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Abstract: In this paper, we study and explore two control strategies to decrease the spread of
Zika virus in the human and mosquito populations. The control strategies that we consider in this
study are awareness and spraying campaigns. We solve several optimal control problems relying
on a mathematical epidemic model of Zika that considers both human and mosquito populations.
The first control strategy is broad and includes using information campaigns, encouraging people
to use bednetting, wear long-sleeve shirts, or similar protection actions. The second control is more
specific and relies on spraying insecticides. The control system relies on a Zika mathematical model
with control functions. To develop the optimal control problem, we use Pontryagins’ maximum
principle, which is numerically solved as a boundary value problem. For the mathematical model of
the Zika epidemic, we use parameter values extracted from real data from an outbreak in Colombia.
We study the effect of the costs related to the controls and infected populations. These costs are
important in real life since they can change the outcomes and recommendations for health authorities
dramatically. Finally, we explore different options regarding which control measures are more
cost-efficient for society.

Keywords: Zika virus; optimal control dynamical systems; Pontryagins’ maximum principle;
epidemiological models
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1. Introduction

The Zika virus is primarily spread by the female Aedes aegypti mosquito, which must feed on
blood to lay eggs. The virus can cause symptoms such as fever, red eyes, joint pain, headache, and a
maculopapular rash [1]. A pregnant woman infected by ZIKV can have had vertical transmission to
the fetus, which increases the risk of microcephaly. Therefore, the control and eradication of ZIKV are
crucial due to the social impact of the disease from different perspectives.

The infection caused by ZIKV is a significant vector-transmitted disease, which in the last few
decades caused many cases in Latin America [2]. Moreover, the ZIKV virus has spread worldwide
in countries such as Australia, Canada, France, Italy, and Spain. For instance, in the USA, the state
of Florida reported over 735 travel-related Zika cases since February 2016, becoming the first state
in the continental USA to report multiple laboratory-confirmed autochthonous cases of Zika [3].
Based on the previous facts, it makes sense to develop studies to decide how we can slow down or
eradicate the spread of the ZIKV. In this study, we consider an optimal control design considering
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the cost-effectiveness of strategies to accomplish the aims mentioned above. We use a previously
developed mathematical model along with objective functions that help us to reach the purpose of
the study. The outcomes of this approach can lead health authorities to make the most convenient
decisions regarding the slowing down of the transmission of the ZIKV, considering some cost associate
with different choices.

In this study, we use a mathematical model for the ZIKV transmission using a system of
nonlinear differential equations. The model includes the populations of humans and mosquitoes. In the
mathematical model, the birth rate of the mosquitoes is assumed to be equal to their death rate,
and the same is assumed between birth and death rates for humans [2]. Moreover, the model
considers a hundred percent vertical transmission in the human population. Furthermore, the model
includes mutations of the ZIKV; therefore, the recovered subpopulation can return to the susceptible
state [2,4,5]. This type of mathematical modeling approach is used widely to study the dynamics of
diseases in populations [6,7]. As mentioned above, there is a variety of mathematical models for ZIKV
transmission. We did not consider very detailed mathematical models that include mosquito larvae,
since then the parameters are not very easily identifiable and our aim here is to propose an approach
to study the effects of control policies with a classical ZIKV model.

A critical feature of this type of epidemiological models is the basic reproduction numberR0 [6,8].
This famous number, which is currently used to characterize the COVID-19 pandemic, is defined as
the expected number of new infections from one infected individual in a fully susceptible population
through the entire duration of the infectious period. In this work, we use parameter values that were
estimated using real data from Colombia [2].

Some previous interesting publications use optimal control techniques to minimize the spread
of the diseases in the presence of vectors such as mosquitoes [9–13]. In particular, in [10] the
authors considered an asymptotic carrier, which might be an important factor in the dynamics.
Saturation and optimal controls were considered and studied in [9]. In [14], the authors studied
the optimal effects of bednets (prevention), treatments of infective, and spray of insecticides on
the disease spread. The authors use Pontryagins’ Maximum Principle to determine the necessary
conditions to control ZIKV. The authors used a particular model which assumed an effective contact
rate between infected and susceptible humans could result in infection. Moreover, the authors included
the infected and exposed populations for humans and mosquitoes in the objective functional J .
Among other results, they found that exposed mosquitoes are not affected by the prevention and
treatment controls. Surprisingly, prevention and insecticide control increased the number of infected
humans [14]. Furthermore, they found that treatment and insecticide spraying controls increased
the number of exposed and infected humans despite the fact that the infected and exposed human
populations are included in the objective functional J . In our study, we include two time-dependent
controls (prevention and insecticide), and only the infected populations for humans and mosquitoes in
the objective functional J .

