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Abstract

:

We introduce a very general class of generalized non-expansive maps. This new class of maps properly includes the class of Suzuki non-expansive maps, Reich–Suzuki type non-expansive maps, and generalized  α -non-expansive maps. We establish some basic properties and demiclosed principle for this class of maps. After this, we establish existence and convergence results for this class of maps in the context of uniformly convex Banach spaces and compare several well known iterative algorithms.
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1. Introduction


Let X be a Banach space, E be a nonempty subset of X and   P : E → E   be a selfmap. An element   z ∈ E   is called a fixed point of P if   z = P ( z )  . From now on, we will denote the set of all fixed points of P by the notation   F ( P )  . The map P is called non-expansive if   | | P ( a ) − P ( b ) | | ≤ | | a − b | |   for all   a , b ∈ E   and it is called quasi-non-expansive if   | | P ( z ) − P ( a ) | | ≤ | | z − a | |   for all   a ∈ E   and   z ∈ F ( P )  . In 1965, Kirk [1], Browder [2], and Gohde [3] independently proved that every non-expansive map has a fixed point if E is closed bounded convex and X is uniformly convex. Fixed point theory of non-expansive and generalized non-expansive maps in an appropriate domain is an important research area on its own and has applications in image recovery and signal processing (see, e.g., [4,5,6,7,8] and references cited therein).



In 2008, Suzuki [9] suggested a weaker notion of non-expansive maps as follows:



Definition 1.

[9] A selfmap P on a subset E of a Banach space is said to satisfy condition   ( C )   (or said to be Suzuki non-expansive) if for each two elements   a , b ∈ E  ,


    1 2   | | a  −  P  ( a )  | |  ≤  | | a  −  b | |  ⇒   | | P  ( a )   −  P  ( b )  | |  ≤  | | a  −  b | | .    













Remark 1.

It is clear that every non-expansive map is Suzuki non-expansive. However, an example in [9] shows that there exists maps which are Suzuki non-expansive but not non-expansive.





In 2011, Aoyama and Kohsaka [10] proposed the class of  α -non-expansive maps as follows:

Definition 2.

[10] A selfmap P on a subset E of a Banach space is said to be α-non-expansive if one can find a real number   α ∈ [ 0 , 1 )   such that for each two elements   a , b ∈ E  ,


   | | P  ( a )   −   P  ( b )  | |  2  ≤  α | | a  −   P  ( b )  | |  2  +  α | | b  −   P  ( a )  | |  2  +   ( 1 − 2 α )  | | a  −   b | |  2  .  















In 2017, Pant and Shukla [11] proposed the class of generalized  α -non-expansive maps as follows:

Definition 3.

[11] A selfmap P on a subset E of a Banach space is said to be generalized α-non-expansive if one can find a real number   α ∈ [ 0 , 1 )   such that for each two elements   a , b ∈ E  ,


   1 2   | | a  −  P  ( a )  | |  ≤  | | a  −  b | |  ⇒  










  | | P ( a ) − P ( b ) | | ≤ α | | b − P ( a ) | | + α | | a − P ( b ) | | + ( 1 − 2 α ) | | a − b | | .  















Remark 2.

It is clear that every Suzuki non-expansive map is generalized 0-non-expansive. However, an example in [11] shows that there exist maps which are generalized α-non-expansive but not Suzuki non-expansive.





In 2019, Pant and Pandey [12] proposed the class of Reich–Suzuki type non-expansive maps as follows:

Definition 4.

[12] A selfmap P on a subset E of a Banach space is said to be β-Reich–Suzuki type non-expansive if one can find a real number   β ∈ [ 0 , 1 )   such that for each two elements   a , b ∈ E  ,


   1 2   | | a  −  P  ( a )  | |  ≤  | | a  −  b | |  ⇒  










  | | P ( a ) − P ( b ) | | ≤ β | | a − P ( a ) | | + β | | b − P ( b ) | | + ( 1 − 2 β ) | | a − b | | .  















Remark 3.

It is clear that every Suzuki non-expansive map is 0-Reich–Suzuki type non-expansive. However an example in [12] shows that there exists maps which are β-Reich–Suzuki type non-expansive but not Suzuki non-expansive.





Motivated by the above definitions, in this paper, we introduce a new class of generalized non-expansive maps which is properly larger than the the class of Suzuki non-expansive maps, generalized  α -non-expansive maps and Reich–Suzuki type non-expansive maps. We also establish some basic results for this class. In this way, we improve and extend many well known corresponding results of the metric fixed point theory.




2. Preliminaries


A Banach space X is called uniformly convex [13] if, for any real number   ε ∈ [ 0 , 1 )  , one can find a real number   δ ∈ ( 0 , ∞ )   such that,     | | a + b | |  2  ≤  ( 1 − δ )  ,   whenever   | | a | | ≤ 1  ,   | | b | | ≤ 1   and   | | a − b | | ≥ ε   for each   a , b ∈ E  . X is called strict convex if, for any   a , b ∈ X   satisfying   | | a | | = | | b | | = 1   and   a ≠ b  , it follows that   | | a + b | | < 2  .



