × 109 7.35067 × 108 6.83004 × 108 1.76126 × 108

GH-VNS1 1.40141 × 109 2.86919 × 109 2.16238 × 109 2.10817 × 109 3.42105 × 108

GH-VNS2 8.22679 × 108 2.12228 × 109 1.40322 × 109 1.39457 × 109 2.96599 × 108

GH-VNS3 5.33373 × 108 7.29800 × 108 5.74914 × 108 5.48427 × 108 5.05346 × 107

SWAP1 (the best
of. SWAPr)

6.69501 × 108 9.06507 × 108 7.48932 × 108 7.35532 × 108 6.74846 × 107

GA-1 4.54419 × 109 7.11460 × 109 5.67688 × 109 5.61135 × 109 5.99687 × 108

AdaptiveGreedy 5.27254 × 108 7.09410 × 108 5.60867 × 108 5.38952 × 108 4.89257 × 107

Table A6. Comparative results for BIRCH3 data set. 105 data vectors in R2, k = 100 clusters, time
limitation 10 s.

Algorithm or
Neighborhood

Achieved SSE Summarized After 30 Runs

Min (Record) Max (Worst) Average Median Std.dev

Lloyd-MS 8.13022 × 1013 9.51129 × 1013 8.96327 × 1013 9.06147 × 1013 4.84194 × 1012

j-Means-MS 4.14627 × 1013 6.25398 × 1013 4.78063 × 1013 4.55711 × 1013 6.89734 × 1012

GREEDY1 3.73299 × 1013 5.64559 × 1013 4.13352 × 1013 3.90845 × 1013 5.19021 × 1012

GREEDY2 3.71499 × 1013 3.72063 × 1013 3.71689 × 1013 3.71565 × 1013 2.44802 × 1010

GREEDY3 3.71518 × 1013 3.72643 × 1013 3.71840 × 1013 3.71545 × 1013 4.12818 × 1010

GREEDY5 3.71485 × 1013 3.72087 × 1013 3.71644 × 1013 3.71518 × 1013 2.22600 × 1010

GREEDY7 3.71518 × 1013 3.72267 × 1013 3.71755 × 1013 3.71658 × 1013 2.24845 × 1010

GREEDY10 3.71555 × 1013 3.72119 × 1013 3.71771 × 1013 3.71794 × 1013 1.90289 × 1010

GREEDY12 3.71556 × 1013 3.72954 × 1013 3.71892 × 1013 3.71693 × 1013 3.91673 × 1010

GREEDY15 3.71626 × 1013 3.72169 × 1013 3.71931 × 1013 3.71963 × 1013 1.86102 × 1010

GREEDY20 3.71600 × 1013 3.72638 × 1013 3.72118 × 1013 3.72153 × 1013 2.69206 × 1010

GREEDY25 3.72042 × 1013 3.72690 × 1013 3.72284 × 1013 3.72228 × 1013 2.14437 × 1010

GREEDY30 3.72180 × 1013 3.73554 × 1013 3.72586 × 1013 3.72471 × 1013 4.33818 × 1010

GREEDY50 3.72166 × 1013 3.76422 × 1013 3.73883 × 1013 3.73681 × 1013 16.1061 × 1010

GREEDY75 3.72399 × 1013 3.84870 × 1013 3.76286 × 1013 3.74750 × 1013 41.6632 × 1010

GREEDY100 3.72530 × 1013 3.91589 × 1013 3.80730 × 1013 3.84482 × 1013 61.9706 × 1010

GH-VNS1 3.71914 × 1013 3.77527 × 1013 3.73186 × 1013 3.72562 × 1013 18.3590 × 1010

GH-VNS2 3.71568 × 1013 3.73791 × 1013 3.72116 × 1013 3.72051 × 1013 6.08081 × 1010

GH-VNS3 3.71619 × 1013 3.73487 × 1013 3.72387 × 1013 3.72282 × 1013 5.96618 × 1010

SWAP1 (the best
of SWAPr)

4.28705 × 1013 5.48014 × 1013 4.82383 × 1013 4.75120 × 1013 3.90128 × 1012

GA-1 3.84317 × 1013 4.08357 × 1013 3.97821 × 1013 3.97088 × 1013 7.43642 × 1011

AdaptiveGreedy 3.71484 × 1013 3.72011 × 1013 3.71726 × 1013 3.71749 × 1013 2.02784 × 1010

Computation 2020, 8, 90 25 of 32

Table A7. Comparative results for BIRCH3 data set. 105 data vectors in R2, k = 300 clusters, time
limitation 10 s.

Algorithm or
Neighborhood

Achieved SSE Summarized After 30 Runs

Min (Record) Max (Worst) Average Median Std.dev

Lloyd-MS 3.49605 × 1013 4.10899 × 1013 3.74773 × 1013 3.77191 × 1013 2.32012 × 1012

j-Means-MS 1.58234 × 1013 2.02926 × 1013 1.75530 × 1013 1.70507 × 1013 1.43885 × 1012

