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Abstract: In this paper, we propose a 7th order weakly L-stable time integration scheme. In the
process of derivation of the scheme, we use explicit backward Taylor’s polynomial approximation of
sixth-order and Hermite interpolation polynomial approximation of fifth order. We apply this formula
in the vector form in order to solve Burger’s equation, which is a simplified form of Navier-Stokes
equation. The literature survey reveals that several methods fail to capture the solutions in the
presence of inconsistency and for small values of viscosity, e.g., 10−3, whereas the present scheme
produces highly accurate results. To check the effectiveness of the scheme, we examine it over six test
problems and generate several tables and figures. All of the calculations are executed with the help of
Mathematica 11.3. The stability and convergence of the scheme are also discussed.
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1. Introduction

Burgers’ equation with νd as coefficient of viscosity can be defined as

∂ω

∂t
+ ω

∂ω

∂x
− νd

2
∂2ω

∂x2 = 0, (x, t) ∈ ΣT , (1)

where
ΣT = (α0, α1)× (0, T] , T > 0,

with boundary conditions (BCs),

ω(αi, t) = 0, i = 0, 1 and t ∈ (0, T], (Dirichlet BCs) (2)

and initial condition (IC),
ω(x, 0) = f (x), x ∈ (α0, α1) . (3)

Linearized form of Burgers’ equation (by using Hopf-Cole transformation) is given as

∂ψ

∂t
=

νd
2

∂2ψ

∂x2 , (4)

with the Neumann boundary conditions (BCs),

ψx(αi, t) = 0, i = 0, 1,
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and the initial condition (IC),
ψ(x, 0) = g(x).

Burgers’ equation is a very simple form of the Navier–Stokes equation and it always attracted
researchers due to its occurrence in several areas of physics and applied mathematics, like fluid
mechanics, gas dynamics, traffic flow, in the theory of shock waves, and nonlinear acoustics. Firstly, it
originated from Bateman [1] in 1915. Later, in 1948, JM Burgers studied it as a class of equation [2,3]
to mathematically delineate the turbulence model. Recently, in 2019, Ryu et al. [4] proposed some
nowcasting rainfall models that are based on Burger’s equation. Existence and uniqueness of the
solution of Equation (1) and its generalized form can be found in [5–7].

Recently, due to the availability of high-speed computers, activities that are related to the
computation of numerical solution has increased. Özis et al. [8] used finite element approach to
solve Burgers’ equation. Dogan [9] proposed a Galerkin finite element method to solve Burgers’
equation. A quadratic and cubic spline collocation method was developed in the paper [10–13].
Elgindy et al. [14] developed a higher-order numerical scheme by using Hopf-Cole barycentric
Gegenbauer integral pseudospectral method. Korkmaz et al. [15] and Jiwari et al. [16] established
polynomial based and weighted average based differential quadrature scheme, respectively to solve
Burgers’ equation. Verma et al. [17,18] developed Du Fort-Frankel and Douglas finite difference
scheme that are unconditionally stable to solve Burgers’ equation. Hassanien et al. [19] developed
a two-level three-point finite difference scheme of order 2 in time and order 4 in space to solve
Burgers’ equation. Wavelet-based numerical schemes have been developed in [20,21]. Chebyshev
collocation method was used in [22–24] in order to solve Burgers’ equation, Volterra–Fredholm integral
equation, and Riemann-Liouville and Riesz fractional advection-dispersion problems, respectively.
Gowrisankar et al. [25] studied singularly perturbed Burgers’ equation.

A well known scheme for diffusion equation is Crank–Nicolson (CN) [26–29]. CN is
a second-order scheme based on Trapezoidal formula which is A-stable but not L-stable. In the
presence of inconsistencies [30] or when time step taken is large [27], CN produces unwanted
oscillations. As an alternative to CN, Chawla et al. [31] proposed generalized Trapezoidal formula
(GTF(α)) with α > 0, which is L-stable and gives stable results. Chawla et al. [32] proposed a modified
Simpson’s 1/3 rule (ASIMP), which is A-stable, and used it to give fourth-order time integration
formula for diffusion equation, but it suffers from producing unwanted oscillations like CN as it
lacks L-stability. To remove these unwanted oscillations, Chawla et al. [33], Lajja et al. [34], and
Verma et al. [35] proposed and analyzed various types of L-stable methods, which provides accurate
and stable results.

The Burger’s Equation (1) subject to some BCs and IC has an exact solution in the form of Fourier
series, which does not converge for small values of viscosity. Hence, it always attracts researchers to
test newly developed numerical methods on this nonlinear parabolic PDE.

Here, we derive 7th order time integration formula that is weakly L-stable and generalize the
results presented in [33,35]. The issue of slow convergence of series solution for small νd forces
analytical solution of Equation (1) to diverge from the true solution and, hence, for small values of νd,
it is not easy to compute the solutions. The newly developed method computes the solution even for
small νd. Additionally, it provides satisfactory results in the case of inconsistencies.

We discuss truncation error, stability in detail, in order to show that the developed scheme
is convergent. We use software Mathematica 11.3 to compute the solution and Origin 8.5 for the
plotting purpose.

