
computations

Article

Accurate Energy and Performance Prediction for
Frequency-Scaled GPU Kernels

Kaijie Fan 1,∗ , Biagio Cosenza 2 and Ben Juurlink 1

1 Faculty of Electrical Engineering and Computer Science, Technische Universität Berlin, Einsteinufer 17-6.0G,
10587 Berlin, Germany; b.juurlink@tu-berlin.de

2 Department of Computer Science, University of Salerno, 84084 Fisciano (Salerno), Italy; bcosenza@unisa.it
* Correspondence: kaijie.fan@campus.tu-berlin.de

Received: 6 March 2020; Accepted: 21 April 2020; Published: 27 April 2020
����������
�������

Abstract: Energy optimization is an increasingly important aspect of today’s high-performance
computing applications. In particular, dynamic voltage and frequency scaling (DVFS) has become a
widely adopted solution to balance performance and energy consumption, and hardware vendors
provide management libraries that allow the programmer to change both memory and core
frequencies manually to minimize energy consumption while maximizing performance. This article
focuses on modeling the energy consumption and speedup of GPU applications while using different
frequency configurations. The task is not straightforward, because of the large set of possible and
uniformly distributed configurations and because of the multi-objective nature of the problem,
which minimizes energy consumption and maximizes performance. This article proposes a machine
learning-based method to predict the best core and memory frequency configurations on GPUs for
an input OpenCL kernel. The method is based on two models for speedup and normalized energy
predictions over the default frequency configuration. Those are later combined into a multi-objective
approach that predicts a Pareto-set of frequency configurations. Results show that our approach
is very accurate at predicting extema and the Pareto set, and finds frequency configurations that
dominate the default configuration in either energy or performance.

Keywords: frequency scaling; energy efficiency; GPU; modeling

1. Introduction

Power consumption is a major concern of modern computing platforms, from small-scale
embedded systems to large-scale compute clusters. For instance, next-generation computing systems
will need to perform 1018 (a billion billion) calculations per second on a power budget of 20
MW. Meeting this target will require major improvements in energy efficiency across the whole
stack—starting at the hardware and memory subsystem and interconnecting up to the software level.

Dynamic voltage and frequency scaling (DVFS), where the voltage and frequency of the processor
are scaled according to the requirements of the running application, is one of the most promising
power management strategies. Thanks to different energy management libraries, such as Running
Average Power Limit (RAPL) [1] on Intel processors and the NVIDIA Management Library (NVML) [2]
on modern graphics processing units (GPUs), it is possible to both measure the energy consumption of
a task (kernel) and dynamically change the frequency during program execution. However, while
power management for CPUs has been widely researched over a number of years, GPUs are a
relatively new area of study in this field. Hence, further investigation could deliver rich results for
high performance with lower power consumption. By using NVML, a programmer is able to tune core
and memory frequencies is for a specific application, and different applications may show different
energy consumption and performance depending on the selected frequency setting: for instance, a

Computation 2020, 8, 37; doi:10.3390/computation8020037 www.mdpi.com/journal/computation

http://www.mdpi.com/journal/computation
http://www.mdpi.com
https://orcid.org/0000-0003-0118-0974
https://orcid.org/0000-0002-8869-6705
http://www.mdpi.com/2079-3197/8/2/37?type=check_update&version=1
http://dx.doi.org/10.3390/computation8020037
http://www.mdpi.com/journal/computation

Computation 2020, 8, 37 2 of 20

compute-bounded application will benefit of memory frequency down-scaling with reduced energy
consumption at the same performance. Nevertheless, it is not easy to manually perform such tuning
because of the large space of available frequency configurations. For example, an NVIDIA GTX Titan
X supports a total number of 219 possible configurations, spanning four memory frequencies and 85
core frequencies (note that not all memory-core combinations are supported; e.g., it is not possible to
have both maximal core and memory frequency). Sampling such a large space is not viable option
for many applications; thus, this work focuses on the design and implementation of a predictive
approach, which aims at minimizing both the energy-per-task and the running time, e.g., by solving a
multi-objective optimization problem.

Predicting the best frequency configurations is difficult. We have already seen that the large
number of settings makes it impractical to perform an exhaustive search, and that the tuning space is
multi-objective. An important aspect to consider is the fact that energy and performance with different
frequency settings highly depend on the application. Figure 1 shows the Pareto sets (e.g., speedup on
the x axis and and normalized energy consumption on the y axis) of three applications: k-NN, Kmeans
and Blackscholes. Clearly, the distribution of the different memory settings highly depends on the
kernel: memory-bounded applications are more sensitive to increases of memory frequency, while
compute-bounded ones are mainly affected by core frequency increases. This aspect is discussed in
detail in Section 5.2.

0 0.2 0.4 0.6 0.8 1 1.2

Speedup

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o
rm

a
liz

e
d
 e

n
e
rg

y

Mem-H

Mem-h

Mem-l

Mem-L

(a) k-NN

0 0.2 0.4 0.6 0.8 1 1.2

Speedup

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o
rm

a
liz

e
d
 e

n
e
rg

y

Mem-H

Mem-h

Mem-l

Mem-L

(b) Kmeans

0 0.2 0.4 0.6 0.8 1 1.2

Speedup

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o
rm

a
liz

e
d
 e

n
e
rg

y

Mem-H

Mem-h

Mem-l

Mem-L

200

300

400

500

600

700

800

900

1000

1100

Core(MHz)

(c) Blackscholes

Figure 1. Speedup and normalized energy for three selected benchmarks and different frequency
configurations. Toward the bottom (energy) and right-hand side (speedup) is best.

Moreover, this predictive modeling problem presents two additional challenges. First, the set of
available configurations is not uniform. Figure 2 shows the available combination of memory and core
frequencies on an NVIDIA Titan X. It is evident that some parts of the potential frequency domain are
very dense, while in others, many configurations are missing, due to limitations on NVML (related to
hardware limitations). The second problem is related to the input-size of the kernel: in a very small
kernel, the energy and performance are slightly different than for a larger one. This aspect has never
been investigated before; thus it is important to have a quantitative study of this aspect.