GREEDY1 1.48735 × 1013 2.63695 × 1013 1.71372 × 1013 1.60354 × 1013 2.98555 × 1012

GREEDY2 1.31247 × 1013 1.45481 × 1013 1.37228 × 1013 1.36745 × 1013 4.01697 × 1011

GREEDY3 1.34995 × 1013 1.49226 × 1013 1.39925 × 1013 1.39752 × 1013 4.85917 × 1011

GREEDY5 1.33072 × 1013 1.45757 × 1013 1.39069 × 1013 1.38264 × 1013 4.46890 × 1011

GREEDY7 1.34959 × 1013 1.49669 × 1013 1.41606 × 1013 1.41764 × 1013 4.92200 × 1011

GREEDY10 1.31295 × 1013 1.42722 × 1013 1.35970 × 1013 1.35318 × 1013 3.70511 × 1011

GREEDY12 1.32677 × 1013 1.49028 × 1013 1.35561 × 1013 1.33940 × 1013 4.44283 × 1011

GREEDY15 1.32077 × 1013 1.41079 × 1013 1.34102 × 1013 1.33832 × 1013 2.16247 × 1011

GREEDY20 1.31994 × 1013 1.43160 × 1013 1.35420 × 1013 1.34096 × 1013 3.43684 × 1011

GREEDY25 1.31078 × 1013 1.37699 × 1013 1.33571 × 1013 1.33040 × 1013 2.16378 × 1011

GREEDY30 1.32947 × 1013 1.45967 × 1013 1.37618 × 1013 1.36729 × 1013 3.92767 × 1011

GREEDY50 1.32284 × 1013 1.38691 × 1013 1.34840 × 1013 1.33345 × 1013 2.70770 × 1011

GREEDY75 1.30808 × 1013 1.33266 × 1013 1.31857 × 1013 1.31833 × 1013 7.22941 × 1010

GREEDY100 1.30852 × 1013 1.32697 × 1013 1.31250 × 1013 1.31067 × 1013 4.94315 × 1010

GREEDY150 1.30754 × 1013 1.31446 × 1013 1.30971 × 1013 1.30952 × 1013 1.82873 × 1010

GREEDY200 1.30773 × 1013 1.31172 × 1013 1.30916 × 1013 1.30912 × 1013 1.08001 × 1010

GREEDY250 1.30699 × 1013 1.31073 × 1013 1.30944 × 1013 1.30990 × 1013 1.18367 × 1010

GREEDY300 1.30684 × 1013 1.31068 × 1013 1.30917 × 1013 1.30933 × 1013 1.21748 × 1010

GH-VNS1 1.40452 × 1013 1.56256 × 1013 1.45212 × 1013 1.42545 × 1013 55.7231 × 1010

GH-VNS2 1.32287 × 1013 1.38727 × 1013 1,34654 × 1013 1,34568 × 1013 2,01065 × 1011

GH-VNS3 1.30996 × 1013 1.31378 × 1013 1.31158 × 1013 1.31138 × 1013 1.44998 × 1010

SWAP2 (the best of
SWAPr by median) 2.18532 × 1013 3.25705 × 1013 2.54268 × 1013 2.37312 × 1013 3.78491 × 1012

SWAP7 (the best of
SWAPr by avg.) 2.24957 × 1013 2.86883 × 1013 2.46775 × 1013 2.47301 × 1013 1.51198 × 1012

GA-1 1.38160 × 1013 1.71472 × 1013 1.55644 × 1013 1.54336 × 1013 9.21217 × 1011

AdaptiveGreedy 1.30807 × 1013 1.31113 × 1013 1.30922 × 1013 1.30925 × 1013 0.87731 × 1010

Table A8. Comparative results for S1 data set. 5000 data vectors in R2, k = 15 clusters, time limitation 1 s.

Algorithm or
Neighborhood

Achieved SSE Summarized After 30 Runs

Min (Record) Max (Worst) Average Median Std.dev

Lloyd-MS 8.91703 × 1012 8.91707 × 1012 8.91704 × 1012 8.91703 × 1012 1.31098 × 107

j-Means-MS 8.91703 × 1012 14.2907 × 1012 12.1154 × 1012 13.3667 × 1012 2.38947 × 1012

GREEDY1 8.91703 × 1012 13.2502 × 1012 9.27814 × 1012 8.91703 × 1012 1.25086 × 1012

GREEDY2 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 0.00000
GREEDY3 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 0.00000
GREEDY5 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 4.03023 × 105

GREEDY7 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 4.87232 × 105

GREEDY10 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 5.12234 × 105

GREEDY12 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 3.16158 × 105

GREEDY15 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 5.01968 × 105

GH-VNS1 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 0.00000

GH-VNS2 8.91703 × 1012 8,91703 × 1012 8,91703 × 1012 8.91703 × 1012 0.00000

GH-VNS3 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 4.03023 × 105

SWAP1 (the
best of SWAP)

8.91703 × 1012 8.91709 × 1012 8.91704 × 1012 8.91703 × 1012 8.67594 × 106

GA-1 8.91703 × 1012 8.91707 × 1012 8.91703 × 1012 8.91703 × 1012 9.04519 × 106

AdaptiveGreedy 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 8.91703 × 1012 0.00000

Computation 2020, 8, 90 26 of 32

Table A9. Comparative results for S1 data set. 5000 data vectors in R2, k = 50 clusters, time limitation 1 s.

Algorithm or
Neighborhood

Achieved SSE Summarized After 30 Runs

Min (Record) Max (Worst) Average Median Std.dev

Lloyd-MS 3.94212 × 1012 4.06133 × 1012 3.99806 × 1012 3.99730 × 1012 4.52976 × 1010

j-Means-MS 3.96626 × 1012 4.40078 × 1012 4.12311 × 1012 4.07123 × 1012 14.81090 × 1010

GREEDY1 3.82369 × 10 12 4.19102 × 1012 3.91601 × 1012 3.88108 × 1012 9.82433 × 1010

GREEDY2 3.74350 × 10 12 3.76202 × 1012 3.75014 × 1012 3.74936 × 1012 6.10139 × 109

GREEDY3 3.74776 × 10 12 3.76237 × 1012 3.75455 × 1012 3.75456 × 1012 5.24513 × 109

GREEDY5 3.74390 × 10 12 3.77031 × 1012 3.75345 × 1012 3.75298 × 1012 7.17733 × 109

GREEDY7 3.74446 × 10 12 3.77208 × 1012 3.75277 × 1012 3.75190 × 1012 7.40052 × 109

GREEDY10 3.74493 × 10 12 3.76031 × 1012 3.75159 × 1012 3.75185 × 1012 5.26553 × 109

GREEDY15 3.74472 × 10 12 3.77922 × 1012 3.75426 × 1012 3.75519 × 1012 9.79855 × 109

GREEDY20 3.75028 × 10 12 3.76448 × 1012 3.75586 × 1012 3.75573 × 1012 3.97310 × 109

GREEDY25 3.74770 × 10 12 3.76224 × 1012 3.75500 × 1012 3.75572 × 1012 4.95370 × 109

GREEDY30 3.75014 × 1012 3.76010 × 1012 3.75583 × 1012 3.75661 × 1012 3.45280 × 109

GREEDY50 3.74676 × 1012 3.77396 × 1012 3.76021 × 1012 3.75933 × 1012 9.09159 × 109

GH-VNS1 3.74310 × 1012 3.76674 × 1012 3.74911 × 1012 3.74580 × 1012 6.99859 × 109

GH-VNS2 3,75106 × 1012 3,77369 × 1012 3,75792 × 1012 3,75782 × 1012 6,67960 × 109

GH-VNS3 3.75923 × 1012 3.77964 × 1012 3.76722 × 1012 3.76812 × 1012 6.00125 × 109

SWAP3 (the best
of SWAP) 3.75128 × 1012 3.79170 × 1012 3.77853 × 1012 3.77214 × 1012 4.53608 × 109

GA-1 3.84979 × 1012 3.99291 × 1012 3.92266 × 1012 3.92818 × 1012 4.56845 × 1012

AdaptiveGreedy 3.74340 × 1012 3.76313 × 1012 3.74851 × 1012 3.75037 × 1012 5.56298 × 109

Table A10. Comparative results for Individual Household Electric Power Consumption (IHEPC)
data set. 2,075,259 data vectors in R7, k = 15 clusters, time limitation 5 min.