The remainder of this article is constructed, as follows. In Section 2, we give close form
solution, which we use to compute the exact solution. In Section 3, we derive a higher-order
time integration method for u′(t) = f (t, u). In Section 4, we derive a numerical scheme for the
Burgers’ equation. In Section 5, we illustrate the numerical results with tables and two-dimensional
(2D)–three-dimensional (3D) graphs.
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2. Preliminary

Hopf [36] and Cole [37] suggested that the Equation (1) can be transformed in the form given by

∂ψ

∂t
=

νd
2

∂2ψ

∂x2 , (5)

with the Neumann BCs
ψx(αi, t) = 0, αi = i, i = 0, 1, (6)

and the IC
ψ(x, 0) = g(x), (7)

by non-linear transformation (Equations (21) and (22), [37])

φ = −νd(logψ), φ = φ(x, t), (8)

and
ω = φx. (9)

Equation (5) can be analytically solved and the solution is given by

ψ(x, t) = β0 +
∞

∑
l=1

βl exp
(
−νdl2π2t

2

)
cos(lπx), (10)

where β0 and βl are the Fourier coefficients that are given by

β0 =
∫ 1

0
exp

(
− 1

νd

∫ x

0
ω0(ξ)dξ

)
dx,

βl = 2
∫ 1

0
exp

(
− 1

νd

∫ x

0
ω0(ξ)dξ

)
cos(lπx)dx,

where ω0(ξ) = ω(ξ, 0) and the analytical solution ω(x, t) of (1) is represented by (Equation (46), [37])

ω(x, t) = πνd
∑∞

l=1 βl exp(− νd l2π2t
2 )l sin(lπx)

β0 + ∑∞
l=1 βl exp(− νd l2π2t

2 ) cos(lπx)
. (11)

3. Illustration of the Proposed Method

We examine the following initial value problem

u′(t) = f (t, u), u(t0) = η0. (12)

The eighth order convergent Newton–Cotes time integration formula is given by

un+1 = un +
h

840

(
41 fn + 216 fn+1/6 + 27 fn+2/6 + 272 fn+3/6 + 27 fn+4/6 + 216 fn+5/6 + 41 fn+1

)
+O(h9). (13)

Now, we use the fifth order Hermite approximation for un+1/6, un+2/6, un+3/6, un+4/6, un+5/6,
which are given by
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un+1/6 =
1

15552

(
15000un + 552un+1 + 2250hu′n − 210hu′n+1 + 125h2u′′n + 25h2u′′n+1

)
+O(h6), (14)

un+2/6 =
1

243

(
192un + 51un+1 + 48hu′n − 18hu′n+1 + 4h2u′′n + 2h2u′′n+1

)
+O(h6), (15)

un+3/6 =
1
64

(
32un + 32un+1 + 10hu′n − 10hu′n+1 + h2u′′n + h2u′′n+1

)
+O(h6), (16)

un+4/6 =
1

243

(
51un + 192un+1 + 18hu′n − 48hu′n+1 + 2h2u′′n + 4h2u′′n+1

)
+O(h6), (17)

un+5/6 =
1

15552

(
552un + 15000un+1 + 210hu′n − 2250hu′n+1 + 25h2u′′n + 125h2u′′n+1

)
+O(h6),

and sixth order Taylor’s approximation

un = un+1 − hu′n+1 +
h2

2
u′′n+1 −

h3

6
u′′′n+1 +

h4

24
uiv

n+1 −
h5

120
uv

n+1 +O(h7), (18)

to get

un+1/6 =
1

46656

[
44875un + 1781un+1 + 6750hu′n + 375h2u′′n − 755hu′n+1 +

275
2

h2u′′n+1

+125(−h3

6
u′′′n+1 +

h4

24
uiv

n+1 −
h5

120
uv

n+1)
]
+O(h6), (19)

un+2/6 =
1

729

[
568un + 161un+1 + 144hu′n + 12h2u′′n − 62hu′n+1 + 10h2u′′n+1 +

8(−h3

6
u′′′n+1 +

h4

24
uiv

n+1 −
h5

120
uv

n+1)
]
+O(h6), (20)

un+3/6 =
1

64

[
31un + 33un+1 + 10hu′n + h2u′′n − 11hu′n+1 +

3
2

h2u′′n+1

+(−h3

6
u′′′n+1 +

h4

24
uiv

n+1 −
h5

120
uv

n+1)
]
+O(h6), (21)

un+4/6 =
1

729

[
145un + 584un+1 + 54hu′n + 6h2u′′n − 152hu′n+1 + 20h2u′′n+1 +

8(−h3

6
u′′′n+1 +

h4

24
uiv

n+1 −
h5

120
uv

n+1)
]
+O(h6), (22)

un+5/6 =
1

46656

[
1531un + 45125un+1 + 630hu′n + 75h2u′′n − 6875hu′n+1 +

875
2

h2u′′n+1

+125(−h3

6
u′′′n+1 +

h4

24
uiv

n+1 −
h5

120
uv

n+1)
]
+O(h6). (23)

Now, we define

fn+1/6 = f (xn+1/6, un+1/6), (24)

fn+2/6 = f (xn+2/6, un+2/6), (25)

fn+3/6 = f (xn+3/6, un+3/6), (26)

fn+4/6 = f (xn+4/6, un+4/6), (27)

fn+5/6 = f (xn+5/6, un+5/6). (28)