A Banach space X is said to satisfy Opial condition [14], if, for every weakly convergent sequence   {  a n  } ⊆ X   with weak limit say   w ∈ X  , it follows that


   lim inf  m → ∞    | |   a m  −  w | | <   lim inf  m → ∞    | |   a m  −  w ′   | |   for  all   w ′  ∈ X −  { w }  .  











Let E be a nonempty subset of a Banach space X and   {  a m  }   a bounded sequence in X. For each   a ∈ E  , define:




	
asymptotic radius of   {  a m  }   at a by    A r   ( a ,  {  a m  }  )  : =  lim sup  m → ∞    | | a  −  a m   | |   ;



	
asymptotic radius of   {  a m  }   relative to E by    A r   ( E ,  {  a m  }  )  = inf  {  A r   ( a ,  {  a m  }  )  : a ∈ E }   ;



	
asymptotic center of   {  a m  }   relative to E by    A c   ( E ,  {  a m  }  )  =  { a ∈ E :  A r   ( a ,  {  a m  }  )  =  A r   ( E ,  {  a m  }  )  }   .








When the space X is uniformly convex [13], then the set    A c   ( E ,  {  a m  }  )    is always singleton. Notice also that the set    A c   ( E ,  {  a m  }  )    is convex as well as nonempty provided that E is weakly compact convex (see, e.g., [15,16]).



The following result is a characterization of uniform convexity, which can be found in [17].



Lemma 1.

Let X be a uniformly convex Banach space and   0 < s ≤  k m  ≤ t < 1   for every   m ≥ 1  . If   {  y m  }   and   {  z m  }   are two sequences in X such that    lim sup  m → ∞    | |   y m   | |  ≤ γ  ,    lim sup  m → ∞    | |   z m   | |  ≤ γ   and    lim  m → ∞    | |   k m   y m  +  ( 1 −  k m  )   z m   | |  = γ   for some   γ ≥ 0  , then    lim  m → ∞    | |   y m  −  z m   | |  = 0  .






3. Generalized   ( α , β )  -Non-Expansive Mappings


Inspired by above and [18], we suggest a two parametric class of nonlinear maps.



Definition 5.

A selfmap P on a subset E of a Banach space is said to be generalized   ( α , β )  -non-expansive if there exists real numbers   α , β ∈  R +    satisfying   α + β < 1   such that, for all   a , b ∈ E  ,


    1 2   | | a  −  P  ( a )  | |  ≤  | | a  −  b | |  ⇒  | | P  ( a )   −  P  ( b )  | |  ≤  α | | a  −  P  ( b )  | |  +  α | | b  −  P  ( a )  | |  +  β | | a  −  P  ( a )  | |    










   + β | | b − P ( b ) | | + ( 1 − 2 α − 2 β ) | | a − b | | .   













The following proposition gives many examples of generalized   ( α , β )  -non-expansive maps.



Proposition 1.

Let P be a selfmap on a subset E of a Banach space. Then, the following hold:




	(i) 

	
If P is Suzuki non-expansive, then P is generalized   ( 0 , 0 )  -non-expansive.




	(ii) 

	
If P is generalized α-non-expansive, then P is generalized   ( α , 0 )  -non-expansive.




	(iii) 

	
If P is β-Reich–Suzuki type non-expansive, then P is generalized   ( 0 , β )  -non-expansive.











We prove a key lemma.



Lemma 2.

Let P be a selfmap on a subset E of a Banach space. If P is generalized   ( α , β )  -non-expansive with a fixed point z, then P is quasi-non-expansive.





Proof. 

Let   z ∈ F ( P )  . Since    1 2   | | z  −  P  ( z )  | |  = 0 ≤  | | a  −  z | |   , we have


     | | z − P ( a ) | |    =  | | P ( z ) − P ( a ) | |       ≤  α | | a − P ( z ) | | + α | | z − P ( a ) | | + β | | z − P ( z ) | | + β | | a − P ( a ) | | + ( 1 − 2 α − 2 β ) | | a − z | |       =  α | | a − z | | + α | | z − P ( a ) | | + β | | a − P ( a ) | | + ( 1 − 2 α − 2 β ) | | a − z | |       ≤  α | | a − z | | + α | | z − P ( a ) | | + β ( | | a − z | | + | | z − P ( a ) | | ) + ( 1 − 2 α − 2 β ) | | a − z | |       =  α | | z − P ( a ) | | + β | | z − P ( a ) | | + ( 1 − α − β ) | | a − z | | .     








It follows that


  ( 1 − α − β ) | | z − P ( a ) | | ≤ ( 1 − α − β ) | | z − a | | .  








Since   ( 1 − α − β ) > 0  , we obtain our desired result. □





From Lemma 2, we obtain the following.



Lemma 3.

Let P be a selmap on a subset E of a Banach space X. If P is generalized   ( α , β )  -non-expansive, then the set   F ( P )   is closed. Moreover,   F ( P )   is convex provided that E is convex and X is strictly convex.





We now prove the following facts.



Lemma 4.

Let P be a selfmap on a subset E of a Banach space. If P is generalized   ( α , β )  -non-expansive, then for each   a , b ∈ E  :




	(i) 

	
    | | P  ( a )   −  P 2    ( a )  | |  ≤  | | a  −  P  ( a )  | |    .