Here, we use Pontryagins’ maximum principle in order to solve the optimal control. Thus, we can
find the conditions that are necessary for the Zika disease to be controlled optimally. The outcome of
the optimal control problem is the particular time-dependent controls related to the Zika mathematical
model. In addition, we can observe the new dynamics under the action of time-dependent controls.
It is important to remark that various studies regarding optimal control do not mention the paramount
importance of the costs related to the controls and infected populations. These costs can change
dramatically the outcomes and recommendations made by health authorities. In fact, assigning costs to
infected populations is not an easy task and may involve ethical, political, philosophical, and sanitary
considerations in many cases. Nowadays cost-effectiveness analysis has become a common method to
use for decision making [15–18]. There are several studies that have estimated the associated costs of
control policies and infected individuals [19–24].

This paper is organized as follows. In Section 2, we present the Zika mathematical model
and introduce the time-dependent controls. In Section 3, we present the objective functional J .
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Moreover, we also construct the optimality system using Pontryagins’ maximum principle and explain
the procedure to solve the control problem. In Section 4, we numerically solve the control problem and
discuss the outcomes. Finally, in Section 5, we present the conclusions and discussion.

2. Mathematical Model

The mathematical model that we use in this study for the Zika virus transmission relies on
a system of nonlinear differential equations. The model includes the populations of humans and
mosquitoes. For more details, see [2]. A crucial characteristic of the model is that it considers vertical
transmission in the human population. In addition, the model includes mutations of the ZIKV,
therefore the recovered individuals can return to the susceptible state [2,4,5]. The Zika virus spreads
by the effective contact between an infected mosquito with a susceptible individual and vice-versa.
This effective contact depends on several environmental factors such as weather, temperature, altitude,
clothes, bednets, and mosquito bite rate [3,25–27]. Varying these factors would generate different
outcomes of transmission of the disease.

The mathematical model comprises five ordinary differential equations. Thus, we have a
continuous mathematical model for the transmission and evolution of the Zika virus in human
and mosquito populations. The total population of human Nh(t) is divided into three subpopulations:
Humans who may become infected (Susceptible Sh(t)), humans infected by the Zika virus
(Infected Ih(t)) and humans who have recovered from Zika virus (Recovered Rh(t)) [2]. Parameter bh
is the human birth rate. This birth rate bh is assumed as equal to that of natural death dh. The total
population of mosquitoes NT(M) is divided in two subpopulations: Mosquitoes which may become
infected SM(t) and mosquitoes infected by the Zika virus IM(t). Parameters bM and dM are the
birth and death rates respectively. A susceptible human can transit to the infected subpopulation
Ih(t) because of an effective transmission due to being bitten by an infected mosquito depending on
parameter βh. A susceptible mosquito can be infected if there is an effective transmission when it
stings an infected human depending on the parameter βM. We assume a hundred percent vertical
transmission in the human population. A fraction Ψ of the recovered humans may return to the
susceptible state. Finally, homogeneous mixing is assumed, i.e., all susceptible humans have the same
probability of being infected and all susceptible mosquitoes have the same probability of infection.
Using these ideas and the structure of mathematical modeling in epidemiology we have the following
model [2]:

S′h(t) = Rh(t)(bh + Ψ)− βhSh(t)
IM(t)
Nh(t)

,

I′h(t) = βhSh(t)
IM(t)
Nh(t)

−ΛIh(t),

R′h(t) = ΛIh(t)− Rh(t)(Ψ + dh),

S′M(t) = bM NM(t)− βMSM(t)
Ih(t)
Nh(t)

− dMSM(t),

I′M(t) = βMSM(t)
Ih(t)
Nh(t)

− dM IM(t).

(1)

If we add all the human classes, one gets, N′h(t) = S′h(t) + I′h(t) + R′h(t) = 0 therefore the
human population is constant. Adding the susceptible and infected vector subpopulations one gets,
N′M(t) = S′M(t) + I′M(t) = bM NM(t)− dM NM(t). System (1) is well-posed, in the sense that if the
initial data (Sh(t), Ih(t), Rh(t), SM(t), IM(t)) are in the region R5

+, then they will be defined for all time
t ≥ 0 and remain in R5

+. Initial conditions are given by (Sh(0), Ih(0), Rh(0), SM(0), IM(0)).
Notably, other models have been presented to study the spread of Zika in human and mosquito

populations. However, those mathematical models have more parameters, which may cause an
identifiability problem when we need to estimate the model’s parameter values using real data of
infected cases [2,28,29].