0 200 400 600 800 1000 1200 1400
Core frequency (MHz)

0

2000

4000

M
e

m
o

ry
 f

re
q

u
e

n
c
y
 (

M
H

z
)

Default Config.

Figure 2. Supported combinations of memory and core frequencies.

Contributions This article expands on our previous work [3], whose contributions were:

• An analysis of the Pareto optimality (performance versus energy consumption) of GPU
applications on a multi-domain frequency scaling setting on an NVIDIA Titan X.

Computation 2020, 8, 37 3 of 20

• A modeling approach based on static code features that predicts core and memory frequency
configurations, which are Pareto-optimal with respect to energy and performance. The model
was built on 106 synthetic micro-benchmarks. It predicts normalized energy and speedup with
specific methods, and then derives a Pareto set of configurations out of the individual models.

• An experimental evaluation of the proposed models on an NVIDIA Titan X, and a comparison
against the default static settings.

In addition, we expand prior work with the following new contributions:

• A novel methodology for handling an imbalanced dataset based on the SMOTE algorithm, which
further improves the modeling for critical cases; e.g., low memory frequency configurations.

• An analysis of the impacts of various input sizes on energy and performance.
• An extended analysis of the energy and performance application characterization on a set of

twelve applications.

The rest of this article is organized as follows. The related work is introduced in Section 2.
Section 3 provides an overview of the modeling approach, discussing features, training data and
the machine learning methodology for performance and energy. Section 4 focuses on the handling
of an imbalanced dataset. An extensive experimental part is presented in Section 5, which includes
oversampling evaluation, application characterization, input size analysis and final evaluation of the
predicted values. The article ends with conclusions in Section 6.

2. Related Work

Energy-performance modeling has received great attention from the research community.
Mei et al. [4], in particular, wrote a survey and measurement study of GPU DVFS. Calore et al. [5]
evaluated the use of DVFS on two high-end processors in the HPC system and estimated the benefits
obtainable tuning CPUs and GPUs clock frequencies. Ge et al. [6] applied fine-grained GPU core
frequency and coarse-grained GPU memory frequency on a Kepler K20c GPU. Tiwari et al. [7] proposed
DVFS strategy be used both intra-node and inter-node to reduce power consumption by the CPU.
Vysocky et al. [8] introduced tools, and applied them to CPU to save energy by tuning hardware
parameters during the runtime.

Much work focuses on modeling one single objective, either energy or performance. In terms
of energy efficiency, a number of optimization techniques have been recently proposed [9–13].
Among them, Hamano et al. [9] proposed a task scheduling scheme that optimizes the overall
energy consumption of the system. Lopes et al. [10] proposed a model that relies on extensive
GPU micro-benchmarking using a cache-aware roofline model. Song et al. [12] proposed Throttle
CTA Scheduling (TCS), which reduces the number of active cores to improve energy-efficiency for
memory-bound workloads.

In the domain of performance, many evaluation methodologies based on different architectures
have been proposed [14–17]. Approaches [18,19] to predict performance by taking DVFS into
consideration have been discussed. Kofler et al. [20] and Ge et al. [21] proposed a machine learning
approach based on artificial neural networks (ANN) that automatically performs heterogeneous task
partitioning. Bhattacharyya et al. [22] improved performance by combining static and dynamic
analyses. Mesmay et al. [23] converted online adaptive libraries into offline by automatically generating
heuristics. ε-PAL [24] proposed a machine learning iterative adaptive approach that samples the design
space to predict a set of Pareto-optimal solutions with a granularity regulated by a parameter ε.

Here we discuss most important related work and Table 1 shows the comparison. Grewe et al. [25]
used machine learning for a purely static approach, which, however, only predicted task partitioning.
Steen et al. [26] presented a micro-architecture independent profiler based on a mechanistic
performance model for a CPU. However, they did not take frequency scale into consideration, which,
as already described in Section 1, plays a heavy role on energy and performance behaving.

Computation 2020, 8, 37 4 of 20

Abe et al. [27], Guerreiro et al. [28,29] and Wu et al. [30] proposed performance and energy
models by taking frequency scaling into consideration. Among them, Abe et al. [27] estimated
the models by using performance counters but did not consider the non-linear scaling effects of
the voltage. Guerreiro et al. [29] made more improvements: they not only presented the approach
of gathering performance events by micro-benchmarks in detail, but also predicted how the GPU
voltage scales. Wu et al. [30] studied the performance and energy models of an AMD GPU by using
K-means clustering.

Table 1. Comparison against the state-of-the-art.

Paper Static Pareto-Optimal Frequency
Scaling

Machine
Learning

Grewe et al. [25] X × × X
Steen et al. [26] × X × ×
Abe et al. [27] × × X ×

Guerreiro et al. [29] × × X X
Wu et al. [30] × × X X

Our work X X X X

Nevertheless, all of these approaches gathered the hardware performance counters (features)
while running a kernel. In contrast, our work focuses on features that can be extracted statically,
which can be used to estimate the speedup and normalized energy consumption models of a new
kernel without running it. Furthermore, we figure out the Pareto-optimal solutions of memory-core
frequency configurations of the new kernel. To the best of our knowledge, our work is the first to
predict Pareto-optimal frequency configurations on a GPU using static models.

3. Background

Our approach to model the energy consumption and speedup of a input kernel is based on
machine learning methodology, applied to a feature describing the kernel code and the frequency
setting. This Section provides an overview of the method with a description of the different phases
(training with oversampling and prediction), followed by a description of the feature representation;
the synthetic training data; the predictive modeling approach for speedup and energy; and the final
step to derive the predicted Pareto set.

3.1. Overview

The methodology proposed by our work is based on typical two-phase modeling with supervised
learning: in a first training phase the model is built; later, when a new input code is provided, a
prediction phase infers the best configurations. Figures 3 and 4 illustrate the workflow of this work,
respectively for the training and prediction phases.