	(ii) 

	
Either    1 2   | | a  −  P  ( a )  | |  ≤  | | a  −  b | |    or    1 2   | | P  ( a )   −  P 2    ( a )  | |  ≤  | | P  ( a )   −  b | |    .




	(iii) 

	
Either   | | P ( a ) − P ( b ) | | ≤ α | | a − P ( b ) | | + α | | b − P ( a ) | | + β | | a − P ( a ) | | + β | | b − P ( b ) | | + ( 1 − 2 α − 2 β ) | | a − b | |   or    | |   P 2   ( a )  −  P  ( b )  | |  ≤  α | | P  ( a )   −  P  ( b )  | |  +  α | | b  −  P 2    ( a )  | |  +  β | | P  ( a )   −  P 2    ( a )  | |  +  β | | b  −  P  ( b )  | |  +   ( 1 − 2 α − 2 β )  | | P  ( a )   −  b | |    .











Proof. 

Since    1 2   | | a  −  P  ( a )  | |  ≤  | | a  −  P  ( a )  | |   , we have


      | | P  ( a )   −  P 2   ( a )   | |     ≤   α | | a  −  P 2    ( a )  | |  +  α | | P  ( a )   −  P  ( a )  | |  +  β | | a  −  P  ( a )  | |  +  β | | P  ( a )   −  P 2    ( a )  | | + ( 1 −              2 α − 2 β ) | | a − P ( a ) | |       =   α | | a  −  P 2    ( a )  | |  +  β | | a  −  P  ( a )  | |  +  β | | P  ( a )   −  P 2    ( a )  | |  +   ( 1 − 2 α − 2 β )  | | a  −  P  ( a )  | |        ≤   α ( | | a  −  P  ( a )  | |  +  | | P  ( a )   −  P 2    ( a )  | | )  +  β | | a  −  P  ( a )  | |  +  β | | P  ( a )   −  P 2    ( a )  | | + ( 1 − 2 α             − 2 β ) | | a − P ( a ) | | .     








It follows that


    ( 1 − α − β )  | | P  ( a )   −  P 2    ( a )  | |  ≤   ( 1 − α − β )  | | a  −  P  ( a )  | | .   








Since   ( 1 − α − β ) > 0  , we obtain our desired result.



Now, to establish (ii), we assume the contrary, that is,


   1 2   | | a  −  P  ( a )  | | > | | a  −  b | |  and    1 2   | | P  ( a )   −  P 2    ( a )  | | > | | P  ( a )   −  b | | .   








Using (i),


     | | a − P ( a ) | |    ≤  | | a − b | | + | | b − P ( a ) | |       <   1 2   | | a  −  P  ( a )  | |  +  1 2   | | P  ( a )   −  P 2   ( a )   | |        =  | | a − P ( a ) | | ,     








this contradiction proves (ii). The condition (iii) directly follows from (ii). □





Lemma 5.

Let P be a selfmap on a subset E of a Banach space. If P is generalized   ( α , β )  -non-expansive, then for all   a , b ∈ E  , we have    | | a  −  P  ( b )  | |  ≤    3 + α + β   1 − α − β     | | a  −  P  ( a )  | |  +  | | a  −  b | | .   





Proof. 

By Lemma 4(iii), for all   a , b ∈ E  , either


     | | P ( a ) − P ( b ) | |    ≤  α | | ( a ) − P ( b ) | | + α | | b − P ( a ) | | + β | | a − P ( a ) | | + β | | b − P ( b ) | |            + ( 1 − 2 α − 2 β ) | | a − b | | ,     








or


      | |   P 2   ( a )  − P  ( b )   | |     ≤   α | | P  ( a )   −  P  ( b )  | |  +  α | | b  −  P 2    ( a )  | |  +  β | | P  ( a )   −  P 2    ( a )  | |  +  β | | b             − P ( a ) | | + ( 1 − 2 α − 2 β ) | | P ( a ) − b | |     








holds. In the first case, we have


     | | a − P ( b ) | |    ≤  | | a − P ( a ) | | + | | P ( a ) − P ( b ) | |       ≤  | | a − P ( a ) | | + α | | a − P ( b ) | | + α | | b − P ( a ) | | + β | | a − P ( a ) | | + β | | b            − P ( b ) | | + ( 1 − 2 α − 2 β ) | | a − b | |       ≤  | | a − P ( a ) | | + α | | a − P ( b ) | | + α ( | | b − a | | + | | a − P ( a ) | | ) + β | | a −            P ( a ) | | + β ( | | b − a | | + | | a − P ( b ) | | ) + ( 1 − 2 α − 2 β ) | | a − b | | .     








It follows that


   | | a  −  P  ( b )  | |  ≤    1 + α + β   1 − α − β     | | a  −  P  ( a )  | |  +  | | a  −  b | | .   








