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Abstract: In scientific computing, the acceleration of atomistic computer simulations by means
of custom hardware is finding ever-growing application. A major limitation, however, is that the
high efficiency in terms of performance and low power consumption entails the massive usage of
low precision computing units. Here, based on the approximate computing paradigm, we present
an algorithmic method to compensate for numerical inaccuracies due to low accuracy arithmetic
operations rigorously, yet still obtaining exact expectation values using a properly modified Langevin-
type equation.

Keywords: approximate computing; CP2K; fluctuation-dissipation theorem; FPGA; i-PI; low precision
arithmetic

1. Introduction

Molecular dynamics (MD) is a very powerful and widely used technique to study thermodynamic
equilibrium properties, as well as the real-time dynamics of complex systems made up of interacting
atoms [1]. This is done by numerically solving Newton’s equations of motion in a time-discretized
fashion via computing the nuclear forces of all atoms at every time step [2]. Computing these forces
by analytically differentiating the interatomic potential with respect to the nuclear coordinates is
computationally rather expensive, which is particularly true for electronic structure-based ab-initio
MD simulations [3–6].

For a long time, newly developed microchips have become faster and more efficient due to
new manufacturing processes and shrinking transistor sizes. However, this development is slowly
coming to an end as scaling down the structures of silicon-based chips becomes more and more
difficult. The focus therefore shifts towards making efficient use of the available technology. Hence,
besides algorithmic developments [7–14], there have been numerous custom computing efforts in this
area to increase the efficiency of MD simulations by means of hardware acceleration, which we
take up in this work. Examples of the latter are MD implementations on graphics processing
units (GPUs) [15–21], field-programmable gate arrays (FPGAs) [22,23], and application-specific
integrated circuits (ASICs) [24,25]. While the use of GPUs for scientific applications is relatively
widespread [26–28], the use of ASICs [29–32] and FPGAs is less common [33–38], but has gained
attention over the last few years. In general, to maximize the computational power for a given silicon
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area, or equivalently minimize the power-consumption per arithmetic operation, more and more
computing units are replaced with lower precision units. This trend is mostly driven by the market
considerations of the gaming and artificial intelligence industries, which are the target customers of
hardware accelerators and naturally do not absolutely rely on full computing accuracy.

In the approach presented in this paper, we mimic in software how it is possible to make effective
use of low accuracy special-purpose hardware for general-purpose scientific computing by leveraging
the approximate computing (AC) paradigm [39,40]. The general research goal of AC is to devise
and explore ingenious techniques to relax the exactness of a calculation to facilitate the design of
more powerful and/or more efficient computer systems. However, in scientific computing, where the
exactness of all computed results is of paramount importance, attenuating accuracy requirements is
not an option. Yet, assuming that the inaccuracies within the nuclear forces due to the usage of low
precision arithmetic operations can be approximately considered as white noise, we will demonstrate
that it is nevertheless possible to compensate for such numerical errors rigorously and still obtain exact
expectation values, as obtained by ensemble averages of a properly modified Langevin equation.

The remainder of the paper is organized as follows. In Section 2, we revisit the basic principles
of AC before introducing our modified Langevin equation in Section 3. Thereafter, in Section 4,
we describe the computational details of our computational experiments. Our results are presented
and discussed in Section 5 before concluding the paper in Section 6.

2. Approximate Computing

A basic method of approximation and a key requirement for efficient use of processing hardware
is the use of adequate data widths in computationally intensive kernels. While in many scientific
applications, the use of the double-precision floating-point is most common, this precision is not
always required. For example, iterative methods can exhibit resilience against low precision arithmetic,
as has been shown for the computation of inverse matrix roots [41] and for solving systems of linear
equations [39,42–44]. Mainly driven by the growing popularity of artificial neural networks [45],
we can observe growing support of low precision data types in hardware accelerators. In fact,
recent GPUs targeting the data center have started supporting half-precision as well, nearly doubling
the peak performance compared to single-precision and quadrupling it compared to double-precision
arithmetics [46]. However, due to the low number of exponent bits, half-precision only provides a very
limited dynamic range. In contrast, bfloat16 provides the same dynamic range as single-precision
and just reduces precision. It is currently supported by Google’s Tensor Processing Units (TPU) [47],
and support has been announced for future Intel Xeon processors [48] and Intel AgileX FPGAs. A list of
commonly used data types, together with the corresponding number of bits used to store the exponent
and the mantissa, are shown in Table 1 beside the double-precision de facto standard.

Table 1. Bitwidth of common floating-point formats.