The region, Ω = {(Sh, Ih, Rh, SM, IM) : 0 ≤ Sh + Ih + Rh ≤ Nh, 0 ≤ SM + IM ≤ NM} is positive
for system (1). System (1) has the disease free equilibrium point F∗1 = (s∗h1

, i∗h1
, r∗h1

, s∗M1
, i∗M1

) =



Computation 2020, 8, 76 4 of 16

(Nh, 0, 0, 0, 0) for all the values of the parameters in this system, whereas, only if R0 ≥ 1, there is
only one endemic equilibrium point F∗2 = (S∗h2

, I∗h2
, R∗h2

, S∗M2
, I∗M2

) in the interior of Ω. For more details
about the stability analysis we refer the readers to [2].

We are interested in proposing a mathematical model that includes control health policies to reduce
the spread of the Zika virus in the human population. We consider here two different time-dependent
controls. The first one is the inclusion of educational or awareness campaigns for the human population.
This action includes promoting the population to the use of repellent, insect bednets, and appropriate
clothing to avoid mosquito bites. The second control includes the use of insecticides, reduction of
breeding sites, mosquito traps to reduce the number of mosquitoes in the urban areas [30].

Using the model (1) in conjunction with the proposed controls we constructed a mathematical
model with two different time-dependent controls u(t) = (ui(t)) ∈ U f or i = 1, 2 for the Zika virus
spread. These controls are: control u1(t) represents the prevention of humans individuals from the
Zika mosquitoes by using the bednets, mosquito repellent, clothing, etc. Control u2(t) is the use of
insecticide spray against the mosquitoes. The mathematical model with all the controls is given by:

S′h(t) = Rh(t)(bh + Ψ)− (1− u1(t)) βhSh(t)
IM(t)
Nh(t)

,

I′h(t) = (1− u1(t)) βhSh(t)
IM(t)
Nh(t)

−ΛIh(t),

R′h(t) = ΛIh(t)− Rh(t)(Ψ + dh),

S′M(t) = bM NM(t)− (1− u1(t)) βMSM(t)
Ih(t)
Nh(t)

− dMSM(t)− u2(t)SM(t),

I′M(t) = (1− u1(t)) βMSM(t)
Ih(t)
Nh(t)

− dM IM(t)− u2(t)IM(t).

(2)

Note that, in this model, we assume that the control u1(t) is a control action that involves the use
of repellent, insect bednets, and appropriate clothing to avoid the bite of mosquitoes. Thus, this control
reduces the contact rate between the humans and mosquitoes. Notice that including the control u1

does not affect the constant human population Nh. We included the option to have a control variable
u2(t) that represents the use of insecticides that can kill the mosquitoes and reduce their population.
This control model includes several nested models depending on the implementation of the different
controls u1(t) and u2(t).

3. Optimization of the Controls

In this section, we solve the optimal control problem for different scenarios to provide insights on
which is the best control policy from a cost-effectiveness perspectives for this model.

We consider that u1(t) and u2(t) are time-dependent control policies as mentioned in the previous
section. Moreover, we assume that the control set U is measurable and bounded.

U = {(u1(t), u2(t)) : 0 ≤ ui(t) ≤ uimax, ∀t ∈ [0, T], i = 1, 2} (3)

We consider an optimal control problem with the objective (cost) functional J given by:

J (Ih, IM, u1, u2) =
∫ T

0

(
κ1 Ih + κ2 IM + κ3

u2
1

2
+ κ4

u2
2

2

)
dt (4)

where the weight coefficients κi, i = 3, 4 measure the relative cost of each of the ui control policies,
and the weight coefficients κi, i = 1, 2 are relative costs related to the infected humans and mosquitoes.
The goal might vary depending on the viewpoint. For instance we would like to minimize the number
of infected humans, but simultaneously reducing the outcome cost. Moreover, one might argue that
we would also like to minimize the number of infected mosquitoes. We can include both perspectives
by just modifying the values of weights κi, i = 1, 2.