Hence, the time integral formula (13) for the interval [tn, tn+1] takes the following form

un+1 = un +
h

840

(
41 fn + 216 fn+1/6 + 27 fn+2/6 + 272 fn+3/6 + 27 fn+4/6 + 216 fn+5/6 + 41 fn+1

)
. (29)
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3.1. Local Trunction Error

By applying Taylor’s series expansion, we have

un+1/6 =
1

15552

[
15000un + 552un+1 + 2250hu′n − 210hu′n+1 + 125h2u′′n

+25h2u′′n+1

]
− 25h6

6718464
uvi

n −
475h7

282175488
uvii

n +O(h8), (30)

un+2/6 =
1

243

[
192un + 51un+1 + 48hu′n − 18hu′n+1 + 4h2u′′n + 2h2u′′n+1

]
− h6

65610
uvi

n −
h7

137781
uvii

n +O(h8), (31)

un+3/6 =
1

64

[
32un + 32un+1 + 10hu′n − 10hu′n+1 + h2u′′n + h2u′′n+1

]
− h6

46080
uvi

n −
h7

92160
uvii

n +O(h8), (32)

un+4/6 =
1

243

[
51un + 192yn+1 + 18hu′n − 48hu′n+1 + 2h2u′′n + 4h2u′′n+1)

]
− h6

65610
uvi

n −
11h7

1377810
uvii

n +O(h8), (33)

un+5/6 =
1

15552

[
552un + 15000un+1 + 210hu′n − 2250hu′n+1 + 25h2u′′n

+125h2u′′n+1

]
− 25h6

6718464
uvi

n −
575h7

282175488
uvii

n +O(h8), (34)

un = un+1 − hu′n+1 +
h2

2
u′′n+1 −

h3

6
u′′′n+1 +

h4

24
uiv

n+1 −
h5

120
uv

n+1 −
h6

720
uvi

n

− h7

840
uvii

n +O(h8), (35)

then it follows that

un+1/6 = un+1/6 +
425h7

282175488
uvii

n +O(h8), (36)

un+2/6 = un+2/6 +
4h7

688905
uvii

n +O(h8), (37)

un+3/6 = un+3/6 +
h7

129024
uvii

n +O(h8), (38)

un+4/6 = un+4/6 +
h7

196830
uvii

n + O(h8), (39)

un+5/6 = un+5/6 +
325h7

282175488
uvii

n +O(h8). (40)

Also, we have

un+1 = un +
h

840
[41 fn + 216 fn+1/6 + 27 fn+2/6 + 272 fn+3/6 + 27 fn+4/6

+ 216 fn+5/6 + 41 fn+1]−
h9u(9)

1567641600
. (41)

From all of the above, we deduce that

un+1 = un +
h

840
(41 fn + 216 fn+1/6 + 27 fn+2/6 + 272 fn+3/6 + 27 fn+4/6

+216 fn+5/6 + 41 fn+1) + tn(h), (42)
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where
tn(h) = O(h8).

Thus, the scheme (29) is seventh order convergent. Accordingly, the order of the proposed method
is reduced by one, but it is weakly stable, which is a great advantage.

3.2. Stability of the Proposed Formula

Consider the test problem
u′(t) = −λu(t), λ > 0, (43)

and assume s = hλ, then we have
un+1 = Ψ (s) un, (44)

where

Ψ (s) =
540

(
840− 414s + 84s2 − 7s3)

453600 + 230040s + 48600s2 + 5480s3 + 540s4 + 135s5 + 27s6 .

From Figure 1, it can be seen that Ψ(s) ≮ 1 and, hence, our scheme is not A-stable. Since Ψ(s)→ 0
as s→ ∞, the scheme is weakly L-stable (see [35]).

-10 -8 -6 -4 -2 2 4
hλ

5

10

15

20

25

30

Ψ

Figure 1. Root of characteristic equation.

3.3. Stability Region

To find the boundary of the stability region, we apply the boundary locus method (p. 64, Chapter 7,
Ref. [38]). It can be easily seen that, outside of the region (see Figure 2), it is unconditionally stable.
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-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 2. Region of Stability.

4. Application on the Burgers’ Equation

4.1. The Numerical Scheme

Here, we consider solution space with uniform nodes expressed as ΣTi,j = {(xi, tj) : i =

0(1)N, j = 0(1)M}. For that, we partition the interval [α0, α1] into N (a positive integer) equal
sub intervals with the spatial point xi = i∆x, i = 0(1)N, where ∆x is the spatial step.

Additionally, dividing the interval [0, T] into M equal subintervals with the temporal point
tj = jτ, j = 0(1)M, where τ = T/M and M is a positive integer.

Now, define ψi(t) = ψ(xi, t) and consider equation (5) and compute the solution ψ(xi, t) for a
given t and for xi on [α0, α1]. We use (8)–(9) to deduce the following formula for computing the ω(xi, tj)

ω(xi, t) =
(−νd

2∆x

)ψ(xi + ∆x, t)− ψ(xi − ∆x, t)
ψ(xi, t)

.