Type Sign Exponent Mantissa

IEEE 754 quadruple-precision 1 15 112
IEEE 754 double-precision 1 11 52
IEEE 754 single-precision 1 8 23
IEEE 754 half-precision 1 5 10
Bfloat16(truncated IEEE single-precision) 1 8 7

Yet, programmable hardware such as FPGAs, as a platform for custom-built accelerator
designs [49–51], can make effective use of all of these, but also entirely custom number formats.
Developers can specify the number of exponent and mantissa bits and trade-off precision against
the amount of memory blocks required to store values and the number of logic elements required to
perform arithmetic operations on them.
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In addition to floating-point formats, also fixed-point representations can be used. Here,
all numbers are stored as integers of a fixed size with a predefined scaling factor. Calculations are
thereby performed using integer arithmetic. On CPUs and GPUs, only certain models can perform
integer operations with a peak performance similar to that of floating-point arithmetic, depending on
the capabilities of the vector units/stream processors. Nevertheless, FPGAs typically can perform
integer operations with performance similar to or even higher than that of the floating-point. Due to the
high flexibility of FPGAs with respect to different data formats and the possible use of entirely custom
data types, we see them as the main target technology for our work. For this reason, we consider both
floating-point and fixed-point arithmetic in the following.

3. Methodology

The error introduced by low precision floating-point or fixed-point computations can in general
be modeled as white noise if unbiased rounding techniques are used in all arithmetic operations.
A widely employed rounding technique is round half to even, which does not introduce a systematic
bias and is used by default in IEEE 754 floating-point arithmetic [52]. In the following, we assume the
usage of such a rounding technique also for fixed-point arithmetic, leading to only an unbiased error
within the computed interatomic forces.

To demonstrate the concept of approximate computing, we introduce white noise to the
interatomic forces that are computed while running the MD simulation. In this section, we describe in
detail how we introduce the noise to mimic in software the behavior that would be observed when
running the MD on the actual FPGA or GPU hardware with reduced numerical precision. We classify
the computational errors into two types: fixed-point errors and floating-point errors. Assuming that
FI are the exact and FN

I the noisy forces from an MD simulation with low precision on an FPGA for
instance, fixed-point errors can by modeled by:

FN
I =

Fx
I

Fy
I

Fz
I

+

c1 × 10−β

c2 × 10−β

c3 × 10−β

 , (1)

whereas floating-point errors are described by:

FN
I =

Fx
I × 10−α1

Fy
I × 10−α2

Fz
I × 10−α3

+

c1 × 10−(α1+β)

c2 × 10−(α2+β)

c3 × 10−(α3+β)

 . (2)

Therein, c1, c2, and c3 are random values chosen in the range [−0.5, 0.5], whereas Fx
I , Fy

I , and Fx
I

are the individual force components of FI , respectively. The floating-point scaling factor is denoted as
α and the magnitude of the applied noise by β.

To correct the errors introduced by numerical noise rigorously, we employ a modified Langevin
equation. In particular, we model the force as obtained by a low precision computation on a GPU or
FPGA-based accelerator as:

FN
I = FI + ΞN

I , (3)

where ΞN
I is an additive white noise for which:〈

FI (0)ΞN
I (t)

〉
∼= 0 (4)

holds. Throughout, 〈· · · 〉 denotes Boltzmann-weighted ensemble averages as obtained by the partition
function Z = Tr exp(−E/kBT), where E is the potential energy, kB the so-called Boltzmann constant,
and T the temperature. Given that ΞN

I is unbiased, which in our case is true by its very definition, it is



Computation 2020, 8, 39 4 of 11

nevertheless possible to sample the Boltzmann distribution accurately by means of a Langevin-type
equation [53–55], which in its general form reads as:

MIR̈I = FI + ΞN
I − γN MIṘI , (5)

where ṘI are the nuclear coordinates (the dot denotes the time derivative), MI are the nuclear masses,
and γN is a damping coefficient, which is chosen to compensate for ΞN

I . The latter, in order to guarantee
an accurate canonical sampling, has to obey the fluctuation-dissipation theorem:〈

ΞN
I (0)ΞN

I (t)
〉
∼= 2γN MIkBTδ (t) . (6)

Substituting Equation (3) into Equation (5) results in the desired modified Langevin equation:

MIR̈I = FN
I − γN MIṘI , (7)

which will be used throughout the remainder of this paper. This is to say that the noise, as originating
from a low precision computation, can be thought of as the additive white noise of a damping
coefficient γN , which satisfies the fluctuation-dissipation theorem of Equation (6). The specific value of
γN is determined in such a way so as to generate the correct average temperature, as measured by the
equipartition theorem: 〈

1
2

MIṘI

〉
=

3
2

kBT. (8)

4. Computational Details

To demonstrate our approach, we implemented it in the CP2K suite of programs [56,57].
More precisely, we conducted MD simulations of liquid silicon (Si) at 3000 K using the environment-
dependent interatomic potential of Bazant et al. [58,59]. All simulations consisted of 1000 Si atoms in a
3D-periodic cubic box of length 27.155 Å. Using the algorithm of Ricci and Ciccotti [60], Equation (5)
was integrated with a discretized time step of 1.0 fs with γN = 0.001 fs−1.