In the second case (also using (i)),


     | | a − P ( b ) | |    ≤   | | a  −  P  ( a )  | |  +  | | P  ( a )   −  P 2    ( a )  | |  +  | |   P 2   ( a )  − P  ( b )   | |        ≤   2 | | a  −  P  ( a )  | |  +  | |   P 2   ( a )  − P  ( b )   | |        ≤   2 | | a  −  P  ( a )  | |  +  α | | P  ( a )   −  P  ( b )  | |  +  α | | b  −  P 2    ( a )  | |  +  β | | P  ( a )   −             P 2    ( a )  | |  +  β | | b  −  P  ( b )  | |  +   ( 1 − 2 α − 2 β )  | | P  ( a )   −  b | |        ≤  2 | | a − P ( a ) | | + α ( | | P ( a ) − a | | + | | a − P ( b ) | | ) + α ( | | b − P ( a ) | |            +  | | P  ( a )   −  P 2    ( a )  | | )  +  β | | P  ( a )   −  P 2    ( a )  | |  +  β ( | | b  −  P  ( a )  | |  +  | | P  ( a )              − a | | + | | a − P ( b ) | | ) + ( 1 − 2 α − 2 β ) ( | | P ( a ) − b | | )       ≤  2 | | a − P ( a ) | | + α ( | | P ( a ) − a | | + | | a − P ( b ) | | ) + α ( | | b − P ( a ) | | +            | | a − P ( a ) | | ) + β | | a − P ( a ) | | + β ( | | b − P ( a ) | | + | | P ( b ) − a | | + | |            a − P ( b ) | | ) + ( 1 − 2 α − 2 β ) ( | | P ( a ) − b | | ) .     








Thus,


     ( 1 − α − β ) | | a − P ( b ) | |    ≤  ( 2 + α + β ) | | a − P ( a ) | | + α ( | | b − P ( a ) | | + | | a − P ( a             ) | | ) + β ( | | b − P ( a ) | | + | | P ( a ) − a | | ) + ( 1 − 2 α − 2 β )             ( | | P ( a ) − b | | )       =  ( 2 + α + β ) | | a − P ( a ) | | + α | | a − P ( a ) | | + β | | P ( a ) −             a | | + ( 1 − α − β ) ( | | P ( a ) − b | | )       ≤  ( 2 + α + β ) | | a − P ( a ) | | + α | | a − P ( a ) | | + β | | P ( a ) −             a | | + ( 1 − α − β ) ( | | P ( a ) − a | | + | | a − b | | ) .     








It follows that


     ( 1 − α − β ) | | a − P ( b ) | | ≤ ( 3 + α + β ) | | a − P ( a ) | | + ( 1 − α − β ) ( | | a − b | | ) .     








Since   ( 1 − α − β ) > 0  , we have


   | | a  −  P  ( b )  | |  ≤    3 + α + β   1 − α − β     | | a  −  P  ( a )  | |  +  | | a  −  b | | .   








Hence, we have obtained the required result in both the cases. □





We finish this section by proving the demiclosed principle.



Lemma 6.

Let P be a selfmap on a subset E of a Banach space having Opial’s property. If P is generalized   ( α , β )  -non-expansive, then the following holds:


    {  a m  }  ⊆ E ,   a m  ⇀  w ,  | |   a m  − P  (  a m  )   | |  → 0 ⟹ P  ( w )  = w .   













Proof. 

From Lemma 5, we have


   | |   a m  −  P  ( w )  | |  ≤    3 + α + β   1 − α − β     | |   a m  − P  (  a m  )   | |  +  | |   a m  − w  | |  .  








It follows that


   lim inf  m → ∞    | |   a m  −  P  ( w )  | |  ≤  lim inf  m → ∞    | |   a m  − w  | |  .  








By Opial’s property, we must have   P ( w ) = w  . Hence, the conclusions can be reached. □






4. Convergence Theorems in Uniformly Convex Banach Spaces


In this section, we prove some weak and strong convergence results for the newly introduced class of maps in the context of uniformly convex Banach spaces. From now on, the letter X will stand for the uniformly convex Banach space. Now, it is our purpose to prove some weak and strong convergence for the newly introduced class of maps through a faster iterative algorithm. Let P be a selfmap on a closed convex subset E of X and    μ m  ,  ξ m  ,  ϱ m  ∈  ( 0 , 1 )    for all   m ≥ 1  . The well known Mann [19], Ishikawa [20], S [21], Noor [22], Abbas [8], Thakur [23], and K [24] iterative algorithms read as follows:


       a 1  = a ∈ E ,        a  m + 1   =  ( 1 −  μ m  )   a m  +  μ m  P  (  a m  )  ,      



(1)






       a 1  = a ∈ E ,        b m  =  ( 1 −  ξ m  )   a m  +  ξ m  P  (  a m  )  ,        a  m + 1   =  ( 1 −  μ m  )   a m  +  μ m  P  (  b m  )  ,      



(2)






       a 1  = a ∈ E ,        c m  =  ( 1 −  ϱ m  )   a m  +  ϱ m  P  (  a m  )  ,        b m  =  ( 1 −  ξ m  )   a m  +  ξ m  P  (  c m  )  ,        a  m + 1   =  ( 1 −  μ m  )   a m  +  μ m  P  (  b m  )  ,      