The goal of the training phase is to build two separate models for speedup and normalized
energy. To do that, a set of OpenCL micro-benchmarks are provided for training (1). For each
code in the micro-benchmark, a set of static features is extracted (2) and stored in a static feature
dataset. Successively, each micro-benchmark is executed with various frequency configurations (3).
The obtained energy measurements, together with normalized frequency configurations and the static
features, are oversampled and used to train the normalized energy model (5). The same technology is
applied on the speedup model training (6).

In the prediction phase, a new OpenCL code is provided as input to the framework. First, its
static code features are extracted (1). The static features (2) and the frequency configurations (3) are
combined together to form a set of feature vectors, each corresponding to a specific frequency setting.
For each configuration, the previously trained models ((4) and (6)) are used to predict its normalized
energy consumption (5) and speedup (7). Once the predictions for all memory configurations are

Computation 2020, 8, 37 5 of 20

available (8), the dominant points are calculated and returned as predicted a Pareto set (9). Note that
the feature oversampling technique does not affect the prediction phase, but is only applied to features
in the training data.

Input codesTraining code
micro-benchmarks

Extract code features

Execution

Memory and
core frequency
configurations

Input
codesEnergy

measurements

In codesPerformance

Norm. Energy
Model

Speedup
Model

(1)

(2)

(3)
(4)

(5)

(6)

(a) Training phase as in Fan et al. [3].

Input codesTraining code
micro-benchmarks

Extract code features

Execution

Memory and
core frequency
configurations

Input
codesEnergy

measurements

In codesPerformance

Norm. Energy
Model

Speedup
Model

(1)

(2)

(3)
(4) Over-

sampling

(5)

(6)

(b) Training phase with feature oversampling.
Figure 3. Training phase.

(2)

(3)

Extract code
features

Normalized Energy
Prediction

Input
codes

Predicted
norm.
energy

Input
codesPredicted

speedups

Pareto Set
Predictions

Predicted
Pareto set of
frequency
settings

Speedup Prediction

Norm. Energy
Model

Speedup
Model

New code

Input
codes
Memory and

core frequency
configurations

(1)
(5)

(6)
(7)

(8)
(9)

(4)

Figure 4. Prediction phase.

3.2. Features

To build an accurate predictive model, we define a set of numerical code features extracted from
OpenCL kernels, which are then conveniently encoded into a feature vector. The feature representation
used by our work is inspired by Guerreiro et al. [29], where features are designed to reflect the modular
design and structure of the GPU’s architecture, which allow them to easily decompose the power
consumption in multiple architectural components [31]. These ten features represent the number of
integer and floating point operations; memory access on either global or local memory; and special
functions, such as trigonometric ones.

Formally, a code is represented by the static feature vector

~k = (kint_add, kint_mul , kint_div, kint_bw, k f loat_add, k f loat_mul , k f loat_div, ks f , kgl_access, kloc_access)

where each component represents a specific instruction type; e.g., integer bitwise (kint_bw) or special
functions (ks f) instructions, or memory access to either global (kgl_access) and local (kloc_access) memory.

Frequency configurations are also represented as features: the vector ~f = (fcore, fmem), where
fcore is the core frequency and fmem is the memory frequency. The frequency values, which lie in the
intervals [135, 1189] (core, NVIDIA GTX Titan X) and [405, 3505] (memory, NVIDIA GTX Titan X), are
both linearly mapped into the interval [0, 1].

The vector ~w = (~k, ~f) represents the features associated with the execution of a kernel ~k
and frequency setting ~f . Our final goal is to predict, for an input kernel ~k, a subset of frequency
configurations that is Pareto-optimal.

Instead of encoding the total number of instructions of a given type, each feature component is
normalized over the total number of instructions. Such a normalization step allows us to have all
features mapped in the same range, so that each feature contributes approximately proportionately
to the model, and as a result, codes with the same arithmetic intensity, but different number of total
instructions will have the same feature representation.

With respect to related work [20,25] in which features were extracted from the AST (abstract
syntax tree), we prefer to use an LLVM IR (a low-level intermediate representation used by the LLVM

Computation 2020, 8, 37 6 of 20

compiler framework) approach rather than the AST because it is more portable, as it can be easily
adapted to other compilation infrastructure, e.g., that based on SPIR-V (Vulkan, OpenCL), and because
it is a more accurate representation, as LLVM IR may have undergone to several optimizations which
are not captured in the AST.

Being based on a static representation, our modeling approach does not consider the input
size of a kernel. However, we have experimentally evaluated this aspect and found that the energy
and performance behaviors are similar for any input size larger than 262,144. Details can be found
in Section 5.3.

3.3. Training Data

Instead of using as training data the existing test benchmarks, we used a different and separate
set of synthetic training codes specifically designed for the purpose. In related work, synthetic test
benchmarks have been proposed for generic OpenCL code, e.g., using deep learning-based code
synthesis [32], or in domain-specific context, such as stencil computations [33].

Our approach is a combination of pattern-based and domain-specific synthetic code generation,
and was carefully designed around the feature representation [29]. Code benchmarks are generated by
pattern: each pattern covers a specific feature, and generates a number codes with different instruction
intensities (as a consequence, each pattern is designed to stress a particular component of the GPUs).
For instance, the pattern b-int-add includes nine codes with a variable number of integer addition
instructions, from 20 to 28. This training code design enables a good coverage of (the static part of) the
feature space. Additionally, a set of training benchmarks corresponding to a mix of all used features is
also taken into account. Overall, we generated 106 micro-benchmarks.

The training data are represented by each code executed with a given frequency setting. Each code
has been executed with a subset of 40 carefully sampled frequency settings, leading to a training size
of 4240 samples. It is important to remark that, for a given micro-benchmark, it takes 20 min to test
40 frequency settings and 70 min to test all the 177 frequency settings, thereby making difficult the
exhaustive search of all configurations.

To improve the accuracy of the model on a very specific memory configuration, we introduced an
oversampling technique that adds new points to the training data. This approach is discussed in detail
in Section 4.