Computation 2020, 8, 76 5 of 16

To determine the control problem for u∗i where i = 1, 2, such that

J(u∗i ) = min
U

J(ui) (5)

where U is defined in Equation (3) and subjected to the system (2) with non-negative initial conditions.
Then, we can apply Pontryagins’ Maximum Principle [31] to solve the optimal control problem.
The Lagrangian for the optimal control problem (5) is given by:

L(Ih, IM, u1, u2) = κ1 Ih + κ2 IM +
κ3u2

1
2

+
κ4u2

2
2

(6)

Based on these previous arguments, it is not clear which would be the most convenient functional
J , and what would be the weights that we need to assign to each term in the functional J . One of our
aims is to partially answer these questions.

We will apply Pontryagins’ Maximum Principle [31] to solve the proposed optimal control
problem related to the Zika virus spread. The Hamiltonian of this particular control problem is
given by:

H = κ1 Ih + κ2 IM + κ3
u2

1(t)
2

+ κ4
u2

2(t)
2

+ λ1

[
Rh(bh + Ψ)− (1− u1) βhSh

IM
Nh

]
+ λ2

[
(1− u1) βhSh

IM
Nh
−ΛIh

]
+ λ3 [ΛIh − Rh(Ψ + dh)] (7)

+ λ4

[
bM(SM + IM)− (1− u1) βMSM

Ih
Nh
− SM(dM + u2)

]
+ λ5

[
(1− u1) βMSM

Ih
Nh
− IM(dM + u2)

]
To achieve an optimal solution (x, ui) of an optimal control problem, there must exist a nontrivial

vector function λ = (λ1, λ2, . . . , λ5) that satisfies [31]:

dx
dt

=
∂H(t, x, ui, λ)

∂λ
, 0 =

∂H(t, x, ui, λ)

∂ui
,

dλ

dt
= −∂H(t, x, ui, λ)

∂x
.

Therefore, the adjoint system is given by:

λ1

dt
= − ∂H

∂Sh
= λ1

[
(1− u1)βh

IM
Nh

]
− λ2

[
(1− u1)βh

IM
Nh

]
λ2

dt
= −∂H

∂Ih
= λ2Λ− λ3Λ + λ4(1− u1) βM

SM
Nh
− λ5(1− u1) βM

SM
Nh
− κ1

λ3

dt
= − ∂H

∂Rh
= −λ1 (bh + Ψ) + λ3 (Ψ + dh) (8)

λ4

dt
= − ∂H

∂SM
= −λ4( bM − (1− u1) βM

Ih
Nh
− (dM + u2))− λ5(1− u1) βM

Ih
Nh

λ5

dt
= − ∂H

∂IM
= λ1(1− u1) βh

Sh
Nh
− λ2(1− u1) βh

Sh
Nh
− λ4 bM + λ5(dM + u2)− κ2

with transversality conditions (or boundary conditions)

λ1(T) = λ2(T) = λ3(T) = λ4(T) = λ5(T) = 0. (9)

Theorem 1. There exists an optimal control u∗(t) =
(
u∗1(t), u∗2(t)

)
such that J(u∗(t)) = min

U
J(u(t)),

subject to the control system (2) with adequate initial conditions.
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Proof. The characterization of the optimal controls u∗1 , u∗2 , is obtained from the conditions:
∂H
∂u1

=
∂H
∂u2

= 0. Thus, one gets,

∂H
∂u1

=
Nhu1κ3 − (λ2 − λ1) βhSh IM − (λ5 − λ4) βMSM Ih

Nh
= 0, (10)

∂H
∂u2

= κ4u2 − λ4SM − λ5 IM = 0, (11)

subject to the constraints 0 ≤ u1 ≤ u1max, 0 ≤ u2 ≤ u2max. Solving for each of the controls ui, one gets

u∗1 =
βhSh IM (λ2 − λ1) + βMSM Ih (λ5 − λ4)

Nhκ3
, (12)

u∗2 =
λ4SM + λ5 IM

κ4
. (13)

Let fmax(t) =
βhSh(t)IM(t) (λ2 − λ1) + βMSM(t)Ih(t) (λ5 − λ4)

Nhκ3
. Using the bounds of the

controls uimax one gets that,

u∗1(t) =


βhSh IM (λ2 − λ1) + βMSM Ih (λ5 − λ4)

Nhκ3
, if 0 ≤ fmax(t) ≤ u1max.

0, if fmax(t) < 0.

u1max, if fmax(t) > u1max.

(14)

The values for u∗2(t) are calculated in the same way as (14). Thus, the maximality condition
ensures that the optimal control variables u∗1 , u∗2 are given by

u∗1 = min
{

max
{

0,
βhSh IM (λ2 − λ1) + βMSM Ih (λ5 − λ4)

Nhκ3

}
, u1max

}
, (15)

u∗2 = min
{

max
{

0,
λ4SM + λ5 IM

κ4

}
, u2max

}
.