Algorithm or
Neighborhood

Achieved SSE Summarized After 30 Runs

Min (Record) Max (Worst) AVERAGE Median Std.dev

Lloyd-MS 12,874.8652 12,880.0703 12,876.0219 12,874.8652 2.2952
j-Means-MS 12,874.8652 13,118.6455 12,984.7081 12,962.1323 75.6539

all GREEDY1-15
(equal results)

12,874.8633 12,874.8633 12,874.8633 12,874.8633 0.0000

GH-VNS1 12,874.8633 12,874.8633 12,874.8633 12,874.8633 0.0000

GH-VNS2 12,874.8633 12,874.8633 12,874.8633 12,874.8633 0.0000

GH-VNS3 12,874.8633 12,874.8633 12,874.8633 12,874.8633 0.0000
GA-1 12,874.8643 12,874.8652 12,874.8644 12,874.8643 0.0004

AdaptiveGreedy 12,874.8633 12,874.8633 12,874.8633 12,874.8633 0.0000

Table A11. Comparative results for Individual Household Electric Power Consumption (IHEPC) data
set. 2,075,259 data vectors in R7, k = 50 clusters, time limitation 5 min.

Algorithm or
Neighborhood

Achieved SSE Summarized After 30 Runs

Min (Record) Max (Worst) Average Median Std.dev

Lloyd-MS 5605.0625 5751.1982 5671.0820 5660.4429 54.2467
j-Means-MS 5160.2700 6280.6440 5496.6539 5203.5679 493.7311
GREEDY1 5200.9268 5431.3647 5287.4101 5281.7300 77.0460
GREEDY2 5167.1482 5283.3894 5171.6509 5192.1274 7.7203
GREEDY3 5155.5166 5178.4063 5166.5360 5164.6045 8.1580
GREEDY5 5164.6040 5178.4336 5170.8829 5174.0938 6.0904
GREEDY7 5162.5381 5178.1269 5168.7218 5171.8292 6.4518
GREEDY10 5154.2017 5176.4502 5162.0460 5160.4014 7.2029
GREEDY12 5162.8715 5181.0281 5166.8952 5165.3295 6.0172
GREEDY15 5163.2500 5181.1333 5167.3385 5165.8037 5.7910
GREEDY20 5156.2852 5176.6855 5166.2013 5164.6323 7.8749

Computation 2020, 8, 90 27 of 32

Table A11. Cont.

Algorithm or
Neighborhood

Achieved SSE Summarized After 30 Runs

Min (Record) Max (Worst) Average Median Std.dev

GREEDY25 5166.9820 5181.8529 5175.0317 5176.2136 6.1471
GREEDY30 5168.6309 5182.4351 5175.2414 5176.4512 6.4635
GREEDY50 5168.3887 5182.4321 5177.5249 5177.6855 5.4437
GH-VNS1 5155.5166 5164.6313 5158.6549 5157.6812 3.7467
GH-VNS2 5159.8818 5176.6855 5167.3365 5166.9512 5.6808
GH-VNS3 5171.2969 5182.4321 5175.0468 5174.0752 3.6942

GA-1 5215.9521 5248.4521 5230.2839 5226.0386 13.2694
AdaptiveGreedy 5153.5640 5163.9316 5157.0822 5155.5198 3.6034

References

1. Berkhin, P. Survey of Clustering Data Mining Techniques; Accrue Software: New York, NY, USA, 2002.
2. Cormack, R.M. A Review of Classification. J. R. Stat. Soc. Ser. A 1971, 134, 321–367. [CrossRef]
3. Tsai, C.Y.; Chiu, C.C. A VNS-based hierarchical clustering method. In Proceedings of the 5th WSEAS International

Conference on Computational Intelligence, Man-Machine Systems and Cybernetics (CIMMACS’06), Venice,
Italy, 20–22 November 2006; World Scientific and Engineering Academy and Society (WSEAS): Stevens Point,
WI, USA, 2006; pp. 268–275.

4. Lloyd, S.P. Least Squares Quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]
5. MacQueen, J.B. Some Methods of Classification and Analysis of Multivariate Observations. In Proceedings of

the 5th Berkley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1965
and 27 December 1965–7 January 1966; Volume 1, pp. 281–297.

6. Drineas, P.; Frieze, A.; Kannan, R.; Vempala, S.; Vinay, V. Clustering large graphs via the singular value
decomposition. Mach. Learn. 2004, 56, 9–33. [CrossRef]

7. Gu, Y.; Li, K.; Guo, Z.; Wang, Y. Semi-supervised k-means ddos detection method using hybrid feature
selection algorithm. IEEE Access 2019, 7, 351–365. [CrossRef]

8. Guo, X.; Zhang, X.; He, Y.; Jin, Y.; Qin, H.; Azhar, M.; Huang, J.Z. A Robust k-Means Clustering Algorithm
Based on Observation Point Mechanism. Complexity 2020, 2020, 3650926. [CrossRef]

9. Milligan, G.W. Clustering validation: Results and implications for applied analyses. In Clustering and
Classification; Arabie, P., Hubert, L.J., Soete, G., Eds.; World Scientific: River Edge, NJ, USA, 1996; pp. 341–375.