3.4. Predictive Modeling

The final goal of this work is to predict which GPUs frequency configurations are best suited for an
input OpenCL kernel. A frequency setting is a combination of a core frequency and memory frequency.
For each setting, we are interested in both execution time (in ms) and energy consumption (in Joules).
In this multi-objective context, there is no single best configuration, but a set of Pareto-optimal values,
each exposing a different trade-off between energy and performance. This Section explains how our
work is capable of predicting a Pareto set of frequency settings for an input OpenCL code.

Our approach is based on three key aspects. First, our predictive model uses machine learning:
it is built during a training phase, and later reused on a new code for inference. Second, the
multi-objective model is split into two single-objective problems, which are addressed with two
more specific methods. Third, a final step derives a set of (multi-objective) configurations out of the
two (single-objective) models.

Due to the different behaviors of speedup and normalized energy, we tested different kinds of
regression models, including OLS (ordinary least squares linear regression), LASSO (least absolute
shrinkage and selection operator) and SVR (support vector regression) for speedup modeling, and
polynomial regression and SVR for normalized energy modeling. Because of the more accurate results,
in this section we only report about SVR with different kernels.

Computation 2020, 8, 37 7 of 20

In general, given a training dataset (~w1, y1), . . . , (~wn, yn), where ~wi is a feature vector and yi the
observed value (e.g., either speedup or energy), the SVR model is represented by the following function:

f (~w) =
n

∑
i=1

(αi − α∗i)K(~w, ~wi) + b (1)

where b refers to the bias, and αi and α∗i are Lagrange multipliers that are obtained by solving the
associated dual optimization problem [34]. K(~wi, ~wj) is the kernel function, which will be specified
later in this section.

3.4.1. Speedup Prediction

The first model focuses on the performance of the code with different frequency settings. To have
a more accurate predictive model, we focus on modeling normalized performance values; i.e., speedup
over a baseline configuration using a default memory setting, instead of raw performance.

We analyzed a large set of codes, including the twelve test benchmarks and the 106 micro-kernels
used for training. Based on the analysis insights, while keeping constant input code and memory
frequency, we sought to increase the speedup linearly with the core frequency. For this reason, we
used SVR with linear kernel for speedup prediction.

Formally, given a set of n kernel executions in the training set T, we define a training sample of
input–output pairs (~w1, s1), ..., (~wn, sn), where ~wi ∈ T, and each kernel execution of ~wi is associated
to its measured speedup si. Therefore, the kernel function in (1) is defined as K(~wi, ~wj) = ~wi · ~wj.
Additionally, the C and ε parameters [34] are set to 1000 and 0.1.

After the training, coefficients αi, α∗i and b represent the model, which is later used to predict the
speedup of a new kernel execution ~w comprised of a new input code~k and a frequency setting ~f .

3.4.2. Normalized Energy Model

A second model is used for energy prediction. As we did for performance, we focus on predicting
per-kernel normalized energy values instead of directly modeling energy or power.

We observed how normalized energy behaves on a large number of codes. However, in this case
the relation is not linear: while keeping constant both input code and memory frequency, normalized
energy shows a parabolic behavior with increasing core frequency. After this point, the increase on
core frequency does not compensate for the increase on power, leading to an overall decrease of energy
per task. Because of that, we modeled the normalized energy with a non-linear regression approach;
after testing different ones, we selected radial basis function (RBF) for the kernel.

Formally, given a set of n kernel executions in the training set T, we define a training sample of
input–output pairs (~w1, e1), ..., (~wn, en), where ~wi ∈ T, and each input ~wi is associated to its normalized
energy value ei. Therefore, the kernel function in (1) is defined as K(~wi, ~wj) = exp(−γ||~wi − ~wj||2)
with parameters γ = 0.1, C = 1000 and ε = 0.1.

After the training, the model is represented by the coefficients αi, α∗i and b, which are later used to
predict the normalized energy of a new kernel execution ~w.

3.4.3. Deriving the Pareto Set

The final calculation of the Pareto-optimal solution is a straightforward application of
multi-objective theory. We briefly recall here the most important concepts.

The general idea of Pareto dominance implies that one point dominates another point if it is better
toward one objective and in the others is not worse. In our bi-objective problem, we have two goals,
speedup and normalized energy, which need to be maximized and minimized, respectively. Given
two kernel executions ~wi and ~wj, corresponding to (si, ei) and (sj, ej), ~wi dominates ~wj (denoted by
~wi ≺ ~wj) if we have one of the following cases: (1) si ≥ sj and ei < ej; or (2) si > sj and ei ≤ ej.

Computation 2020, 8, 37 8 of 20

A kernel execution ~w∗ is Pareto-optimal if there is no other kernel execution ~w′ such that ~w′ ≺ ~w∗.
A Pareto-optimal set P∗ is the set of Pareto-optimal kernel execution. A Pareto-optimal front is the set
of points that constitutes the surface of the space dominated by Pareto-optimal set P∗.

Once we have the two predictions for each point (i.e., kernel execution) of the space, we can easily
derive the Pareto set P′ by using Algorithm 1.

In our case, this simple algorithm is enough to process all the kernel executions associated with a
new input kernel. However, faster algorithms with lower asymptotic complexity are available [35].

Algorithm 1 Simple Pareto set calculation.
1: Predictions← {(s1, e1), . . . , (sm, em)}
2: P′ ← ∅ . Output Pareto set
3: Dominated← ∅ . Set of dominated points
4: while Predictions 6= ∅ do
5: candidate← Predictions.pop()
6: for point ∈ Predictions do
7: if candidate ≺ point then
8: Predictions← Predictions \ {candidate}
9: Dominated← Dominated ∪ {candidate}

10: end if
11: if point ≺ candidate then
12: Dominated← Dominate ∪ {point}
13: else
14: P′ ← P′ ∪ {candidate} . We have found a point in the frontier
15: end if
16: end for
17: end while

4. Modeling Imbalanced Dataset

The problem of modeling performance and energy with different frequency configurations has an
additional problem on NVIDIA Titan X GPUs: the set of available frequency configurations provided
by the NVML tool is not evenly distributed, and therefore, is highly imbalanced. Imbalanced data is a
problem common to many machine learning algorithms, and different solutions have been studied
in the literature. In our predictive approach, the imbalanced distribution of the training data affects,
particularly, some low-memory frequency configurations. In this section, we introduce how the
frequency domain is distributed, and discuss how to solve the imbalanced data problem.