Finally, we can minimize functional (4) by solving an optimal control problem which translates
in computing the solution of a boundary value problem [32,33]. This problem implies solving
the optimality system, composed by the state system (2), the adjoint system (8), initial conditions,
transversality conditions (9), and the optimal control is given by (3). It is important to remark
that the second derivatives of the Lagrangian with respect to the control variables are positive.
Thus, the optimal problem achieves a minimum at optimal control variables u∗1 , u∗2 . We can solve
the optimal control and state, by solving the above equations numerically. We can use two methods,
the direct method and the indirect method are often used to solve the control problem. The first
method uses the cost functional and the state system [34,35]. The indirect method is iterative and can
be implemented using different ODE numerical schemes [35,36].

The indirect method (iterative) outcome relies on solving the adjoint system and the control
expressions explicitly. Thus, the indirect method uses Pontragyns’ maximum principle and the
Hamiltonian. Based on these facts, here we implemented the indirect method which is also
commonly used for this type of problem [35,36]. Nevertheless, the numerical implementation is
not straightforward and several numerical issues can arise [24].
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4. Numerical Solution of the Model with Time-Dependent Controls and Cost-Effectiveness Analysis

Here we solve the optimal control problem using the indirect method [35,36]. This method has
advantages and disadvantages. It is straightforward to implement if the numerical integrator uses a
uniform step size and it has a high accuracy if a high order integrator is used together with a small
uniform step size [24,32]. On the other hand, the main disadvantage is that it may be difficult to
obtain convergence [24]. However, solving the equations for the states and the adjoint variables as a
two-point boundary value problem usually helps.

We will analyze the effectiveness of the different time-dependent controls u1(t), u2(t), varying the
relative costs (weights) of each control. We study different situations depending on the perspective
that some health authorities and people might consider. The relative costs of each control policy are
varied to consider realistic situations where the prices related to the control policies might differ from
one country to another. The reason for that is that in each country or region the cost of each control
policy can vary due to different factors such as accessibility of the region, climate, and people’s culture.

We use the bvp routine implemented in python for solving the optimal control problem
numerically [37]. This routine uses a fourth order collocation algorithm with the control of residuals
similar to the algorithm presented in [38]. The produced collocation system is solved by a damped
Newton method with an affine-invariant criterion function [39]. The results were also obtained by
using the forward-backward method which is well-known in optimal control literature [24,40].

When we solve the control problem, one gets the optimal strategy which is given by the particular
optimum control functions u∗1(t), u∗2(t). This particular strategy is obtained by numerically solving the
adjoint and state equations in conjunction with the transversality conditions (9).

For the parameter values of the mathematical model we use the ones obtained in [2] and presented
in Table 1. These values were obtained fitting the mathematical model (1) to real data (given by weeks)
from Zika cases in Colombia for 2016. The numerical simulations are presented using the absolute
values of the subpopulations in the mathematical model (1).

We divide the presentation of the numerical results into two subsections for the sake of clarity.
We start with the effects of the time-dependent control u1(t), which represents mass educational
campaigns as explained before.

Table 1. Parameter values the mathematical model (1).

Parameter Symbol Values Rate

Average-life of the human host 1
bh

25 Days 0.00004
Average-life of vector 1

bM
14 Days 0.07133

Average time spent at the infectious stage in the humans 1
Λ 5 Days 0.2

Time of immunity in the humans 1
Ψ 5 Days 0.2

Transmission of Virus Sh(t)→ Ih(t) Th 1.06869
Transmission of Virus SM(t)→ IM(t) TM ≈0.0103791

4.1. Mass Educational Campaigns Effects

In this scenario, we consider the case where only the educational campaign policies are
implemented as a control policy to minimize the spread of the Zika virus. As we have mentioned
before, depending on the viewpoint, we might want to use a different functional J (4), or even different
weights. Several ways can be used to assign the weights depending on costs of each control policy and
the cost to health institutions and society of having infected people. For instance, whether infected
people might need to see a doctor or occupy a room in a hospital. Thus, here we use a variety of
values for the weights κi in order to explore different impacts. We would like to remark that this is
an important contribution related to the optimal control that helps with the analysis of the impact
of the weights on the solution. Notice that the minimum of the control problem does not change if
all the weights are multiplied by a constant. There are infinitely many options from which to choose
these weights, but in the real-world, the weights must be assigned based on the priorities of the health
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institutions and on the costs associated to having an infected and symptomatic individual. In addition,
it is important to take into account the costs of each control policy [35,41–43]; for example, the cost of
educational campaigns. We will use metrics to measure the impact of each time-dependent control
u1(t) and u2(t). The first metric is the total cases avoided by the control strategy during the full time
period T [44]. This metric is computed using the following equation