(3)






       a 1  = a ∈ E ,        b m  =  ( 1 −  ξ m  )   a m  +  ξ m  P  (  a m  )  ,        a  m + 1   =  ( 1 −  μ m  )  P  (  a m  )  +  μ m  P  (  b m  )  ,      



(4)






       a 1  = a ∈ E ,        c m  =  ( 1 −  ϱ m  )   a m  +  ϱ m  P  (  a m  )  ,        b m  =  ( 1 −  ξ m  )  P  (  a m  )  +  ξ m  P  (  b m  )  ,        a  m + 1   =  ( 1 −  μ m  )  P  (  b m  )  +  μ m  P  (  c m  )  ,      



(5)






       a 1  = a ∈ E ,        c m  =  ( 1 −  ξ m  )   a m  +  ξ m  P  (  a m  )  ,        b m  = P   ( 1 −  μ m  )   a m  +  μ m   c m   ,        a  m + 1   = P  (  b m  )  ,      



(6)




and


       a 1  = a ∈ E ,        c m  =  ( 1 −  ξ n  )   a m  +  ξ m  P  (  a m  )  ,        b m  = P  (  ( 1 −  μ m  )  P  (  a m  )  +  μ m  P  (  c m  )  )  ,        a  m + 1   = P  (  b m  )  .      



(7)




In [21], Agarwal et al. proved that the iterative algorithm (4) is better than the Mann iterative algorithm (1) for contraction maps. In addition, in [8], Abbas and Nazir proved that the iterative algorihm (5) is better than the iterative algorihms (1)–(4) for non-expansive maps. Moreover, in [23], Thakur et al. proved that the iterative algorithm (6) is better than the iterative algorithms (1)–(5) for Suzuki maps. Very recently, in [24], Hussian et al. proved that the iterative algorithm (7) is better than all of the iterative algorithms (1)–(6) for Suzuki maps.



In this article, we present some weak and strong convergence results using K iterative algorithm for the class of genralized   ( α , β )  -non-expansive maps. Similar results for the algorithms (1)–(6) can be proved on the same line of proofs.



Lemma 7.

Let P be selfmap on a closed convex subset E of X. If P is a generalized   ( α , β )  -non-expansive with   F ( P ) ≠ ∅   and   {  a m  }   is a sequence generated by the algorithm (7), then    lim  m → ∞    | |   a m  − z  | |    exists for each   z ∈ F ( P )  .





Proof. 

Let   z ∈ F ( P )  . By Lemma 2, we have


      | |   c m  − z  | |     =   | |   ( 1 −  ξ m  )   a m  +  ξ m  P  (  a m  )  − z  | |        ≤   ( 1 −  ξ m  )   | |   a m  −  z | |  +  ξ m   | | P   (  a m  )  − z  | |        ≤   ( 1 −  ξ m  )   | |   a m  −  z | |  +  ξ m   | |   a m  − z  | |        =   | |   a m  − z  | |  ,     








which implies that


      | |   a  m + 1   − z  | |     =   | | P   (  b m  )  −  z | |  ≤  | |   b m  − z  | |        =  | | P (  ( 1 −  μ m  )  P  (  a m  )  +  μ m  P  (  c m  )  ) − z | |       ≤   | |   ( 1 −  μ m  )  P  (  a m  )  +  μ m  P  (  c m  )  − z  | |        ≤   ( 1 −  μ m  )   | | P   (  a m  )  −  z | |  +  μ m   | | P   (  c m  )  − z  | |        ≤   ( 1 −  μ m  )   | |   a m  −  z | |  +  μ m   | |   c m  − z  | |        ≤   ( 1 −  μ m  )   | |   a m  −  z | |  +  μ m   | |   a m  − z  | |        =   | |   a m  − z  | |  .     








Thus,   { | |  a m  − z | | }   is bounded below and nonincreasing, which implies that    lim  m → ∞    | |   a m  − z  | |    exists for each   z ∈ F ( P )  . □





Now, we give the necessary and sufficient condition for the existence of a fixed point of self generalized   ( α , β )  -non-expansive map on a closed convex subset E of X.



Theorem 1.

Let P be a selfmap on a closed convex subset E of X. If P is a generalized   ( α , β )  -non-expansive and   {  a m  }   is a sequence generated by the algorithm (7), then   F ( P ) ≠ ∅   if and only if   {  a m  }   is bounded and    lim  m → ∞    | | P   (  a m  )  −  a m   | |  = 0  .





Proof. 

Suppose that   F ( P ) ≠ ∅   and   z ∈ F ( P )  . Then, by Lemma 7,    lim  m → ∞    | |   a m  − z  | |    exists and   {  a m  }   is bounded. Put


   lim  m → ∞    | |   a m  − z  | |  = γ .  



(8)




By the proof of Lemma 7 together with (8), we have


   lim sup  m → ∞    | |   c m  −  z | |  ≤  lim sup  m → ∞    | |   a m  − z  | |  = γ .  



(9)




By Lemma 2, we have


   lim sup  m → ∞    | | P   (  a m  )  −  z | |  ≤  lim sup  m → ∞    | |   a m  − z  | |  = γ .  