Now we approximate second order spatial derivative by fourth order central finite difference
formula which is given by

∂2ψ(x, t)
∂2x

≈ 16(ψ(x + ∆x, t) + ψ(x− ∆x, t))− 30ψ(x, t)− (ψ(x + 2∆x, t) + ψ(x− 2∆x, t))
12∆x2 ,

and convert the linearized Burgers’ equation into an initial value problem in vector form.
Now, we apply the above finite difference discretization on (5) with the Neumann boundary

conditions
ψx(αi, t) = 0, i = 0, 1,

we get the following equation
∂Ψ(t)

∂t
= − νd

24∆x2 DΨ(t), (45)
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where Ψ(t) = [ψ0(t), ψ1(t), ψ2(t), ..., ψN(t)]
T and D is the (N + 1)× (N + 1) pentadiagonal matrix

given by

D =



30 −32 2 0 0 · · · 0 0
−16 31 −16 1 0 · · · 0 0

1 −16 30 −16 1 0 · · · 0
...

...
. . . . . . . . . . . .

...
0 0 0 1 −16 30 −16 1
0 0 0 0 1 −16 31 −16
0 0 0 0 0 2 −32 30


(46)

and Ψ(0) = [g(x0), g(x1), g(x2), ..., g(xN)] .
Let ρ = νdτ/24∆x2, then applying the time integration formula on the initial value problem (45),

we obtain

Ψj+1 = Ψj −
ρ

840
D
(

41Ψj + 216Ψj+1/6 + 27Ψj+2/6 + 272Ψj+3/6

+ 27Ψj+4/6 + 216Ψj+5/6 + 41Ψj+1

)
, (47)

where

Ψj+1/6 =
1

46656

[ (
44875I − 6750ρD + 375ρ2D2

)
Ψj +

(
1781I + 755ρD

+
275

2
ρ2D2 + 125

(ρ3D3

6
+

ρ4D4

24
+

ρ5D5

120
))

Ψj+1

]
, (48)

Ψj+2/6 =
1

729

[ (
568I − 144ρD + 12ρ2D2

)
Ψj +

(
161I + 62ρD + 10ρ2D2

+8
(ρ3D3

6
+

ρ4D4

24
+

ρ5D5

120
))

Ψj+1

]
, (49)

Ψj+3/6 =
1

64

[ (
31I − 10ρD + ρ2D2

)
Ψj +

(
33I + 11ρD +

3
2

ρ2D2 +
(ρ3D3

6

+
ρ4D4

24
+

ρ5D5

120
))

Ψj+1

]
, (50)

Ψj+4/6 =
1

729

[ (
145I − 54ρD + 6ρ2D2

)
Ψj +

(
584I + 152ρD + 20ρ2D2

+8
(ρ3D3

6
+

ρ4D4

24
+

ρ5D5

120
))

Ψj+1

]
, (51)

Ψj+5/6 =
1

46656

[ (
1531I − 630ρD + 75ρ2D2

)
Ψj +

(
45125I + 6875ρD

+
875

2
ρ2D2 + 125

(ρ3D3

6
+

ρ4D4

24
+

ρ5D5

120
))

Ψj+1

]
. (52)

Now, we use the above defined Ψj+1/6, Ψj+2/6, Ψj+3/6, Ψj+4/6, Ψj+5/6 in Equation (47) and
deduce our final formula used to compute numerical solutions

(453600I + 2300ρD + 48600ρ2D2 + 5480ρ3D3 + 540ρ4D4 + 135ρ5D5 + 27ρ6D6) Ψj+1

= 540(840I − 414ρD + 84ρ2D2 − 7ρ3D3) Ψj. (53)

This method is of order O(∆x4) +O(τ7). By using (47), we can compute Ψj+1 and, hence, wij
is computed at different xi’s for a given time level tj. The physical properties of the solutions are
discussed later in the form of figures and tables.
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4.2. Stability Analysis

Equation (47) can be written as
Ψj+1 = PΨj,

where

P =
540(840I − 414ρD + 84ρ2D2 − 7ρ3D3)

(453600I + 230040ρD + 48600ρ2D2 + 5480ρ3D3 + 540ρ4D4 + 135ρ5D5 + 27ρ6D6)

= L−1
1 L2, (say), (54)

where

L1 = (453600I + 230040ρD + 48600ρ2D2 + 5480ρ3D3 + 540ρ4D4 + 135ρ5D5 + 27ρ6D6)

L2 = 540(840I − 414ρD + 84ρ2D2 − 7ρ3D3).

Lemma 1. The matrix P is similar to a symmetric matrix.

Proof. Let us introduce a diagonal matrix

Q =



√
2

1
. . .

1 √
2


such that

D̃ = Q−1DQ,

i.e., D is similar to a symmetric matrix D̃.
Now, we will show that P is similar to symmetric matrix. Let

P̃ = Q−1PQ = Q−1L−1
1 L2Q = [Q−1L−1

1 Q][Q−1L2Q]

= [Q−1L1Q]−1[Q−1L2Q] = L̃−1
1 L̃2.

L̃1 = (453600I + 230040ρD̃ + 48600ρ2D̃2 + 5480ρ3D̃3 + 540ρ4D̃4 + 135ρ5D̃5 + 27ρ6D̃6)

L̃2 = 540(840I − 414ρD̃ + 84ρ2D̃2 − 7ρ3D̃3)

but matrices L̃−1
1 and L̃2 are symmetric and commute and therefore P is similar to a symmetric matrix

P̃ and therefore all the eigenvalues of the matrix P are real.

Lemma 2. All of the eigenvalues of the matrix D are non-negative.