4.1. Frequency Domain and Test Setting

Our work is based on the ability of setting up memory and core frequencies, and on getting an
accurate measurement of the energy consumption of a task execution. For the experimental evaluation
of our approach, we relied on the capabilities provided by the NVML [2] library. It supports a number
of functions to check which frequencies are supported (nvmlDeviceGetSupportedMemoryClocks()),
to set the core and memory frequency (nvmlDeviceSetApplicationsClocks()), and to get the power
consumption of the GPUs (nvmlDeviceGetPowerUsage()).

It is important to remark that different NVIDIA GPUs may have very different tunable
configurations. For example, the NVIDIA Titan X provides four tunable memory frequencies (labeled
for simplicity mem-L, l, h and H to represent 405, 810, 3304 and 3505 MHz) while the NVIDIA Tesla P100
only supports one. In addition, we experimentally noticed that some of the configurations marked
as supported by NVML are not available, because the setting function does not actually change the
frequencies. Figure 5 shows those frequency configurations on an NVIDIA Titan X (Figure 5a) and
a Tesla P100 (Figure 5b). The black points represent the actual available memory-core configurations.

Computation 2020, 8, 37 9 of 20

On Titan X, while setting to a core frequency higher than 1202 MHz for mem-l,h,H, the core frequency
is actually set to 1202 MHz. The gray points indicate those configurations indicated as supported by
NVML but that actually correspond to the core frequency of 1202 MHz.

As our goal was to statically model how core and memory frequency behave with different
applications, we disabled any dynamic frequency feature (auto-boost): all experiments have been
performed at a manually-defined memory setting. The red cross represents the default frequency
configuration while not using dynamic scaling.

0 200 400 600 800 1000 1200 1400
Core frequency (MHz)

0

2000

4000

M
e
m

o
ry

 f
re

q
u
e
n
c
y
 (

M
H

z
)

Default Config.

(a) Titan X

500 600 700 800 900 1000 1100 1200 1300 1400
Core frequency (MHz)

714

715

716

M
e
m

o
ry

 f
re

q
u
e
n
c
y
 (

M
H

z
)

Default Config.

(b) Tesla P100
Figure 5. Supported combinations of memory and core frequencies as in Fan et al. [3].

An important issue of modeling these frequency configurations is that they are not evenly spread
over the frequency domain; instead, different core frequencies are available for each memory frequency.
In particular, the lowest memory configuration (mem-L) only supports six core frequencies, while mem-l
has 71, and both mem-h and mem-H have 50.

Because of the larger space of possible memory configurations, our work is more interesting
on the Titan X. The methodology introduced by this work is portable, and all tests presented in this
work have been performed on both NVIDIA GTX Titan X and NVIDIA Tesla P100. However, we
mainly focus on the most interesting Titan X scenario and all graphics refer to such architecture unless
explicitly mentioned.

The main target architecture is equipped with the Titan X GPUs based on Maxwell architecture,
supporting Compute capability 5.2, with default frequencies of 3505 MHz (memory) and 1001 MHz
(core), OpenCL version 1.2 and driver version 352.63. The OS was Linux CentOS 14.

The per-kernel energy consumption is computed out of the power measurements; e.g., the
average of sampled power values times the execution time. NVML provides power measurements at a
frequency of 62.5 Hz, which may affect the accuracy of our power measurements if a benchmark runs
for too short a time. Therefore, the applications have been executed multiple times, to make sure that
the execution time was long enough to reach a statistically consistent power value.

4.2. Imbalance of Available Frequency Configurations

As discussed in Section 4.1, there are a total of 177 supported frequency configurations on NVIDIA
GTX Titan X. However, it is clear the number of supported core frequencies on each memory frequency
is not same (as shown in Figure 5a); the second lowest memory (mem-l) has 71 core frequencies
supported, while the lowest memory (mem-L) only supports six.

To make the samples more balanced, and also to make less difficult the exhaustive search of all
supported configurations, we carefully under-sampled core frequencies on the mem-H, mem-h and mem-l.
Over all, we used 40 frequency configurations to train and make prediction in Fan [3]. As shown in
Figure 6a, the red cross represents the sampled configurations used in Fan [3]. Since the mem-L only
has six core frequencies available, we chose all the six points rather than under-sampling. However,
the imbalanced data problem still exists.

Computation 2020, 8, 37 10 of 20

200 400 600 800 1000 1200

Core frequency (MHz)

0

1000

2000

3000

4000

M
e
m

o
ry

 f
re

q
u

e
n

c
y
 (

M
H

z
)

Sampled Config.

Default Config.

(a) Sampled points as in Fan et al. [3]

200 400 600 800 1000 1200

Core frequency (MHz)

0

1000

2000

3000

4000

M
e
m

o
ry

 f
re

q
u

e
n

c
y
 (

M
H

z
)

Sampled Config.

Default Config.

SMOTE Resampled Config.

(b) Re-sampled points using SMOTE.
Figure 6. Comparison of sampled frequency configurations.

One way to handle the problem is to generate new samples in the minority class (mem-L), which
is named oversampling and used widely in the machine learning to compensate for an imbalanced
dataset. There are three popular techniques to oversample minority classes: (i) random sampling with
replacement, (ii) the adaptive synthetic (ADASYN) sampling method and (iii) the synthetic minority
oversampling technique (SMOTE) [36]. Figure 6b shows the oversampled points (blue circle) using
the most common technique SMOTE. After oversampling, there are 14 points on the lowest memory
frequency, and they are used in the training phase (see Figure 3b) to improve the prediction accuracy.

5. Experimental Evaluation

This Section presents and discusses the results of our study. The evaluation consists of
an improved result using oversampling (Section 5.1); an analysis of energy and performance
characterization (Section 5.2), followed by input-dependent analysis (Section 5.3); and an error
analysis of our prediction model for speedup and energy efficiency (Section 5.4). It concludes with the
evaluation of the predicted set of Pareto solutions (Section 5.5).