(10)




Again, by the proof of Lemma 7, we have


   | |   a  m + 1   −  z | |  ≤  ( 1 −  μ m  )   | |   a m  −  z | |  +  μ m   | |   c m  − z  | |  .  








It follows that


   | |   a  m + 1   −  z | |  −  | |   a m  −  z | |  ≤    | |   a  m + 1   −  z | |  −  | |   a m  − z  | |    μ m   ≤  | |   c m  −  z | |  −  | |   a m  − z  | |  .  








Thus, we can get    | |   a  m + 1   −  z | |  ≤  | |   c m  − z  | |   . Therefore,


  γ ≤  lim inf  m → ∞    | |   c m  − z  | |  .  



(11)




From (9) and (11), we have


  γ =  lim  m → ∞    | |   c m  − z  | |  .  



(12)




From (12), we have


     γ =   lim  m → ∞     | |   c m  −  z | |  =   lim  m → ∞     | |   ( 1 −  ξ m  )   (  a m  − z )  +  ξ m   ( P  (  a m  )  − z )   | |  .     








Since   0 <  ξ m  < 1   for all   m ≥ 1  , by Lemma 1, we have


   lim  m → ∞    | | P   (  a m  )  −  a m   | |  = 0 .  








Conversely, we assume that   {  a m  }   is bounded and    lim  m → ∞    | | P   (  a m  )  −  a m   | |  = 0  . Let   z ∈  A c   ( E ,  {  a m  }  )   . By Lemma 5, we have


      A r   ( P  ( z )  ,  {  a m  }  )     =    lim sup  m → ∞     | |   a m  − P  ( z )   | |        ≤     3 + α + β   1 − α − β      lim sup  m → ∞     | | P   (  a m  )  −  a m   | |  +   lim sup  m → ∞     | |   a m  − z  | |        =    lim sup  m → ∞     | |   a m  − z  | |        =   A r   ( z ,  {  a m  }  )  .     








It follows that   P  ( z )  ∈  A c   ( E ,  {  a m  }  )   . Since X is uniformly convex, we have    A c   ( E ,  {  a m  }  )    consists of a unique element. Thus, we have   P ( z ) = z  . □





The following result is based on the compactness of the domain.



Theorem 2.

Let P be a selfmap on compact convex subset E of X. Let P be a generalized   ( α , β )  -non-expansive with   F ( P ) ≠ ∅  , then   {  a m  }   generated by the algorithm (7) converges strongly to an element of   F ( P )  .





Proof. 

By Theorem 1,    lim  m → ∞    | | P   (  a m  )  −  a m   | |  = 0  . By compactness assumption, one can find a strongly convergent subsequence namely   {  a  m k   }   of   {  a m  }   such that    a  m k   ⟶ s   for some   s ∈ E  . By Lemma 5, we have


   | |   a  m k   −  P  ( s )  | |  ≤    3 + α + β   1 − α − β     | |   a  m k   − P  (  a  m k   )   | |  +  | |   a  m k   − s  | |  ⟶ 0 .  








Since in Banach spaces, convergent sequence has a unique limit, we have   P ( s ) = s  . By Lemma 7,    lim  m → ∞    | |   a m  − s  | |    exists. Hence, s is the strong limit of   {  a m  }  . □





We state the following result without the proof because its proof is elementary.



Theorem 3.

Let P be a selfmap on a closed convex subset E of X. Let P be a generalized   ( α , β )  -non-expansive and   {  a m  }   is a sequence generated by the algorithm (7). If   F ( P ) ≠ ∅   and    lim inf  m → ∞   d i s t  (  a m  , F  ( P )  )  = 0  , then   {  a m  }   converges strongly to an element of   F ( P )  .





The next result is based on Condition I.



Definition 6.

[25] A selfmap P on a subset E of a Banach space is said to satisfy condition I if there is a nondecreasing function   h :  R +  →  R +    with the property   h ( 0 ) = 0   and   h ( u ) > 0   for all   u ∈ ( 0 , ∞ )   such that   | | a − P ( a ) | | ≥ h ( d i s t ( a , F ( P ) ) )   for all   a ∈ E  .





Theorem 4.

Let P be a selfmap on a closed convex subset E of X. Let P be generalized   ( α , β )  -non-expansive with   F ( P ) ≠ ∅  . If P satisfies condition I, then   {  a m  }   generated by the algorithm (7) converges strongly to an element of   F ( P )  .





Proof. 

From Theorem 1, it follows that


   lim inf  m → ∞    | | P   (  a m  )  −  a m   | |  = 0 .  



(13)




Since T satisfies condition I, we have


   | |   a m  − P  (  a m  )   | |  ≥ h  ( dist  (  a m  , F  ( P )  )  )  .  








From (13), we get


   lim inf  m → ∞    h (   ( dist  (  a m  , F  ( P )  )  )  = 0 .  








Since the function   h :  R +  →  R +    is nondecreasing with the property   h ( 0 ) = 0   and   h ( u ) > 0   for each   u ∈ ( 0 , ∞ )  , we have


   lim inf  m → ∞   dist  (  a m  , F  ( P )  )  = 0 .  








The conclusion follows from Theorem 3. □





The following result is based on the Opial condition.