Proof. Let V = {v1, v2, v3, ..., vN+1} be the eigen vectors of the matrix D corresponding to the eigen
value λl . Subsequently, we have

(30− λl)v1 − 32v2 + 2v3 = 0, (55)

−16v1 + (31− λl)v2 − 16v3 + v4 = 0, (56)

vj−2 − 16vj−1 + (30− λl)vj − 16vj+1 + vj+2 = 0, j = 2, 3, 4, ..., N − 1, (57)

vN−2 − 16vN−1 + (31− λl)vN − 16vN+1 = 0, (58)

2vN−1 − 32vN + (30− λl)vN+1 = 0. (59)
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We set v1 = v−1, v0 = v2, vN = vN+2, vN−1 = vN+3 then we get fourth order difference equation

vj−2 − 16vj−1 + (30− λl)vj − 16vj+1 + vj+2 = 0, j = 1, 2, · · · , N + 1, (60)

with the BCs v1 = v−1, v0 = v2, vN = vN+2, vN−1 = vN+3. The characteristic equation of the
Equation (60) is m4 − 16m3 + (30− λl)m2 − 16m + 1 = 0. Assume m1, m2, m3, m4 are the characteristic
roots, then we have

m1 + m2 + m3 + m4 = 16,

m1m2 + m1m3 + m1m4 + m2m3 + m2m4 + m3m4 = (30− λl),

m1m2m3 + m1m3m4 + m2m3m4 + m1m2m4 = 16,

m1m2m3m4 = 1,

and the solution is given by vj = C1mj
1 + C2mj

2 + C3mj
3 + C4mj

4. Let m1 = reiθ then setting r = 1,
gives λl = 30 + 2 cos 2θ − 32 cos θ. Using Equations (55) and (59) we get θ = (2l + 1)(π/2N), l =
0, 1, 2, · · · , N. Since V is the non trivial vector satisfying DV = λlV, therefore the eigen values of D are
λl = 30 + cos((2l + 1)π/N)− 32 cos((2l + 1)π/2N), l = 0(1)N. Additionally, it can be shown that
λl ≥ 0, ∀ l.

Now, let the matrix P has the spectral radius $(P), then

$(P) = $(P̄),

and it is given by
$(P) ≤ maxl |µl |,

where µl (l = 0, 1, 2, · · · , N) are the eigenvalues of the matrix L−1
1 L2 and therefore

µl =
540(840I − 414ρλl + 84ρ2λ2

l − 7ρ3λ3
l )

(453600I + 230040ρλl + 48600ρ2λ2
l + 5480ρ3λ3

l + 540ρ4λ4
l + 135ρ5λ5

l + 27ρ6λ6
l )

,

l = 0, 1, 2, · · · , N.

It is clear that the eigen value µl ≤ 1 for all possible values of ρ > 0 and, hence, the method is
unconditionally stable. By applying Taylors series expansion, consistency can also be proved easily.

5. Numerical Experiment

To confirm the effectiveness of the proposed weakly L-stable scheme, we apply it to some examples
and compute the numerical solutions and depict them in tables and figures. To check the accuracy of
the proposed scheme, we also analyze the following type of errors

(i) Mean root square error norm (L2)

L2 error =

√√√√∆x
N

∑
j=0
| ωexact

j − (ωnum.)j |2, (61)

and

(ii) Maximum error norm (L∞)

L∞ error = ‖ωexact −ωnum.‖∞ = max
j
| ωexact

j − (ωnum.)j |, (62)
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where ωnum. is numerical solution by present method and ωexact is the exact solution and j indicates
solution at jth grid point.

5.1. Example 1

Consider the Equation (1) with Dirichlet BCs

ω(αi, t) = 0, αi = i, i = 0, 1 and t ∈ (0, T], (63)

and IC
ω(x, 0) = sin(πx), x ∈ (0, 1), (64)

where νd is the coefficient of viscosity. Using the transformation

ω(x, t) =
−νdψx

ψ
, (65)

Equation (1) is transformed into

ψt =
νd
2

ψxx, x ∈ (0, 1), t > 0, (66)

with IC and BCs

ψ(x, 0) = exp
( 1

πνd
(cos πx− 1)

)
, (67)

ψx(αi, t) = 0, αi = i, i = 0, 1 and t > 0. (68)

The solution of the above initial boundary value problem is defined by Equation (11), where

β0 =
∫ 1

0
exp

( 1
πνd

(cos πx− 1)
)

dx, (69)

βl = 2
∫ 1

0
exp

( 1
πνd

(cos πx− 1) cos lπx
)

dx. (70)

In this example, we depict several tables and figures and list numerical solutions and exact
solutions in order to exhibit the correctness of the scheme. Additionally, we have computed the L2

and L∞ error defined by Equations (61) and (62), respectively. In Table 1, we take νd = 2 and time step
τ = 0.0001 with ∆x = 0.0125. It can be noticed that computed solutions are very close to analytical
solutions. It can be seen that, at a specified location, the solution decreases when time passes out.
Additionally, it can be seen that, at a fixed moment, the numerical solution first increases and then
decreases with changing location from 0 to 1. Table 2 comprise the computed solutions and analytical
solutions for νd = 0.2, ∆x = 0.0125 and with the time step τ = 0.0001.

In Table 2, we can see that the results provided by the present scheme are better than the results
in [39]. Additionally, our results are actually better than those of [40]. Table 3 represents that the current
scheme gives satisfactory results for viscous coefficient νd = 0.01 with ∆x = 0.0125 and τ = 0.01 at
different times T.