Av = T Ih(0)−
∫ T

0
I∗h dt, (16)

where Ih(0) is the initial number of infected persons and I∗h is the infected individuals corresponding
to the optimal solution associated with the optimal controls. The second metric is given by:

E f f =
Av

T Ih(0)
= 1−

∫ T
0 I∗h dt

T Ih(0)
. (17)

This second metric is the effectiveness, which is the proportion of the total of avoided cases as
compared to the total possible cases under a no intervention attitude [44]. The efficacy function [44] is
defined by

E f (t) =
Ih(0)− I∗h (t)

Ih(0)
= 1−

I∗h (t)
Ih(0)

. (18)

For this first scenario we choose κ1 = 0.1, κ3 = 0.1 Nh, and κ4 = 0. This means that we are only
interested in minimizing the infected people, and using repellent, insect bednets, and appropriate
clothing to avoid the bite of mosquitoes, i.e., just control u1. We choose this particular set in such a
way that the terms in the functional J have a similar order of magnitude, and therefore the weights
have impact on the functional J . The functional is given by

J (Ih, u1) =
∫ T

0

(
κ1 Ih + κ3u2

1

)
dt. (19)

In this study, we assume that the maximum potential value for the control u1 related to the
educational campaign is u1max = 0.5. This is a particular value that can be changed in a real situation,
and depends on the potential efficacy of the control. Notice that assuming u1max = 1 would give a
potential 100% efficacy of the control u1 and therefore no transmission of the Zika virus would happen.
We think that this particular situation would be very optimistic for the real world. Therefore we
used a more conservative efficacy of 50% (u1max = 0.5). In Figure 1, the behavior of the infected
population with and without control can be seen. In addition, the time-dependent control function
u1(t) can be observed. We can also see that the implementation of a mass educational campaign would
result in a reduction of the number of the infected population at any time. Notice, therefore, that the
control stays at its maximum almost during the whole time period and that the effectiveness is not
close to 100% since it cannot avoid all the infected cases. This makes sense since the educational
campaign will not reach everybody right away. Furthermore, the maximum value that the control
u1 takes on during the simulation period is 0.5. In fact, this really means that the use of repellent,
insect bednets, and appropriate clothing is necessary in order to have the optimal strategy to reduce
the infected people.
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Cases averted Effectiveness

Value 258,547 0.49

Figure 1. Numerical simulation of an educational campaign (κ1 = 0.1, u1max = 0.5) on the infected
humans of the Zika mathematical model (1). Results regarding effectiveness are given in the table.
The dots represent the real cases of infected people in Colombia for 2016.

The next variation that we include is to choose that the maximum potential value of the control of
u1 is u1max = 0.05 (efficacy of 5%) . We can consider this as the population not being able to effectively
grasp the educational campaign, and therefore the control will have less impact on avoiding the
mosquito bites. Here we expect to have less effectiveness and averted cases. In Figure 2, the infected
population with and without control can be seen. We can see that there is a reduction of the number of
infected population, but much less than in the previous case, since the control has a maximum value of
u1max = 0.05. Notice that again the control stays at its maximum almost during the whole time period.
This means that the use of repellent, insect bednets, and appropriate clothing is necessary in order to
have the optimal strategy to reduce the number of infected persons.

Cases averted Effectiveness

Value 98,989 0.19

Figure 2. Numerical simulation of an educational campaign (κ1 = 0.1, u1max = 0.05) on the infected
humans of the Zika mathematical model (1). Results regarding effectiveness are given in the table.
The dots represent the real cases of infected people in Colombia for 2016.

Now we include the scenario where the cost of control u1 is reduced to κ3 = 0.05 Nh, i.e., half of
the previous value. We kept the maximum value of the control of u1 as u1max = 0.05. Since the
cost associated to this control u1 is lower, we expect to have more averted cases and effectiveness.
In Figure 3, the infected population with and without control can be seen. Notice that control u1 stays
at its maximum almost during the whole time period, and the number of averted cases increased due
to lower cost of this control. This situation in the real world means that, if for instance the cost of the
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educational campaign (TV, radio, internet, use of repellent, insect bednets, and appropriate clothing) is
reduced then the optimal strategy will reduce even more the number of infected individuals.