10. Steinley, D.; Brusco, M. Choosing the Number of Clusters in K-Means Clustering. Psychol. Methods 2011,
16, 285–297. [CrossRef] [PubMed]

11. Garey, M.; Johnson, D.; Witsenhausen, H. The complexity of the generalized Lloyd—Max problem (Corresp.)
IEEE Trans. Inf. Theory 1982, 28, 255–256. [CrossRef]

12. Aloise, D.; Deshpande, A.; Hansen, P.; Popat, P. NP-hardness of Euclidean sum-of-squares clustering.
Mach. Learn. 2009, 75, 245–248. [CrossRef]

13. Cooper, L. Heuristic methods for location-allocation problems. SIAM Rev. 1964, 6, 37–53. [CrossRef]
14. Jiang, J.L.; Yuan, X.M. A heuristic algorithm for constrained multi-source Weber problem. The variational

inequality approach. Eur. J. Oper. Res. 2007, 187, 357–370. [CrossRef]
15. Arthur, D.; Manthey, B.; Roglin, H. k-Means Has Polynomial Smoothed Complexity. In Proceedings of the

2009 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS’09), Atlanta, GA, USA,
25–27 October 2009; IEEE Computer Society: Washington, DC, USA, 2009; pp. 405–414. [CrossRef]

16. Sabin, M.J.; Gray, R.M. Global convergence and empirical consistency of the generalized Lloyd algorithm.
IEEE Trans. Inf. Theory 1986, 32, 148–155. [CrossRef]

17. Emelianenko, M.; Ju, L.; Rand, A. Nondegeneracy and Weak Global Convergence of the Lloyd Algorithm
in Rd. SIAM J. Numer. Anal. 2009, 46, 1423–1441. [CrossRef]

18. Pham, D.T.; Afify, A.A. Clustering techniques and their applications in engineering. Proceedings of the
Institution of Mechanical Engineers, Part C. J. Mech. Eng. Sci. 2007, 221, 1445–1459. [CrossRef]

19. Fisher, D.; Xu, L.; Carnes, J.R.; Reich, Y.; Fenves, J.; Chen, J.; Shiavi, R.; Biswas, G.; Weinberg, J. Applying AI
clustering to engineering tasks. IEEE Expert 1993, 8, 51–60. [CrossRef]

http://dx.doi.org/10.2307/2344237
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1023/B:MACH.0000033113.59016.96
http://dx.doi.org/10.1109/ACCESS.2019.2917532
http://dx.doi.org/10.1155/2020/3650926
http://dx.doi.org/10.1037/a0023346
http://www.ncbi.nlm.nih.gov/pubmed/21728423
http://dx.doi.org/10.1109/TIT.1982.1056488
http://dx.doi.org/10.1007/s10994-009-5103-0
http://dx.doi.org/10.1137/1006005
http://dx.doi.org/10.1016/j.ejor.2007.02.043
http://dx.doi.org/10.1109/FOCS.2009.14
http://dx.doi.org/10.1109/TIT.1986.1057168
http://dx.doi.org/10.1137/070691334
http://dx.doi.org/10.1243/09544062JMES508
http://dx.doi.org/10.1109/64.248353

Computation 2020, 8, 90 28 of 32

20. Gheorghe, G.; Cartina, G.; Rotaru, F. Using K-Means Clustering Method in Determination of the Energy Losses
Levels from Electric Distribution Systems. In Proceedings of the International Conference on Mathematical
Methods and Computational Techniques in Electrical Engineering, Timisoara, Romania, 21–23 October 2010;
pp. 52–56.

21. Kersten, P.R.; Lee, J.S.; Ainsworth, T.L. Unsupervised classification of polarimetric synthetic aperture radar
images using fuzzy clustering and EM clustering. IEEE Trans. Geosci. Remote Sens. 2005, 43, 519–527. [CrossRef]

22. Cesarotti, V.; Rossi, L.; Santoro, R. A neural network clustering model for miscellaneous components
production planning. Prod. Plan. Control 1999, 10, 305–316. [CrossRef]

23. Kundu, B.; White, K.P., Jr.; Mastrangelo, C. Defect clustering and classification for semiconductor devices.
In Proceedings of the 45th Midwest Symposium on Circuits and Systems, Tulsa, Oklahoma, 4–7 August 2002;
Volume 2, pp. II-561–II-564. [CrossRef]

24. Vernet, A.; Kopp, G.A. Classification of turbulent flow patterns with fuzzy clustering. Eng. Appl. Artif. Intell.
2002, 15, 315–326. [CrossRef]

25. Afify, A.A.; Dimov, S.; Naim, M.M.; Valeva, V. Detecting cyclical disturbances in supply networks using
data mining techniques. In Proceedings of the 2nd European Conference on Management of Technology,
Birmingham, UK, 10–12 September 2006; pp. 1–8. [CrossRef]

26. Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. 1999, 31, 264–323. [CrossRef]
27. Naranjo, J.E.; Saha, R.; Tariq, M.T.; Hadi, M.; Xiao, Y. Pattern Recognition Using Clustering Analysis to

Support Transportation System Management, Operations, and Modeling. J. Adv. Transp. 2019. [CrossRef]
28. Kadir, R.A.; Shima, Y.; Sulaiman, R.; Ali, F. Clustering of public transport operation using K-means.

In Proceedings of the 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA), Shanghai,
China, 9–12 March 2018; pp. 427–532.

29. Sesham, A.; Padmanabham, P.; Govardhan, A. Application of Factor Analysis to k-means Clustering
Algorithm on Transportation Data. IJCA 2014, 95, 40–46. [CrossRef]

30. Deb Nath, R.P.; Lee, H.J.; Chowdhury, N.K.; Chang, J.W. Modified K-Means Clustering for Travel Time
Prediction Based on Historical Traffic Data. LNCS 2010, 6276, 511–521. [CrossRef]

31. Montazeri-Gh, M.; Fotouhi, A. Traffic condition recognition using the k-means clustering method. Sci. Iran.
2011, 18, 930–937. [CrossRef]

32. Farahani, R.Z.; Hekmatfar, M. Facility Location Concepts, Models, Algorithms and Case Studies; Springer:
Berlin/Heidelberg, Germany, 2009. [CrossRef]

33. Drezner, Z.; Hamacher, H. Facility Location: Applications and Theory; Springer: Berlin, Germany, 2004;
pp. 119–143.

34. Klastorin, T.D. The p-Median Problem for Cluster Analysis: A Comparative Test Using the Mixture Model
Approach. Manag. Sci. 1985, 31, 84–95. [CrossRef]

35. Brusco, M.J.; Kohn, H.F. Optimal Partitioning of a Data Set Based on the p-Median Model. Psychometrica
2008, 73, 89–105. [CrossRef]

36. Kaufman, L.; Rousseeuw, P.J. Clustering by means of Medoids. In Statistical Data Analysis Based on the
L1–Norm and Related Methods; Dodge, Y., Ed.; Birkhäuser Basel: Basel, Switzerland, 1987; pp. 405–416.