Figure 3 illustrates the accuracy of the present scheme at different times for νd = 0.2 and we are
not able to distinguish between the analytical solutions and computed solutions. It is known that
the Fourier series solution fails to converge for νd < 0.01 due to the slow convergence rate of infinite
series (11). In Figure 4, the analytical solution shows high oscillation, while the computed solutions
follow physical behavior. Figure 5 represents the physical behavior of the computed solutions for the
different small values of νd. In Figure 6, we illustrate the physical behavior of the computed results for
a small value of νd in the three-dimensional mode.



Computation 2020, 8, 72 12 of 22

Table 1. Computed results and analytical results at different T with νd = 2,τ = 0.0001 and ∆x = 0.0125
for problem 5.1.

x T = 0.001 T = 0.01 T = 0.1

ωexact ωnum. ωexact ωnum. ωexact ωnum.

1/10 0.305088 0.304976 0.273239 0.273145 0.109538 0.109509
2/10 0.580565 0.580361 0.521564 0.521393 0.209792 0.209737
3/10 0.799621 0.799363 0.721852 0.721630 0.291896 0.291820
4/10 0.940817 0.940545 0.854590 0.854348 0.347924 0.347834
5/10 0.990174 0.989926 0.905713 0.905483 0.371577 0.371482
6/10 0.942609 0.942407 0.868334 0.868137 0.359046 0.358954
7/10 0.802522 0.802375 0.744098 0.743949 0.309905 0.309827
8/10 0.583466 0.583373 0.543821 0.543723 0.227817 0.227760
9/10 0.306881 0.306837 0.286999 0.286951 0.120687 0.120656

L∞ error 2.71275 × 10−4 2.413 × 10−4 9.54852 × 10−5

L2 error 6.41526 × 10−5 5.82562 × 10−5 2.27535 × 10−5

Table 2. Comparison with existing results by present results for ∆x = 0.0125, νd = 0.2, τ = 0.0001 at
different value of T for problem 5.1.

x T FEM [39] Asai [40] ωnum. ωexact

1/4 0.4 0.31215 0.30891 0.3087531 0.30889
0.6 0.24360 0.24076 0.2406489 0.24074
0.8 0.19815 0.19570 0.1956120 0.19568
1 0.16473 0.16259 0.1625168 0.16256
3 0.02771 0.02722 0.0271953 0.02720

2/4 0.4 0.57293 0.56970 0.5694998 0.56963
0.6 0.45088 0.44728 0.4470928 0.44721
0.8 0.36286 0.35932 0.3591441 0.35924
1 0.29532 0.29200 0.2918410 0.29192
3 0.04097 0.04023 0.0401946 0.04021

3/4 0.4 0.63038 0.62567 0.6254715 0.62544
0.6 0.49268 0.48747 0.4871652 0.48721
0.8 0.37912 0.37415 0.3738557 0.37392
1 0.29204 0.28766 0.2874128 0.28747
3 0.03038 0.02979 0.0297645 0.02977

Table 3. Analytical results and numerical results by present method with τ = 0.01, ∆x = 0.0125 and
νd = 0.01 for problem 5.1 at different value of T.

x T ωnum. ωexact

1/4 5 0.046922 0.046963
10 0.024202 0.024217
15 0.016300 0.016308
20 0.012236 0.012240

2/4 5 0.093998 0.093920
10 0.048414 0.048421
15 0.032431 0.032439
20 0.023883 0.023889

3/4 5 0.141354 0.140832
10 0.071175 0.071134
15 0.044135 0.044133
20 0.029155 0.029159
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Figure 3. Comparison of analytical and numerical results for problem 5.1 with νd = 0.2, ∆x = 0.0125
and τ = 0.001 and at different times T.
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Figure 4. Comparison of analytical and numerical results for problem 5.1 at time T = 10, νd =

0.001, τ = 0.001 and ∆x = 0.0125.
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Figure 5. Numerical results for different small values of νd with τ = 0.001 and ∆x = 0.0125 of
problem 5.1 at time T = 0.1.
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Figure 6. Numerical results with νd = 0.01, ∆x = 0.0125 and τ = 0.001 at different times T of
problem 5.1.

5.2. Example 2

Consider Equation (1) with Dirichlet BCs

ω(αi, t) = 0, αi = i, i = 0, 1 and t ∈ (0, T], (71)

and IC
ω(x, 0) = 4(1− x)x, x ∈ (0, 1), (72)

where νd is the viscous coefficient. Using the transformation

ω(x, t) =
−νdψx

ψ
, (73)

we see that the Equation (11) represents the analytical solution where

β0 =
∫ 1

0
exp

(
− 2x2

3νd
(3− 2x

)
dx,

βl = 2
∫ 1

0
exp

(
− 2x2

3νd
(3− 2x) cos lπx

)
dx.

In Table 4, we depict the numerical results and compare them with exact solutions for τ = 0.0001,
νd = 2 with ∆x = 0.0125. L∞ and L2-error indicate that the difference between the analytical solution
and numerical solution is very less. For the comparison purpose, in Table 5, we take νd = 0.2, τ =

0.0001 and ∆x = 0.0125 and notice that the results by the present method are slightly more close to the
exact solutions than that given in [39] and [40]. It can be seen that, at a specified location, the solution
decreases when time passes out. Additionally, it can be seen that, at a fixed moment, the numerical
solution first increases and then decreases with changing location from 0 to 1. In Table 6, we take
∆x = 0.0125, τ = 0.01, and νd = 0.01. It can be noticed that solutions that are produced by the present
method and analytical solutions are very close to each other.