Theorem 5.

Let P be a selfmap on a closed convex subset E of X having Opial property. If P is generalized   ( α , β )  -non-expansive with   F ( P ) ≠ ∅  , then,   {  a m  }   generated by the algorithm (7) converges weakly to an element of   F ( P )  .





Proof. 

By Theorem 1,   {  a m  }   is bounded and    lim  m → ∞    | | P   (  a m  )  −  a m   | |  = 0  . Since X is uniformly convex, X is reflexive. Hence, one can find a weakly convergent subsequence   {  a  m j   }   of   {  a m  }   with weak limit say    v 1  ∈ E  . By Lemma 6, we have    v 1  ∈ F  ( P )   . It is sufficient to show that   v 1   is the weak limit   {  a m  }  . If   v 1   is not the weak limit of   {  a m  }  , then one can find another weakly convergent subsequence   {  a  m k   }   of   {  a m  }   with a weak limit, say    v 2  ∈ E   and    v 2  ≠  v 1   . Again, by Lemma 6,    v 2  ∈ F  ( P )   . By Lemma 7 and Opial condition, we have


       lim  m → ∞     | |   a m  −  v 1   | |     =    lim  j → ∞     | |   a  m j   −  v 1   | | <    lim  j → ∞     | |   a  m j   −  v 2   | |        =    lim  m → ∞     | |   a m  −  v 2   | |  =   lim  k → ∞     | |   a  m k   −  v 2   | |        <    lim  k → ∞     | |   a  m k   −  v 1   | |  =   lim  m → ∞     | |   a m  −  v 1   | |  .     








This is a contradiction. Hence, the conclusions can be reached. □






5. Example


The following example shows that there exist maps which are generalized   ( α , β )  -non-expansive but neither generalized  α  non-expansive nor  β -Reich–Suzuki type.



Example 1.

Define   P :  R +  →  R +    by   P  ( a )  =  a 2    if    1 2  < a < ∞   and   P ( a ) = 0   when   0 ≤ a ≤  1 2   . We shall prove that P is generalized   (  1 4  ,  1 4  )  -non-expansive.





We shall divide the proof into three cases.



	(i)

	
If   0 ≤ a , b ≤  1 2   , then we have


      1 4   | a − P  ( b )  | +   1 4   | b − P  ( a )  | +   1 4   | a − P  ( a )  | +   1 4   | b − P  ( b )  |  ≥ 0 =  | P  ( a )  − P  ( b )  | .      












	(ii)

	
If    1 2  < a , b < ∞  , then we have


      1 4   | a − P  ( b )  | +   1 4   | b − P  ( a )  | +   1 4   | a − P  ( a )  | +   1 4   | b − P  ( b )  |     =   1 4   | a −   b 2   | +   1 4   | b −  a 2  |             +  1 4   | a −   a 2   | +   1 4   | b −  b 2  |        ≥   1 4   |    3 a  2  −   3 b  2   | +   1 4   |  a 2  −  b 2  |        ≥   1 4   |   4 a  2  −   4 b  2  |        =   1 2   | a − b |        =  | P ( a ) − P ( b ) | .     












	(iii)

	
If    1 2  < a < ∞   and   0 ≤ b ≤  1 2   , then we have


      1 4   | a − P  ( b )  | +   1 4   | b − P  ( a )  | +   1 4   | a − P  ( a )  | +   1 4   | b − P  ( b )  |     =   1 4   | a |  +  1 4   | b −   a 2   | +  1 4  |  a −              a 2   | +   1 4   | b |        =   1 4   | a |  +  1 4   | b −   a 2   | +   1 4   |   a 2   | +   1 4   | b |        ≥   1 4   |    4 a  2   | =   1 2   | a |  =  | P  ( a )  − P  ( b )  | .      















Hence, P is generalized   (  1 4  ,  1 4  )  -non-expansive. However, for   a =  1 2    and   b =  4 5   , we have    1 2   | a − P  ( a )  | < | a − b |   . However,




	(i).

	
  | P ( a ) − P ( b ) | > | a − b |  .




	(ii).

	
   | P  ( a )  − P  ( b )  | >   1 4   | a − P  ( b )  | +   1 4   | b − P  ( a )  | +   ( 1 − 2  (  1 4  )  )   | a − b |   .




	(iii).

	
   | P  ( a )  − P  ( b )  | >   1 4   | a − P  ( a )  | +   1 4   | b − P  ( b )  | +   ( 1 − 2  (  1 4  )  )   | a − b |   .









Hence, P is neither generalized   1 4  -non-expansive nor   1 4  -Reich–Suzuki type. We obtained the influence of initial point for the K iterative algorithm (7) by    μ m  = 0.90  ,    ξ m  = 0.65  ,    ϱ m  = 0.90   in the below table.



Remark 4.

In Table 1 and Table 2, the items in bold show that the K iterative algorithm (7) converges faster than other algorithms for the class of generalized   ( α , β )  -non-expansive maps.