5.1. Experimental Evaluation of Oversampling

This section evaluates the accuracy of our speedup and normalized energy predictions using
oversampling technique SMOTE. The modeling approach used for this evaluation is the one described
in Section 3.4 based on linear SVR, RBF SVR and trained on micro-benchmarks. For each application, we
trained the speedup and normalized energy models with all the oversampled frequency configurations,
predicted the values and then calculated the the error after actually running that configuration.

Figures 7a and 8a show the minimum, median and maximum error (%), and the error distribution
of the 25 and 75 percentiles, for the speedup and normalized energy, respectively, for only one memory
frequency (mem-L). We do not show the errors on the other three memory frequencies because SMOTE
technique mostly affects the minority class (mem-L configuration). Therefore, we only show the
prediction accuracy improvement on mem-L.

Figures 7b and 8b show the prediction error using SMOTE. Compared to the results under lowest
memory frequency in Fan [3], the accuracy of speedup prediction and normalized energy prediction
had only modest improvements of 0.1% and 1.0%, respectively.

Computation 2020, 8, 37 11 of 20

Blac
ksc

hole
s MD

K-m
ean

s

Median
Filt

er Flte

Per
linNois

e BC

Matr
ixM

ultip
ly

Convol
ution k-N

N AES MT
−40

−30

−20

−10

0

10

20

30

40
Ab

so
lu

te
 e

rro
r [

%
]

Memory Frequency: 405 MHz (Mem-L)

RMSE = 9.09%

(a) Prediction error (Fan et al. [3]).

Blac
ksc

hole
s MD

K-m
ean

s

Median
Filt

er Flte

Per
linNois

e BC

Matr
ixM

ultip
ly

Convol
ution k-N

N AES MT
−40

−30

−20

−10

0

10

20

30

40

Ab
so

lu
te

 e
rro

r [
%

]

Memory Frequency: 405 MHz (Mem-L)

RMSE = 8.89%

(b) Prediction error (SMOTE).
Figure 7. Speedup prediction error under lowest memory frequency.

Blac
ksc

hole
s MD

K-m
ean

s

Median
Filt

er Flte

Per
linNois

e BC

Matr
ixM

ultip
ly

Convol
ution k-N

N AES MT
−40

−30

−20

−10

0

10

20

30

40

Ab
so

lu
te

 e
rro

r [
%

]

Memory Frequency: 405 MHz (Mem-L)

RMSE = 15.1%

(a) Prediction error (Fan et al. [3]).

Blac
ksc

hole
s MD

K-m
ean

s

Median
Filt

er Flte

Per
linNois

e BC

Matr
ixM

ultip
ly

Convol
ution k-N

N AES MT
−40

−30

−20

−10

0

10

20

30

40

Ab
so

lu
te

 e
rro

r [
%

]

Memory Frequency: 405 MHz (Mem-L)

RMSE = 13.9%

(b) Prediction error (SMOTE).
Figure 8. Prediction error of normalized energy under lowest memory frequency.

5.2. Application Characterization Analysis

In Figure 9, we analyzed the behavior of twelve test benchmarks in terms of both speedup and
(normalized) energy consumption. For each code, we show speedup (x axis) and normalized energy (y
axis) with different frequency configurations; the reference baseline for both correspond to the energy
and performance value of the default frequency configuration. Generally, the applications show two
main patterns (see top and other codes in Figure 9), i.e., memory- vs. compute-dominated kernels,
which correspond to the different sensitivity to core and memory frequency changes.

Speedup In terms of speedup, k -NN shows a high variance with respect of the core frequency: for
mem-H and mem-h, speedup goes from 0.62 up to 1.12, which means that it can double the performance
by only changing the core frequency; for the mem-l the difference is even larger. The limited data for
mem-L suggest a similar behavior. At the other extreme, blackscholes and MT show very little speedup
difference while increasing the core frequency: all configurations are clustered to the same speedup
for mem-L and l, while in mem-h and H the difference is minimal (from 0.89 to 1). Other applications
behave within those two extreme codes.

Computation 2020, 8, 37 12 of 20

0 0.2 0.4 0.6 0.8 1 1.2

Speedup

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o
rm

a
liz

e
d
 e

n
e
rg

y

Mem-H

Mem-h

Mem-l

Mem-L

(a) k-NN

0 0.2 0.4 0.6 0.8 1 1.2

Speedup

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o
rm

a
liz

e
d
 e

n
e
rg

y

Mem-H

Mem-h

Mem-l

Mem-L

(b) AES

0 0.2 0.4 0.6 0.8 1 1.2

Speedup

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o
rm

a
liz

e
d
 e

n
e
rg

y

Mem-H

Mem-h

Mem-l

Mem-L

(c) Matrix-multiply

0 0.2 0.4 0.6 0.8 1 1.2

Speedup

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o

rm
a

liz
e

d
 e

n
e

rg
y

Mem-H

Mem-h

Mem-l

Mem-L

200

300

400

500

600

700

800

900

1000

1100

Core(MHz)

(d) Convolution

0 0.2 0.4 0.6 0.8 1 1.2

Speedup

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o
rm

a
liz

e
d
 e

n
e
rg

y

Mem-H

Mem-h

Mem-l

Mem-L

(e) MD

0 0.2 0.4 0.6 0.8 1 1.2

Speedup

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o
rm

a
liz

e
d
 e

n
e
rg

y

Mem-H

Mem-h

Mem-l

Mem-L

(f) Flte

0 0.2 0.4 0.6 0.8 1 1.2

Speedup

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o

rm
a

liz
e

d
 e

n
e

rg
y

Mem-H

Mem-h

Mem-l

Mem-L

(g) Kmeans

0 0.2 0.4 0.6 0.8 1 1.2

Speedup

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o

rm
a

liz
e

d
 e

n
e

rg
y

Mem-H

Mem-h

Mem-l

Mem-L

200

300

400

500

600

700

800

900

1000

1100

Core(MHz)