37. Schubert, E.; Rousseeuw, P. Faster k-Medoids Clustering: Improving the PAM, CLARA, and CLARANS
Algorithms. arXiv 2019, arXiv:1810.05691.

38. Park, H.S.; Jun, C.H. A simple and fast algorithm for K-medoids clustering. Expert Syst. Appl. 2009,
36, 3336–3341. [CrossRef]

39. Hakimi, S.L. Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph.
Oper. Res. 1964, 12, 450–459. [CrossRef]

40. Masuyama, S.; Ibaraki, T.; Hasegawa, T. The Computational Complexity of the m-Center Problems on the
Plane. Trans. Inst. Electron. Commun. Eng. Japan 1981, 64E, 57–64.

41. Kariv, O.; Hakimi, S.L. An Algorithmic Approach to Network Location Problems. II: The P medians. SIAM J.
Appl. Math. 1979, 37, 539–560. [CrossRef]

42. Kuenne, R.E.; Soland, R.M. Exact and approximate solutions to the multisource Weber problem. Math. Program.
1972, 3, 193–209. [CrossRef]

43. Ostresh, L.M., Jr. The Stepwise LocationAllocation Problem: Exact Solutions in Continuous and Discrete Spaces.
Geogr. Anal. 1978, 10, 174–185. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2004.842108
http://dx.doi.org/10.1080/095372899233064
http://dx.doi.org/10.1109/MWSCAS.2002.1186923
http://dx.doi.org/10.1016/S0952-1976(02)00037-4
http://dx.doi.org/10.1243/09544054JEM879
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1155/2019/1628417
http://dx.doi.org/10.5120/16673-6677
http://dx.doi.org/10.1007/978-3-642-15387-7_55
http://dx.doi.org/10.1016/j.scient.2011.07.004
http://dx.doi.org/10.1007/978-3-7908-2151-2
http://dx.doi.org/10.1287/mnsc.31.1.84
http://dx.doi.org/10.1007/s11336-007-9021-4
http://dx.doi.org/10.1016/j.eswa.2008.01.039
http://dx.doi.org/10.1287/opre.12.3.450
http://dx.doi.org/10.1137/0137041
http://dx.doi.org/10.1007/BF01584989
http://dx.doi.org/10.1111/j.1538-4632.1978.tb00006.x

Computation 2020, 8, 90 29 of 32

44. Rosing, K.E. An optimal method for solving the (generalized) multi-Weber problem. Eur. J. Oper. Res. 1992,
58, 414–426. [CrossRef]

45. Blum, C.; Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison.
ACM Comput. Surv. 2001, 35, 268–308. [CrossRef]

46. Neema, M.N.; Maniruzzaman, K.M.; Ohgai, A. New Genetic Algorithms Based Approaches to Continuous
p-Median Problem. Netw. Spat. Econ. 2011, 11, 83–99. [CrossRef]

47. Hoos, H.H.; Stutzle, T. Stochastic Local Search Foundations and Applications; Springer: Berlin, Germany, 2005.
48. Bang-Jensen, J.; Chiarandini, M.; Goegebeur, Y.; Jorgensen, B. Mixed Models for the Analysis of Local Search

Components. In Proceedings of the Engineering Stochastic Local Search Algorithms International Workshop,
Brussels, Belgium, 6–8 September 2007; pp. 91–105.

49. Cohen-Addad, V.; Mathieu, C. Effectiveness of local search for geometric optimization. In Proceedings of
the 31st International Symposium on Computational Geometry, SoCG-2015, Eindhoven, The Netherlands,
22–25 June 2015; pp. 329–343.

50. Kochetov, Y.; Mladenović, N.; Hansen, P. Local search with alternating neighborhoods. Discret. Anal.
Oper. Res. 2003, 2, 11–43. (In Russian)

51. Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. A local search
approximation algorithm for k-means clustering. Comput. Geom. Theory Appl. 2004, 28, 89–112. [CrossRef]

52. Page, E.S. On Monte Carlo methods in congestion problems. I: Searching for an optimum in discrete
situations. Oper. Res. 1965, 13, 291–299. [CrossRef]

53. Hromkovic, J. Algorithmics for Hard Problems: Introduction to Combinatorial Optimization, Randomization, Approximation,
and Heuristics; Springer: Berlin/Heidelberg, Germany, 2011.

54. Ng, T. Expanding Neighborhood Tabu Search for facility location problems in water infrastructure planning.
In Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), San Diego,
CA, USA, 5–8 October 2014; pp. 3851–3854. [CrossRef]

55. Mladenovic, N.; Brimberg, J.; Hansen, P.; Moreno-Perez, J.A. The p-median problem: A survey of metaheuristic
approaches. Eur. J. Oper. Res. 2007, 179, 927–939. [CrossRef]

56. Reese, J. Solution methods for the p-median problem: An annotated bibliography. Networks 2006,
48, 125–142. [CrossRef]

57. Brimberg, J.; Drezner, Z.; Mladenovic, N.; Salhi, S. A New Local Search for Continuous Location Problems.
Eur. J. Oper. Res. 2014, 232, 256–265. [CrossRef]

58. Drezner, Z.; Brimberg, J.; Mladenovic, N.; Salhi, S. New heuristic algorithms for solving the planar p-median
problem. Comput. Oper. Res. 2015, 62, 296–304. [CrossRef]

59. Drezner, Z.; Brimberg, J.; Mladenovic, N.; Salhi, S. Solving the planar p-median problem by variable
neighborhood and concentric searches. J. Glob. Optim. 2015, 63, 501–514. [CrossRef]

60. Arthur, D.; Vassilvitskii, S. k-Means++: The Advantages of Careful Seeding. In Proceedings of the SODA’07,
SIAM, New Orleans, LA, USA, 7–9 January 2007; pp. 1027–1035.

61. Bradley, P.S.; Fayyad, U.M. Refining Initial Points for K-Means Clustering. In Proceedings of the
Fifteenth International Conference on Machine Learning (ICML ‘98), Madison, WI, USA, 24–27 July 1998;
Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1998; pp. 91–99.

62. Bhusare, B.B.; Bansode, S.M. Centroids Initialization for K-Means Clustering using Improved Pillar Algorithm.
Int. J. Adv. Res. Comput. Eng. Technol. 2014, 3, 1317–1322.