Cases averted Effectiveness

Value 103,863 0.20

Figure 3. Numerical simulation of an educational campaign (κ1 = 0.1, u1max = 0.05) on the infected
humans of the Zika mathematical model (1). Results regarding effectiveness are given in the table.
The dots represent the real cases of infected people in Colombia for 2016.

4.2. Insecticide Spraying Campaign

Here, we consider that only the insecticide spraying campaign is implemented as a control policy
to minimize the spread of the Zika virus by reducing the mosquito population choosing κ1 = 0.1,
κ3 = 0, and κ4 6= 0. We will minimize the following functional

J (Ih, u2) =
∫ T

0

(
κ1 Ih + κ4u2

2

)
dt. (20)

First we choose κ4 = 0.1 Nh, which is the same associated cost that we initially chose for the
mass education campaign. In Figure 4, the trajectories of the infected population with and without
control can be seen. It is clear that the insecticide control strategy produces a reduction of the infected
population and show the effectiveness of control u2(t). This time-dependent control disappears after
around 100 days, since there are no infected mosquitoes at that time. Surprisingly, in this case we get
better results as compared to the ones with the mass education control policy since we get more averted
cases and furthermore the infected subpopulations disappear. Moreover, the control u2(t) never
reaches the maximum value (u2max = 0.5) decreases over time, which means that the optimal strategy
is to gradually diminish the use of insecticide over the time period. The decision of which control
policy would be better might depend on the costs of the mass education (repellent, insect bednets,
and appropriate clothing) and application of insecticide controls. In addition, it would depend on
the efficacy of the insecticide. Here we kept it at u2max = 0.5, but in the real-world situation it may
be different.
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Cases averted Effectiveness

Value 362,366 0.69

Figure 4. Numerical simulation of insecticide (spraying) campaign (κ1 = 0.1, u2max = 0.5) on the
infected humans of the Zika mathematical model (1). Results regarding effectiveness are given in the
table. The dots represent the real cases of infected people in Colombia for 2016.

Now we will consider that the maximum value of the control of u2 is u2max = 0.05, i.e., we reduce
the insecticide killing efficacy on mosquitoes. Surprisingly, in this case there is no change since the
weights are the same and in the previous case the maximum optimal value reached by control u2

was 0.05. However, if we reduce the u2max = 0.01 the total averted cases decreases to 277,523 and the
effectiveness to 0.53. In this particular case the time-dependent control u2(t) needs to be maintained
for a longer time due to the reduction of the spraying efficacy on the killing of the mosquitoes.

The last case that we will consider with only insecticide control is lowering the associated cost of
this control. Here we assume that κ4 = 0.01 Nh and u2max = 0.5. In Figure 5, we can see (as we expected)
that the insecticide control strategy substantially reduces the infected populations, and shows the
effectiveness of control u2(t). This time-dependent control disappears after about 60 days, since there
are no infected mosquitoes at that time. Therefore, no more insecticide is necessary. In a real world
situation we might have an infected person coming from another place and a new Zika outbreak
might start. The number of averted cases is 433,156, and the effectiveness reaches a value of 0.83.
These effects are understandable since the cost associated to control u2(t) has been reduced and,
therefore, the resources devoted to the implementation of control policies yield better performance.
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Cases averted Effectiveness

Value 433,156 0.83

Figure 5. Numerical simulation of insecticide (spraying) campaign (κ1 = 0.1, u2max = 0.5) on the
infected humans of the Zika mathematical model (1). Results regarding effectiveness are given in the
table. The dots represent the real cases of infected people in Colombia for 2016.

4.3. Mixing the Controls and Including the Infected Mosquitoes

We assume that the cost associated to one infected person is one fold more than the one associated
to one infected mosquito. For this scenario we choose κ1 = 0.1, κ2 = 0.01, and u1max = u2max = 0.5.
This situation means that we want to reduce both infected populations, i.e., Ih, IM. The functional,
similar to the one in (4), is given by

J (Ih, IM, u1, u2) =
∫ T

0

(
κ1 Ih + κ2 IM + κ3u2

1 + κ4u2
2

)
dt. (21)