(h) Perlin Noise

0 0.2 0.4 0.6 0.8 1 1.2

Speedup

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o
rm

a
liz

e
d
 e

n
e
rg

y

Mem-H

Mem-h

Mem-l

Mem-L

(i) Median Filter

0 0.2 0.4 0.6 0.8 1 1.2

Speedup

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o
rm

a
liz

e
d
 e

n
e
rg

y

Mem-H

Mem-h

Mem-l

Mem-L

(j) Bit Compression

0 0.2 0.4 0.6 0.8 1 1.2

Speedup

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o
rm

a
liz

e
d
 e

n
e
rg

y

Mem-H

Mem-h

Mem-l

Mem-L

(k) MT

0 0.2 0.4 0.6 0.8 1 1.2

Speedup

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o

rm
a

liz
e

d
 e

n
e

rg
y

Mem-H

Mem-h

Mem-l

Mem-L

200

300

400

500

600

700

800

900

1000

1100

Core(MHz)

(l) Blackscholes

Figure 9. Speedup and normalized energy for twelve selected benchmarks and different frequency
configurations as in Fan et al. [3]. Bottom (energy)-right (speedup) is better.

Normalized energy As previously mentioned, normalized energy often exhibits a parabolic
distribution with a minimum. With respect to core frequency, it varies within smaller intervals. For
the highest memory frequencies, it goes up to 1.4 for the first four codes, and up to 1.2 for the others.
Again, the lowest configuration present very different behaviors: on k -NN, energy-per-task may be
double the baseline, up to 0.8; in blacksholes, on the other hand, mem-L shows the same normalized
energy for all the core frequencies.

High vs. low memory frequencies There is a big difference between high (mem-H and h) and
low (mem-l and L) frequency configurations. Mem-H and h behave in a very similar way, with regard
to both speedup and normalized energy. Both mem-l and mem-L have behavior that is much harder
to predict. Mem-l behaves like the highest memory frequency at a lower normalized energy for the
first four codes; however, on the other four codes, the configurations collapse to a line. The mem-L is
even more erratic: in some codes, all points collapse to a very small area, practically a point. This
is a problem for modeling: lowest memory configurations are much harder to model because their
behavior is very erratic. In addition, because the supported configurations are not evenly distributed,
we also have less points to base our analysis.

Pareto optimality In general, we can see two different patterns (this also extend to the other
test benchmarks). In terms of Pareto optimality, most of the dominant points are mem-h and H.
However, lower memory settings may as well contribute to the Pareto-set with configurations; in
k -NN, for instance, mem-l has a configuration that is as fast the highest ones, but with 20% less energy
consumption.

The default configuration is often a very good one. However, there are other dominant solutions
that cannot be selected by using the default configuration.

Computation 2020, 8, 37 13 of 20

5.3. Input-Size Analysis

Our previous work [3] was built on static code features, and did not take different input sizes into
consideration. In fact, changing problem size results in a significant effect on the performance [20].
While in our case, it is more important to understand that the Pareto optimal solutions are likely
to change with different input sizes. We analyze the statement presenting a case study with two
applications: Matrix Multiply and MT (Mersenne Twister). These two applications have been
chosen to represent very different behaviors, but the insights apply to all the tested applications.
The applications have been executed with different problem sizes and the results are shown in
Figures 10 and 11.

Matrix Multiply Application We tested the four memory settings mentioned above, labeled for
simplicity L, l, h and H, each with all supported core frequencies. The default setting (mem-H and
core at 1001 MHz) is at the intersection of the green lines. In terms of Matrix Multiply (Figure 10),
speedup (the left column) benefits greatly from core scaling. On the other hand, (normalized) energy
consumption behaves differently. In the middle column of Figure 10, for three out of four memory
configurations, normalized energy is similar to a parabolic function with a minimum point: while
increasing the core frequency, first the energy decreases as the computational time is reduced; but
then, the higher frequencies have an impact on energy in a way that it does not compensate for the
improvement on speedup. The lowest memory configuration (mem-L) seems to show a similar behavior;
however, we do not have data at higher core frequencies to validate it (core frequencies larger than
405 MHz are not supported for mem-L; details in Figure 5a).

However, the speedup and normalized energy are slightly different between small and large
input sizes. For the smaller problem size (the top in Figure 10), the rate of speedup increases with core
frequency scaling and also the curvature of normalized energy are lower than the other three larger
input sizes. While for the other three input sizes, the speedup and normalized energy consumption do
not change a lot as the input size increases from 262144 to 1048576, respectively.

The right column in Figure 10 shows both energy and performance. As they behave differently,
there is no single optimal configuration. In fact, this is a multi-objective optimization problem, with
a set of Pareto-optimal solutions. It is important to note that for the small size (8192), the default
configuration (black cross) is Pareto-optimal, while it is not for the other three input sizes.

Mersenne Twister Application In contrast to the behavior of Matrix Multiply, Mersenne
Twister behaves differently, not only regarding the speedup and normalized energy consumption
for the same input size, but also the effect of different sizes. For the speedup, increasing the core
frequency does not improve performance, while selecting the highest memory frequency (mem-H) does,
as shown in the left column of Figure 11. This behavior is justified by the larger number of memory
operations. The energy consumption of Mersenne Twister behaves similar to Matrix Multiply,
while the increase of energy consumption with higher core frequencies is larger.

In terms of input size, the speedup is decreased with the increasing input size, especially for
mem-l and mem-L. The normalized energy consumption is better in the small input size (8192) than the
other sizes. Mapping the observations to the bi-objective problem (the right column if Figure 11), it is
clear to find that the mem-l solutions are not Pareto-optimal for large input size, which illustrates that
the Pareto-optimal solutions mainly exist with higher memory frequency configurations for the large
input size of a memory-bounded application.