63. Yang, J.; Wang, J. Tag clustering algorithm lmmsk: Improved k-means algorithm based on latent semantic
analysis. J. Syst. Electron. 2017, 28, 374–384.

64. Mishra, N.; Oblinger, D.; Pitt, L. Sublinear time approximate clustering. In Proceedings of the 12th SODA,
Washington, DC, USA, 7–9 January 2001; pp. 439–447.

65. Eisenbrand, F.; Grandoni, F.; Rothvosz, T.; Schafer, G. Approximating connected facility location problems
via random facility sampling and core detouring. In Proceedings of the SODA’2008, San Francisco, CA, USA,
20–22 January 2008; ACM: New York, NY, USA, 2008; pp. 1174–1183. [CrossRef]

66. Jaiswal, R.A.; Kumar, A.; Sen, S. Simple D2-Sampling Based PTAS for k-Means and Other Clustering
Problems. Algorithmica 2014, 70, 22–46. [CrossRef]

67. Avella, P.; Boccia, M.; Salerno, S.; Vasilyev, I. An Aggregation Heuristic for Large Scale p-median Problem.
Comput. Oper. Res. 2012, 39, 1625–1632. [CrossRef]

http://dx.doi.org/10.1016/0377-2217(92)90072-H
http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1007/s11067-008-9084-5
http://dx.doi.org/10.1016/j.comgeo.2004.03.003
http://dx.doi.org/10.1287/opre.13.2.291
http://dx.doi.org/10.1109/smc.2014.6974531
http://dx.doi.org/10.1016/j.ejor.2005.05.034
http://dx.doi.org/10.1002/net.20128
http://dx.doi.org/10.1016/j.ejor.2013.06.022
http://dx.doi.org/10.1016/j.cor.2014.05.010
http://dx.doi.org/10.1007/s10898-014-0183-1
http://dx.doi.org/10.5555/1347082.1347210
http://dx.doi.org/10.1007/s00453-013-9833-9
http://dx.doi.org/10.1016/j.cor.2011.09.016

Computation 2020, 8, 90 30 of 32

68. Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; Wiley: New York,
NY, USA, 1990.

69. Francis, R.L.; Lowe, T.J.; Rayco, M.B.; Tamir, A. Aggregation error for location models: Survey and analysis.
Ann. Oper. Res. 2009, 167, 171–208. [CrossRef]

70. Pelleg, D.; Moore, A. Accelerating Exact k-Means with Geometric Reasoning [Technical Report CMU-CS-00-105];
Carnegie Melon University: Pittsburgh, PA, USA, 2000.

71. Borgelt, C. Even Faster Exact k-Means Clustering. LNCS 2020, 12080, 93–105. [CrossRef]
72. Lai, J.Z.C.; Huang, T.J.; Liaw, Y.C. A Fast k-Means Clustering Algorithm Using Cluster Center Displacement.

Pattern Recognit. 2009, 42, 2551–2556. [CrossRef]
73. Mladenovic, N.; Hansen, P. Variable Neighborhood Search. Comput. Oper. Res. 1997, 24, 1097–1100. [CrossRef]
74. Hansen, P. Variable Neighborhood Search. Search Methodology. In Search Metodologies; Bruke, E.K.,

Kendall, G., Eds.; Springer: New York, NY, USA, 2005; pp. 211–238. [CrossRef]
75. Hansen, P.; Mladenovic, N. Variable Neighborhood Search. In Handbook of Heuristics; Martí, R., Pardalos, P.,

Resende, M., Eds.; Springer: Cham, Switzerland, 2018. [CrossRef]
76. Brimberg, J.; Hansen, P.; Mladenovic, N. Attraction Probabilities in Variable Neighborhood Search. 4OR-Q. J.

Oper. Res 2010, 8, 181–194. [CrossRef]
77. Hansen, P.; Mladenovic, N.; Perez, J.A.M. Variable Neighborhood Search: Methods and Applications.

4OR-Q. J. Oper. Res. 2008, 6, 319–360. [CrossRef]
78. Hansen, P.; Brimberg, J.; Urosevic, D.; Mladenovic, N. Solving Large p-Median Clustering Problems by

Primal Dual Variable Neighborhood Search. Data Min. Knowl. Discov. 2009, 19, 351–375. [CrossRef]
79. Rozhnov, I.P.; Orlov, V.I.; Kazakovtsev, L.A. VNS-Based Algorithms for the Centroid-Based Clustering

Problem. Facta Univ. Ser. Math. Inform. 2019, 34, 957–972.
80. Hansen, P.; Mladenovic, N. J-Means: A new local search heuristic for minimum sum-of-squares clustering.

Pattern Recognit. 2001, 34, 405–413. [CrossRef]
81. Martins, P. Goal Clustering: VNS Based Heuristics. Available online: https://arxiv.org/abs/1705.07666v4

(accessed on 24 October 2020).
82. Carrizosa, E.; Mladenovic, N.; Todosijevic, R. Variable neighborhood search for minimum sum-of-squares

clustering on networks. Eur. J. Oper. Res. 2013, 230, 356–363. [CrossRef]
83. Roux, M. A Comparative Study of Divisive and Agglomerative Hierarchical Clustering Algorithms. J. Classif.

2018, 35, 345–366. [CrossRef]
84. Sharma, A.; López, Y.; Tsunoda, T. Divisive hierarchical maximum likelihood clustering. BMC Bioinform.

2017, 18, 546. [CrossRef]
85. Venkat Reddy, M.; Vivekananda, M.; Satish, R.U.V.N. Divisive Hierarchical Clustering with K-means and

Agglomerative Hierarchical Clustering. IJCST 2017, 5, 6–11.
86. Sun, Z.; Fox, G.; Gu, W.; Li, Z. A parallel clustering method combined information bottleneck theory and

centroid-based clustering. J. Supercomput. 2014, 69, 452–467. [CrossRef]
87. Kuehn, A.A.; Hamburger, M.J. A heuristic program for locating warehouses. Manag. Sci. 1963, 9, 643–666. [CrossRef]
88. Alp, O.; Erkut, E.; Drezner, Z. An Efficient Genetic Algorithm for the p-Median Problem. Ann. Oper. Res.