In Figure 7, we can see that the exact solution starts oscillating between x = 0.8 to x = 1 for
a small value of νd = 0.001 due to slow rate of convergence of infinite series, but the results obtained
by this method follow the parabolic profile. Figure 8 demonstrates the accuracy of the method for
νd = 0.1 and it can be seen that the analytical solution and numerical solution are almost the same
at different times throughout the domain. Figure 9 shows that the results that are projected by the
present scheme follow the nature of the solutions for different small values of νd. Figure 10 illustrates
the physical nature of the solution in three dimensions.
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Table 4. Comparison of analytical and numerical results for ∆x = 0.0125, νd = 2, and τ = 0.0001 at
different value T of the problem 5.2.

x T = 0.001 T = 0.01 T = 0.1

ωexact ωnum. ωexact ωnum. ωexact ωnum.

1/10 0.350947 0.350703 0.294953 0.294822 0.112892 0.112863
2/10 0.630504 0.630240 0.553085 0.552873 0.216252 0.216195
3/10 0.830681 0.830425 0.749751 0.749515 0.300966 0.300887
4/10 0.951242 0.951009 0.873459 0.873232 0.358863 0.358770
5/10 0.991996 0.991794 0.919723 0.919518 0.383422 0.383324
6/10 0.952752 0.952578 0.886239 0.886057 0.370658 0.370563
7/10 0.833318 0.833164 0.771464 0.771302 0.320066 0.319985
8/10 0.633500 0.633351 0.576273 0.576138 0.235371 0.235312
9/10 0.353149 0.352988 0.310136 0.310053 0.124718 0.124687

L∞ error 2.64275 × 10−4 2.35909 × 10−4 9.85169 × 10−5

L2 error 6.55334 × 10−5 6.07706 × 10−5 2.46429 × 10−5

Table 5. Comparison of existing and present results for ∆x = 0.0125, νd = 0.2, τ = 0.0001 at different
value of T for problem 5.2.

x T FEM [39] Asai [40] ωnum. ωexact

1/4 0.4 0.32091 0.31754 0.317374 0.31752
0.6 0.24910 0.24616 0.246045 0.24614
0.8 0.20211 0.19958 0.199490 0.19956
1 0.16782 0.16562 0.165549 0.16560
3 0.02828 0.02777 0.027752 0.02776

2/4 0.4 0.58788 0.58460 0.584404 0.58458
0.6 0.46174 0.45805 0.457862 0.45798
0.8 0.37111 0.36748 0.367304 0.36740
1 0.30183 0.29843 0.298267 0.29834
3 0.04185 0.41090 0.041054 0.04107

3/4 0.4 0.65054 0.64586 0.645660 0.64562
0.6 0.50825 0.50294 0.502629 0.50268
0.8 0.39068 0.38557 0.385269 0.38534
1 0.30057 0.29605 0.295794 0.29586
3 0.03106 0.03046 0.030432 0.03044

Table 6. Exact and numerical results by present method having νd = 0.01, ∆x = 0.0125 and τ = 0.01 at
different times T for problem 5.2.

x T ωexact ωnum.

1/4 5 0.047415 0.047372
10 0.024336 0.024321
15 0.016362 0.016355
20 0.012272 0.012268

2/4 5 0.094814 0.094895
10 0.048660 0.048653
15 0.032550 0.032542
20 0.023957 0.023951

3/4 5 0.142154 0.142693
10 0.071517 0.071560
15 0.044328 0.044330
20 0.029275 0.029271
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Figure 7. Comparison of analytical and numerical results with νd = 0.001, ∆x = 0.0125 and τ = 0.001
at time T = 10 for problem 5.2.
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Figure 8. Comparison of analytical and numerical results for problem 5.2 at different times T , νd = 0.1,
∆x = 0.0125 and τ = 0.001.
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Figure 9. Numerical results with different νd and ∆x = 0.0125, τ = 0.001 at time T = 0.1 for
problem 5.2.
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Figure 10. Three-dimensional (3D) representation of numerical results for problem 5.2 for νd = 0.01,
τ = 0.001, ∆x = 0.0125 and at different times.

5.3. Example 3

Here, we take the exact solution (shock-like) [41] of Equation (1)

ω(x, t) =
x
t

1 +

√
t
t0

e
x2

2νdt

, x ∈ (0, 1.2), t ≥ 1, (74)

where t0 = e
1

4νd having BCs
ω(0, t) = 0 = ω(1.2, t), t > 1 (75)

and IC
ω(x, 1) =

x

1 + e
1

2νd
(x2− 1

4 )
, x ∈ (0, 1.2). (76)

In Table 7, for the comparison, we take time step τ = 0.01, spatial step ∆x = 0.0005 and small
value of viscous coefficient νd = 0.002. The numerical solutions at the different discrete points are
compared with the existing results presented in [41] and also with the exact solutions. It can be noticed
that the results by the present technique are slightly more close to exact solutions than that of given
in [41]. For this example, discrete L∞ and L2 -error norms are also given and compared with the error
that is given in [41]. It can be seen that the error produced by the method in [41] is very high when
compared to the error provided by the current scheme. Figure 11 shows the nature of the solutions by
present method for small value of νd = 0.001.