6. Conclusions


In this article, we have presented a new wider class of generalized non-expansive maps, namely, the class of generalized   ( α , β )  -non-expansive maps. We have also established fundamental properties of these maps in Banach spaces. We have proved that K iterative algorithm of Hussain et al. [24] converges faster to a fixed point of a map in this class. Since the class of generalized   ( α , β )  -non-expansive maps properly includes the classes of non-expansive, Suzuki non-expansive, Reich–Suzuki type non-expansive, and generalized  α -non-expansive maps, our results extend the corresponding work proved and discussed in [1,2,3,8,11,23,24,26,27,28].
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Table 1. Influence of initial points for various iterative algorithms.






Table 1. Influence of initial points for various iterative algorithms.





	
    Number  of  Iterations  Required  to  Obtain  Fixed  Point .    




	
Initial Points

	
Mann

	
Ishikawa

	
Noor

	
S

	
Abbas

	
Thakur

	
K






	
5

	
32

	
31

	
30

	
4

	
3

	
2

	
2




	
150

	
40

	
36

	
35

	
7

	
5

	
4

	
3




	
500

	
43

	
38

	
36

	
9

	
6

	
5

	
4




	
1000

	
45

	
39

	
37

	
9

	
6

	
6

	
4




	
5000

	
48

	
42

	
39

	
11

	
8

	
7

	
5




	
10000

	
50

	
43

	
40

	
12

	
8

	
7

	
6
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Table 2. Influence of parameters: comparison of various iterative algorithms.






Table 2. Influence of parameters: comparison of various iterative algorithms.





	
Iterations

	
Initial Points




	
10

	
    10 2    

	
    10 3    

	
    10 4    

	
    10 5    

	
    10 6    






	
For    μ m  =  m   ( m + 1 )   10 9    ,   ξ m  =  1   ( m + 3 )   2 3    ,   ϱ m  =  m  ( 3 m + 1 )    




	
Mann

	
39

	
45

	
51

	
58

	
64

	
70




	
Ishikawa

	
37

	
43

	
49

	
55

	
60

	
67




	
Noor

	
37

	
42

	
48

	
54

	
60

	
66




	
S

	
5

	
8

	
11

	
14

	
17

	
21




	
Abbas

	
4

	
6

	
9

	
11

	
13

	
16




	
Thakur

	
3

	
5

	
6

	
8

	
9

	
11




	
K

	
2

	
3

	
4

	
5

	
6

	
7




	
for    μ m  =  m   ( m + 7 )   17 14    ,   ξ m  =  m  ( m + 2 )   ,   ϱ m  =  m  −  1 3     




	
Mann

	
95

	
107

	
120

	
133

	
146

	
159




	
Ishikawa

	
89

	
97

	
105

	
113

	
121

	
130




	
Noor

	
88

	
96

	
103

	
111

	
119

	
126




	
S

	
6

	
8

	
11

	
14

	
17

	
19




	
Abbas

	
3

	
5

	
6

	
8

	
10

	
11




	
Thakur

	
3

	
5

	
6

	
8

	
9

	
11




	
K

	
2

	
3

	
4

	
5

	
7

	
8




	
for    μ m  = 1 −   (  1  5 m + 3   )   1 2   ,  ξ m  =  m  − 3   ,  ϱ m  = 1 −  1  ( 2 m + 5 )    




	
Mann

	
23

	
26

	
30

	
33

	
37

	
40




	
Ishikawa

	
22

	
25

	
29

	
32

	
36

	
40




	
Noor

	
22

	
25

	
29

	
32

	
36

	
39




	
S

	
5

	
8

	
12

	
15

	
18

	
22




	
Abbas

	
3

	
5

	
7

	
8

	
10

	
12




	
Thakur

	
3

	
4

	
6

	
8

	
9

	
11




	
K

	
2

	
3

	
4

	
5

	
6

	
8




	
for    μ m  =   2 m   ( 9 m + 8 )   ,   ξ m  = 1 −  1   ( m + 7 )  2   ,   ϱ m  = 1 −   6 m    ( 7 m + 3 )  4    




	
Mann

	
166

	
185

	
205

	
224

	
244

	
265




	
Ishikawa

	
155

	
168

	
181

	
194

	
206

	
219




	
Noor

	
153

	
164

	
174

	
185

	
196

	
206




	
S

	
5

	
8

	
11

	
14

	
17

	
20




	
Abbas

	
3

	
5

	
6

	
8

	
9

	
11




	
Thakur

	
3

	
5

	
6

	
8

	
9

	
11




	
K

	
2

	
3

	
4

	
5

	
6

	
8




	
for    μ m  =  m  ( m + 5 )   ,   ξ m  =  m   ( 36  m 2  + 1 )   1 2    ,   ϱ m  =     2 m   ( 4 m + 5 )     1 2    




	
Mann

	
32

	
35

	
39

	
42

	
45

	
49




	
Ishikawa

	
31

	
34

	
37

	
40

	
44

	
47




	
Noor

	
31

	
34

	
37

	
40

	
43

	
46




	
S

	
6

	
9

	
12

	
15

	
19

	
22




	
Abbas

	
4

	
5

	
7

	
9

	
11

	
13




	
Thakur

	
3

	
5

	
6

	
8

	
10

	
11




	
K

	
2

	
3

	
4

	
6

	
7

	
8
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