2003, 122, 21–42. [CrossRef]
89. Cheng, J.; Chen, X.; Yang, H.; Leng, M. An enhanced k-means algorithm using agglomerative hierarchical

clustering strategy. In Proceedings of the International Conference on Automatic Control and Artificial
Intelligence (ACAI 2012), Xiamen, China, 3–5 March 2012; pp. 407–410. [CrossRef]

90. Kazakovtsev, L.A.; Antamoshkin, A.N. Genetic Algorithm with Fast Greedy Heuristic for Clustering and
Location Problems. Informatica 2014, 3, 229–240.

91. Pelleg, D.; Moore, A. X-means: Extending K-means with Efficient Estimation of the Number of Clusters.
In Proceedings of the International Conference on Machine Learning ICML, Sydney, Australia, 8–12 July 2002.

92. Ahmed, M.; Seraj, R.; Islam, S.M.S. The k-means Algorithm: A Comprehensive Survey and Performance
Evaluation. Electronics 2020, 9, 1295. [CrossRef]

93. Frackiewicz, M.; Mandrella, A.; Palus, H. Fast Color Quantization by K-Means Clustering Combined with
Image Sampling. Symmetry 2019, 11, 963. [CrossRef]

94. Zhang, G.; Li, Y.; Deng, X. K-Means Clustering-Based Electrical Equipment Identification for Smart Building
Application. Information 2020, 11, 27. [CrossRef]

http://dx.doi.org/10.1007/s10479-008-0344-z
http://dx.doi.org/10.1007/978-3-030-44584-3_8
http://dx.doi.org/10.1016/j.patcog.2009.02.014
http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://dx.doi.org/10.1007/0-387-28356-0_8
http://dx.doi.org/10.1007/978-3-319-07124-4_19
http://dx.doi.org/10.1007/s10288-009-0108-x
http://dx.doi.org/10.1007/s10288-008-0089-1
http://dx.doi.org/10.1007/s10618-009-0135-4
http://dx.doi.org/10.1016/S0031-3203(99)00216-2
https://arxiv.org/abs/1705.07666v4
http://dx.doi.org/10.1016/j.ejor.2013.04.027
http://dx.doi.org/10.1007/s00357-018-9259-9
http://dx.doi.org/10.1186/s12859-017-1965-5
http://dx.doi.org/10.1007/s11227-014-1174-1
http://dx.doi.org/10.1287/mnsc.9.4.643
http://dx.doi.org/10.1023/A:1026130003508
http://dx.doi.org/10.1049/cp.2012.1003
http://dx.doi.org/10.3390/electronics9081295
http://dx.doi.org/10.3390/sym11080963
http://dx.doi.org/10.3390/info11010027

Computation 2020, 8, 90 31 of 32

95. Chen, F.; Yang, Y.; Xu, L.; Zhang, T.; Zhang, Y. Big-Data Clustering: K-Means or K-Indicators? 2019.
Available online: https://arxiv.org/pdf/1906.00938.pdf (accessed on 18 October 2020).

96. Qin, J.; Fu, W.; Gao, H.; Zheng, W.X. Distributed k-means algorithm and fuzzy c -means algorithm for sensor
networks based on multiagent consensus theory. IEEE Trans. Cybern. 2016, 47, 772–783. [CrossRef]

97. Shindler, M.; Wong, A.; Meyerson, A. Fast and accurate k-means for large datasets. In Proceedings of the
24th International Conference on Neural Information Processing Systems (NIPS’11), Sydney, Australia,
13–16 December 2011; Curran Associates Inc.: Red Hook, NY, USA, 2011; pp. 2375–2383.

98. Hedar, A.R.; Ibrahim, A.M.M.; Abdel-Hakim, A.E.; Sewisy, A.A. K-Means Cloning: Adaptive Spherical
K-Means Clustering. Algorithms 2018, 11, 151. [CrossRef]

99. Xu, T.S.; Chiang, H.D.; Liu, G.Y.; Tan, C.W. Hierarchical k-means method for clustering large-scale advanced
metering infrastructure data. IEEE Trans. Power Deliv. 2015, 32, 609–616. [CrossRef]

100. Wang, X.D.; Chen, R.C.; Yan, F.; Zeng, Z.Q.; Hong, C.Q. Fast adaptive k-means subspace clustering for
high-dimensional data. IEEE Access 2019, 7, 639–651. [CrossRef]

101. Zechner, M.; Granitzer, M. Accelerating K-Means on the Graphics Processor via CUDA. In Proceedings of
the International Conference on Intensive Applications and Services, Valencia, Spain, 20–25 April 2009;
pp. 7–15. [CrossRef]

102. Luebke, D.; Humphreys, G. How GPUs work. Computer 2007, 40, 96–110. [CrossRef]
103. Maulik, U.; Bandyopadhyay, S. Genetic Algorithm-Based Clustering Technique. Pattern Recognit. 2000,

33, 1455–1465. [CrossRef]
104. Krishna, K.; Murty, M. Genetic K-Means algorithm. IEEE Trans. Syst. Man Cybern. Part B 1999, 29, 433–439.

[CrossRef] [PubMed]
105. Singh, N.; Singh, D.P.; Pant, B. ACOCA: Ant Colony Optimization Based Clustering Algorithm for Big Data

Preprocessing. Int. J. Math. Eng. Manag. Sci. 2019, 4, 1239–1250. [CrossRef]
106. Merwe, D.W.; Engelbrecht, A.P. Data Clustering Using Particle Swarm Optimization. In Proceedings of the

2003 Congress on Evolutionary Computation, Canberra, Australia, 8–12 December 2003; pp. 215–220.
107. Nikolaev, A.; Mladenovic, N.; Todosijevic, R. J-means and I-means for minimum sum-of-squares clustering

on networks. Optim. Lett. 2017, 11, 359–376. [CrossRef]
108. Fränti, P.; Sieranoja, S. K-means properties on six clustering benchmark datasets. Appl. Intell. 2018,

48, 4743–4759. [CrossRef]
109. Clustering Basic Benchmark. Available online: http://cs.joensuu.fi/sipu/datasets/ (accessed on 15 September 2020).
110. Kazakovtsev, L.; Shkaberina, G.; Rozhnov, I.; Li, R.; Kazakovtsev, V. Genetic Algorithms with the Crossover-Like

Mutation Operator for the k-Means Problem. CCIS 2020, 1275, 350–362. [CrossRef]
111. Brimberg, J.; Mladenovic, N. A variable neighborhood algorithm for solving the continuous location-allocation

problem. Stud. Locat. Anal. 1996, 10, 1–12.
112. Miskovic, S.; Stanimirovich, Z.; Grujicic, I. An efficient variable neighborhood search for solving a robust

dynamic facility location problem in emergency service network. Electron. Notes Discret. Math. 2015,
47, 261–268. [CrossRef]

113. Crainic, T.G.; Gendreau, M.; Hansen, P.; Hoeb, N.; Mladenovic, N. Parallel variable neighbourhood search for
the p-median. In Proceedings of the 4th Metaheuristics International conference MIC’2001, Porto, Portugal,
16–21 July 2001; pp. 595–599.