Table 7. Comparison of results by present method and existing method and its error for νd = 0.002, h =

0.0005 and τ = 0.01 at different T for problem 5.3.

x T = 1.7 T = 3.0 T = 3.5

ωexact ωnum. [41] ωexact ωnum. [41] ωexact ωnum. [41]

2/10 0.117647 0.117660 0.11745 0.066667 0.066669 0.06648 0.057143 0.057144 0.05697
4/10 0.235294 0.235420 0.23456 0.133333 0.133355 0.13295 0.114286 0.114299 0.11394
6/10 0.352909 0.353346 0.34936 0.200000 0.200079 0.19922 0.171429 0.171478 0.17082
8/10 0.000000 0.000000 0.00000 0.266618 0.266808 0.26478 0.228571 0.228690 0.22737

103 × L∞error 0.50201 29.70447 0.21289 19.00976 0.16870 16.78871
103 × L2error 0.16675 3.59366 0.08135 2.63510 0.06695 2.41729
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Figure 11. Numerical results by present method with ∆x = 0.001, νd = 0.001 and τ = 0.01 at different
times T for problem 5.3.

5.4. Example 4

We consider the exact solution presented in [42]

ω(x, t) = πνd
sin(πx)exp(−π2ν2

d t/4) + 4 sin(2πx)exp(−π2ν2
d t)

4 + cos(πx)exp(−π2ν2
d t/4) + 2 cos(2πx)exp(−π2ν2

d t)
, (77)

where initial condition is obtained by putting t = 0 in (77) and BCs are ω(0, t) = 0 = ω(2, t).
The physical behavior of the obtained results by current scheme for νd = 0.001, τ = 0.01 and ∆x =

0.025 is exhibited in the Figure 12 left. The absolute errors are presented in Figure 12 right and it is clear
that the absolute errors are ≤10−3 for different times. Hence, the numerical results that are obtained
by the present method are acceptable.
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Figure 12. Numerical approximation (left) and absolute errors (right) of problem 5.4 for ∆x =

0.025, νd = 0.001, τ = 0.01 at different times T.

5.5. Example 5

Here, the BCs are same as (2) and IC as

ω(x, 0) = sin
π

2
x, x ∈ (0, 1). (78)
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Equation (11) represents the analytical solution of the above problem, where

β0 =
∫ 1

0
exp

( 2
πνd

(cos
π

2
x− 1)

)
dx, (79)

βl = 2
∫ 1

0
exp

( 2
πνd

(cos
π

2
x− 1) cos lπx

)
dx. (80)

This example shows inconsistent IC and BCs at the boundary point x = 1. Figure 13 shows high
oscillation near the boundary point x = 1 by the CN method, while the present method gives accurate
and stable numerical solutions throughout the domain.
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Figure 13. Comparison of analytical solutions and numerical solutions by our method and
Crank–Nicolson (CN) method for the problem 5.5 at T = 0.1 for ∆x = 0.0125, νd = 2, and τ = 0.01.

5.6. Example 6

Here, we take the BCs same as (2) and IC as

ω(x, 0) = cos
π

4
x, x ∈ (0, 1). (81)

Equation (11) represents the analytical solution of the above problem, where

β0 =
∫ 1

0
exp

(
− 4

πνd
sin

π

4
x
)

dx, (82)

βl = 2
∫ 1

0
exp

(
− 4

πνd

(
sin

π

4
x
)

cos lπx
)

dx. (83)

This example shows inconsistent IC and BCs at both the boundary points x = 0 and x = 1.
From Figure 14, it is clear that the CN method produces high oscillation near both boundary points,
while the present method gives accurate and stable numerical solutions throughout the domain.
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Figure 14. Comparison of analytical solutions and numerical solutions by our method and CN method
for the problem 5.6 at T = 0.1 for ∆x = 0.0125, νd = 2, and τ = 0.01.

6. Conclusions

In the present paper, we have used explicit backward Taylor’s series approximation formula of
order six and Hermite interpolation polynomial of order five to derive 7th order time integration
formula, which is weakly L-stable. The present method is tested over some problems and observed
that the approximated results are quite satisfactory and also provides good results when compared
to the existing results. It is also observed that the analytical and computed results are very close to
each other for small values of viscosity. The strength of this method is that it is easy to apply and takes
very little time for computation. It will be interesting to see whether we can give general n− 1th order
convergent weakly L-stable Newton–Cotes formulae by using nth order convergent Newton-Cotes
formula. Though the order of the weakly L-stable method is reduced by 1, it is very fruitful for a
certain class of nonlinear initial boundary value problems.
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8. Öziş, T.; Aksan, E.N.; Özdeş, A. A finite element approach for solution of Burgers’ equation. Appl. Math.
Comput. 2003, 139, 417–428. [CrossRef]

9. Dogan, A. A Galerkin finite element approach to Burgers’ equation. Appl. Math. Comput. 2004, 157, 331–346.
[CrossRef]

10. Aksan, E.N. Quadratic B-spline finite element method for numerical solution of the Burgers’ equation. Appl.
Math. Comput. 2006, 174, 884–896. [CrossRef]
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