First we only consider mass education control (to use of repellent, insect bednets, and appropriate
clothing), i.e., κ4 = 0 . As can be seen on the left-side of Figure 6, control u1 is used almost during the
whole time period in order to reduce the infected population. However, the reduction is lower than in
comparison when only the human infected population is included in the functional to be minimized.
In fact, the averted cases are 260,096 and the effectiveness is 0.5. Then we did a simulation to consider
only an insecticide campaign (κ3 = 0). Surprisingly, the number of averted cases increased dramatically
to 365,464 and the effectiveness to 0.7. Moreover, these results are better than in comparison to when
only the human infected population is included in the functional to minimize. On the right-side
of Figure 6 it can be seen that control u2 (insecticide) is only necessary for a little bit more than
100 days, and at a maximum optimal value of 0.05. In other words, the time-dependent control related
to insecticide seems more efficient to decrease the spread of Zika virus. In this particular case the
mosquito population survived, which can be seen as a good outcome from an ecological and biological
viewpoint. It is important to remark that here we assume that κ4 = 0.1 Nh, which is the associated
cost related to the insecticide control u2. This value is higher than the one related to infected persons,
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and that is a factor to explain why the optimal control strategy reduces the insecticide control u2 faster
in order to reduce the costs. Nevertheless, in the real world these associated cost values might vary
due to different factors.

One last simulation that we would like to present in this subsection is to consider both controls
with the same associated cost, i.e., κ3 = κ4, and with the same amount of resources as in the previous
case. Thus, we set κ1 = 0.09, and κ2 = 0.01, in a such way that ∑2

i=1 κi = 0.1. In regard to the costs
of the controls we split resources assigning values κ3 = κ4 = 0.05 Nh. The simulation of this last
scenario, provides an important example of how synergy works for the two controls. Here we obtained
better results (same resources) than in comparison with previous cases, where one control was used
without the other and vice-versa. The number of averted cases is 384,578 and the effectiveness is 0.74.
In Figure 7, it can be seen that both infected populations are reduced and eliminated. Thus, we can
conclude that a combination of both controls is the best strategy assuming that the cost associated
to one infected person is one fold greater than having one infected mosquito. In the real world,
the cost associated to infected people is much higher than the one related to infected mosquitoes.
However, we have seen that including the infected mosquito population in the functional is a good
strategy to reduce the Zika virus spread.

Figure 6. Numerical simulation using both infected subpopulations in the functional (κ1 = 0.1,
κ2 = 0.01, u1max = 0.5). Left-side with time-dependent control u1 and right-side just with
time-dependent control u2.

Figure 7. Numerical simulation using both infected subpopulations in the functional (κ1 = 0.09,
κ2 = 0.01, u1max = 0.5), and both time-dependent controls u1 and u2.

5. Conclusions and Discussion

We studied and explored the impact that mass educational (to use of repellent, insect bednets,
and appropriate clothing) and insecticide campaigns have on the human population risk of infection
with the Zika virus. We solved several optimal control problems with different costs associated to
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the controls and the infected populations, in order to find the best strategies to reduce the spread
of the Zika virus in the human population. We relied on Pontryagins’ maximum principle to solve
the optimal control problem, which includes a mathematical model for the spread of the Zika virus
in human and mosquito populations. To solve the control problem we solved an optimality system,
composed by the state system, the adjoint system, initial conditions, transversality conditions, and
the optimal controls. We used the indirect method to solve the control problem, which is in nature
iterative. We faced some numerical issues that sometimes arise when the indirect method is used.
However, adjusting the time step size, we could overcome these numerical issues.

We tackled the optimal problem considering the costs associated to the control campaigns because
in the real world this is an essential factor that health institutions and governments consider. We found
that the educational campaign (to use of repellent, insect bednets, and appropriate clothing) reduces
the number of infected people, but not as well as the insecticide campaign. However, insecticide use
can be harmful to the human population and to the environment in general. Therefore, in the real
world these factors must be included in the cost associated to the insecticide control. We found that
using the same amount of resources it is better to combine or mix both campaigns for more efficient
results, regarding the reduction of infected people. We found that there is a synergy effect between the
educational (to use of repellent, insect bednets, and appropriate clothing) and insecticide campaigns,
and they work better together. We would like to remark that these results assume some particular
associated costs for each of the control strategies. However, the approach used here can be extended
if different associated costs are used due to real-world aspects. Finally, we found that including the
mosquito population in the objective function gives the best results concerning the effectiveness metric
that we proposed. We think that this is because one infected human cannot infect another one, and the
transmission of Zika virus needs the mosquito vector to spread the Zika virus in the human population.
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