114. Hansen, P.; Mladenovic, N. Variable neighborhood search for the p-median. Locat. Sci. 1997, 5, 207–226. [CrossRef]
115. Wen, M.; Krapper, E.; Larsen, J.; Stidsen, T.K. A multilevel variable neighborhood search heuristic for

a practical vehicle routing and driver scheduling problem. Networks 2011, 58, 311–323. [CrossRef]
116. Baldassi, C. Recombinator-k-Means: Enhancing k-Means++ by Seeding from Pools of Previous Runs.

Available online: https://arxiv.org/abs/1905.00531v1 (accessed on 18 September 2020).
117. Duarte, A.; Mladenović, N.; Sánchez-Oro, J.; Todosijević, R. Variable Neighborhood Descent. In Handbook of

Heuristics; Martí, R., Panos, P., Resende, M., Eds.; Springer: Cham, Switzerland, 2016. [CrossRef]
118. Dua, D.; Graff, C. UCI Machine Learning Repository 2019. Available online: http://archive.ics.uci.edu/ml

(accessed on 30 September 2020).
119. Molla, M.M.; Nag, P.; Thohura, S.; Khan, A. A Graphics Process Unit-Based Multiple-Relaxation-Time

Lattice Boltzmann Simulation of Non-Newtonian Fluid Flows in a Backward Facing Step. Computation
2020, 8, 83. [CrossRef]

https://arxiv.org/pdf/1906.00938.pdf
http://dx.doi.org/10.1109/TCYB.2016.2526683
http://dx.doi.org/10.3390/a11100151
http://dx.doi.org/10.1109/TPWRD.2015.2479941
http://dx.doi.org/10.1109/ACCESS.2019.2907043
http://dx.doi.org/10.1109/INTENSIVE.2009.19
http://dx.doi.org/10.1109/MC.2007.59
http://dx.doi.org/10.1016/S0031-3203(99)00137-5
http://dx.doi.org/10.1109/3477.764879
http://www.ncbi.nlm.nih.gov/pubmed/18252317
http://dx.doi.org/10.33889/IJMEMS.2019.4.5-098
http://dx.doi.org/10.1007/s11590-015-0974-4
http://dx.doi.org/10.1007/s10489-018-1238-7
http://cs.joensuu.fi/sipu/datasets/
http://dx.doi.org/10.1007/978-3-030-58657-7_28
http://dx.doi.org/10.1016/j.endm.2014.11.034
http://dx.doi.org/10.1016/S0966-8349(98)00030-8
http://dx.doi.org/10.1002/net.20470
https://arxiv.org/abs/1905.00531v1
http://dx.doi.org/10.1007/978-3-319-07153-4_9-1
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.3390/computation8030083

Computation 2020, 8, 90 32 of 32

120. Kazakovtsev, L.A.; Rozhnov, I.P.; Popov, E.A.; Karaseva, M.V.; Stupina, A.A. Parallel implementation of the
greedy heuristic clustering algorithms. IOP Conf. Ser. Mater. Sci. Eng. 2019, 537, 022052. [CrossRef]

121. Zhang, T.; Ramakrishnan, R.; Livny, M. BIRCH: An Efficient Data Clustering Method for Very Large Databases.
In Proceedings of the 1996 ACM SIGMOD International Conference on Management of data (SIGMOD’96),
Montreal, QC, Canada, 4–6 June 1996; ACM: New York, NY, USA, 1996; pp. 103–114. [CrossRef]

122. Smucker, M.D.; Allan, J.; Carterette, B.A. Comparison of Statistical Significance Tests for Information Retrieval.
In Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management (CIKM ‘07),
Lisbon, Portugal, 6–10 November 2007; ACM: New York, NY, USA, 2007; pp. 623–632.

123. Park, H.M. Comparing Group Means: The t-Test and One-way ANOVA Using STATA, SAS, and SPSS; Indiana University:
Bloomington, Indiana, 2009.

124. Mann, H.B.; Whitney, D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than
the other. Ann. Math. Stat. 1947, 18, 50–60. [CrossRef]

125. Fay, M.P.; Proschan, M.A. Wilcoxon-Mann-Whitney or t-Test? On Assumptions for Hypothesis Tests and
Multiple Interpretations of Decision Rules. Stat. Surv. 2010, 4, 1–39. [CrossRef]

126. Burke, E.; Gendreau, M.; Hyde, M.; Kendall, G.; Ochoa, G.; Ozkan, E.; Qu, R. Hyper-heuristics: A survey of
the state of the art. J. Oper. Res. Soc. 2013, 64, 1695–1724. [CrossRef]

127. Stanovov, V.; Semenkin, E.; Semenkina, O. Self-configuring hybrid evolutionary algorithm for fuzzy imbalanced
classification with adaptive instance selection. J. Artif. Intell. Soft Comput. Res. 2016, 6, 173–188. [CrossRef]

128. Semenkina, M.; Semenkin, E. Hybrid Self-configuring Evolutionary Algorithm for Automated Design of
Fuzzy Classifier. LNCS 2014, 8794, 310–317. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/1757-899X/537/2/022052
http://dx.doi.org/10.1145/233269.233324
http://dx.doi.org/10.1214/aoms/1177730491
http://dx.doi.org/10.1214/09-SS051
http://dx.doi.org/10.1057/jors.2013.71
http://dx.doi.org/10.1515/jaiscr-2016-0013
http://dx.doi.org/10.1007/978-3-319-11857-4_35
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement
	State of the Art
	Research Gap
	Our Contribution
	Structure of this Article

	Materials and Methods
	The Simplest Approach
	Local Search in SWAP Neighborhoods
	Agglomerative Approach and GREEDYr Neyborhoods
	Variable Neighborhood Search
	New Algorithm
	CUDA Implementation
	Benchmarking Data
	Computational Environment

	Results
	Discussion
	Conclusions
	Results of Computational Experiments
	References