Whereas the latter settings were used to compute our reference data, in total, six different cases of
fixed-point and floating-point errors were investigated by varying the exponent β between zero (huge
noise) and three (tiny noise) that is, ranging from 1/1000 of the physical force up to the same magnitude
as the force. As already alluded to above, the additive white noise is compensated via Equation (7) by
continuously adjusting the friction coefficient γN using the adaptive Langevin technique of Leimkuhler
and coworkers so as to satisfy the equipartition theorem of Equation (8) [61–63]. In this method, γN is
reinterpreted as a dynamical variable, defined by a negative feedback loop control law as in the
Nosé–Hoover scheme [64,65]. The corresponding dynamical equation for γN reads as:

γ̇N = (2K− nkBT)/Q, (9)

where K is the kinetic energy, n is the number of degrees of freedom, and Q = kBTτ2
NH is the

Nosé–Hoover fictitious mass with time constant τNH . Alternatively, γN can be estimated by integrating
the autocorrelation function of the additive white noise [66]. In Table 2, the resulting values of γ

f ix
N for

fixed-point and γ
f loat
N for floating-point errors are reported as a function of β.
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Table 2. Values for γ
f ix
N and γ

f loat
N as a function of β.

β γ
f ix
N γ

f loat
N

0 0.00025
1 0.0004 0.000005
2 0.000009 0.000005
3 0.0000009

5. Results and Discussion

As can be directly deduced from Table 2, the smaller values of γN for a given β immediately
suggested a higher noise resilience when using floating-point as compared to fixed-point numbers.

In Figures 1 and 2, the Si-Si partial pair-correlation function g(r), which describes how the
particle-density varies as a function of distance from a reference particle (atoms, molecules, colloids,
etc.), as computed using an optimal scheme for orthorhombic systems [67], is shown for different
values of β. As can be seen, for both fixed-point and floating-point errors, the agreement with our
reference calculation was nearly perfect up to the highest noise we investigated. As already anticipated
earlier, the usage of floating-point errors was not only able to tolerate higher noise levels, but was also
more accurate throughout.

To verify that the sampling was indeed canonical, in Figure 3, the actual kinetic energy distribution
as obtained by our simulations using noisy forces is depicted and compared to the analytic Maxwell
distribution. It was evident that if sampled long enough, not only the mean value, but also the
distribution tails were in excellent agreement with the exact Maxwellian kinetic energy distribution,
which demonstrated that we were indeed performing a canonical sampling.
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Figure 1. Partial pair correlation function for liquid Si at 3000 K with noisy forces introduced by
fixed-point errors of magnitude 10−3 (blue), 10−2 (green), and 10−1 (red). For comparison, the results,
as obtained by our reference calculations without noise, are shown in black.
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Figure 2. Partial pair correlation function for liquid Si at 3000 K with noisy forces introduced by
floating-point errors of magnitude 10−2 (blue), 10−1 (green), and 10−0 (red). For comparison, the results,
as obtained by our reference calculations without noise, are shown in black.
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Figure 3. Kinetic energy distribution of liquid Si at 3000 K, as obtained by our simulations using noisy
forces (circles). For comparison, the analytic Maxwell distribution is also shown (line).

To further assess the accuracy of the present method, we expanded the autocorrelation of the
noisy forces, i.e., 〈

FN
I (0) FN

I (t)
〉

(10a)

=
〈(

FI (0) + ΞN
I (0)

) (
FI (t) + ΞN

I (t)
)〉

(10b)

= 〈FI (0) FI (t)〉+
〈

FI (0)ΞN
I (t)

〉
(10c)

+
〈

FI (t)ΞN
I (0)

〉
+
〈

ΞN
I (0)ΞN

I (t)
〉

.

Since the cross-correlation terms between the exact force and the additive white noise were
vanishing due to Equation (4), comparing the autocorrelation of the noisy forces 〈FN

I (0)F
N
I (t)〉 with
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the autocorrelation of the exact forces 〈FI(0)FI(t)〉 permitted assessing the localization of the last
term of Equation (10c). The fact that 〈FN

I (0)F
N
I (t)〉 was essentially identical to 〈FI(0)FI(t)〉, as can

be seen in Figure 4, implied that 〈ΞN
I (0)Ξ

N
I (t)〉 was very close to a δ-function as required by the

fluctuation-dissipation theorem in order to ensure an accurate canonical sampling of the Boltzmann
distribution. In other words, from this, it followed that our initial assumption underlying Equation (7),
to model the noise due to a low precision calculation as an additive white noise channel, was justified.
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Figure 4. The autocorrelation of the noisy forces
〈
FN

I (0) FN
I (t)

〉
(line), which are compared to the

autocorrelation of the exact forces 〈FI (0) FI (t)〉(circles).

6. Conclusions

We conclude by noting that the presented method was recently implemented in the universal force
engine i-PI [68], which can be generally applied to all sorts of forces affected by stochastic noise such
as those computed by GPUs or other hardware accelerators [15–21], and potentially even quantum
computing devices [69–72]. The possibility to apply similar ideas to N-body simulations [73,74]
and to combine them with further algorithmic approximations [75] is to be underlined and will be
presented elsewhere.
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