Computation 2020, 8, 37 14 of 20

Speedup

0 200 400 600 800 1000 1200 1400

Core frequency (MHz)

0

0.5

1

1.5

S
p
e
e

d
u

p
Energy Consumption

0 200 400 600 800 1000 1200 1400

Core frequency (MHz)

0

0.5

1

1.5

2

N
o
rm

a
liz

e
d

 E
n

e
rg

y

Bi-objective

0 0.5 1

Speedup

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o

rm
a

liz
e

d
 e

n
e

rg
y

Mem-H

Mem-h

Mem-l

Mem-L

0 200 400 600 800 1000 1200 1400

Core frequency (MHz)

0

0.5

1

1.5

S
p
e
e
d
u
p

0 200 400 600 800 1000 1200 1400

Core frequency (MHz)

0

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 E

n
e
rg

y

0 0.5 1

Speedup

0.5

1

1.5

2

N
o
rm

a
liz

e
d

 e
n
e
rg

y

Mem-H

Mem-h

Mem-l

Mem-L

0 200 400 600 800 1000 1200 1400

Core frequency (MHz)

0

0.5

1

1.5

S
p
e
e

d
u

p

0 200 400 600 800 1000 1200 1400

Core frequency (MHz)

0

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 E

n
e
rg

y

0 0.5 1

Speedup

0.5

1

1.5

2

N
o

rm
a

liz
e

d
 e

n
e

rg
y

Mem-H

Mem-h

Mem-l

Mem-L

0 200 400 600 800 1000 1200 1400

Core frequency (MHz)

0

0.5

1

1.5

S
p
e
e
d
u
p

0 200 400 600 800 1000 1200 1400

Core frequency (MHz)

0

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 E

n
e
rg

y

0 0.5 1

Speedup

0.5

1

1.5

2

N
o

rm
a

liz
e

d
 e

n
e

rg
y

Mem-H

Mem-h

Mem-l

Mem-L

Figure 10. Matrix multiply results with different memory and core frequency in different input sizes
(8192, 262,144, 524,288 and 1,048,576 from top to bottom).

Speedup

0 200 400 600 800 1000 1200 1400

Core frequency (MHz)

0

0.5

1

1.5

S
p
e
e
d
u
p

Energy Consumption

0 200 400 600 800 1000 1200 1400

Core frequency (MHz)

0

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 E

n
e
rg

y

Bi-objective

0 0.5 1

Speedup

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o

rm
a

liz
e

d
 e

n
e

rg
y

Mem-H

Mem-h

Mem-l

Mem-L

0 200 400 600 800 1000 1200 1400

Core frequency (MHz)

0

0.5

1

1.5

S
p
e
e
d
u
p

0 200 400 600 800 1000 1200 1400

Core frequency (MHz)

0

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 E

n
e
rg

y

0 0.5 1

Speedup

0.5

1

1.5

2

N
o

rm
a

liz
e

d
 e

n
e

rg
y

Mem-H

Mem-h

Mem-l

Mem-L

0 200 400 600 800 1000 1200 1400

Core frequency (MHz)

0

0.5

1

1.5

S
p
e
e
d
u
p

0 200 400 600 800 1000 1200 1400

Core frequency (MHz)

0

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 E

n
e
rg

y

0 0.5 1

Speedup

0.5

1

1.5

2

N
o

rm
a

liz
e

d
 e

n
e

rg
y

Mem-H

Mem-h

Mem-l

Mem-L

0 200 400 600 800 1000 1200 1400

Core frequency (MHz)

0

0.5

1

1.5

S
p
e
e
d
u
p

0 200 400 600 800 1000 1200 1400

Core frequency (MHz)

0

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 E

n
e
rg

y

0 0.5 1

Speedup

0.5

1

1.5

2

N
o

rm
a

liz
e

d
 e

n
e

rg
y

Mem-H

Mem-h

Mem-l

Mem-L

Figure 11. Mersenne Twister results with different memory and core frequency in different input size
(8192, 262,144, 524,288 and 1,048,576 from top to bottom).

Computation 2020, 8, 37 15 of 20

5.4. Accuracy of Speedup and Normalized Energy Predictions

We discussed the prediction error of speedup and normalized energy under the lowest memory
frequency in Section 5.1. In this section we use the same analysis method to analyze the accuracy of
predictions with all sampled frequency configurations. The predictions are obtained by resampled
training data with SMOTE technique (see in Section 3.1).

In Figure 12a, the speedup error analysis shows that the error is dependent on the memory
frequency. The error for the highest memory frequencies is quite low. It is usually within the 5% and
goes over the 10% only for few outliers. The error here is also evenly distributed (over and under
approximations are similar). Figure 12b shows the normalized energy prediction error by memory
frequency and program. High memory frequency predictions are accurate. However, the relatively
small error for the two highest-frequency configurations is not evenly distributed as for speedup, and
it is also application dependent. For instance, the AES code is always over-approximated.

With respect to [3], the use of SMOTE reduced the speedup prediction error for memory frequency
405 MHz (from 9.1% to 8.9%) and normalized energy prediction error for memory frequency 405 MHz
(from 15.1% to 13.9%).

−40

−20

0

20

40

Ab
so

lu
te

 e
rro

r [
%

]

Memory Frequency: 3505 MHz (Mem-H)

RMSE = 6.67%

−40

−20

0

20

40

Ab
so

lu
te

 e
rro

r [
%

]

Memory Frequency: 3304 MHz (Mem-h)

RMSE = 6.99%

−40

−20

0

20

40

Ab
so

lu
te

 e
rro

r [
%

]

Memory Frequency: 810 MHz (Mem-l)

RMSE = 11.18%

Bl
ac

ks
ch

ol
es M
D

K-
m

ea
ns

M
ed

ia
nF

ilt
er Fl
te

Pe
rli

nN
oi

se BC

M
at

rix
M

ul
tip

ly

Co
nv

ol
ut

io
n

k-
NN AE

S M
T

−40

−20

0

20

40

Ab
so

lu
te

 e
rro

r [
%

]

Memory Frequency: 405 MHz (Mem-L)

RMSE = 8.89%

(a) Prediction error of speedup

−40

−20

0

20

40

Ab
so

lu
te

 e
rro

r [
%

]

Memory Frequency: 3505 MHz (Mem-H)

RMSE = 9.03%

−40

−20

0

20

40

Ab
so

lu
te

 e
rro

r [
%

]

Memory Frequency: 3304 MHz (Mem-h)

RMSE = 6.22%

−40

−20

0

20

40

Ab
so

lu
te

 e
rro

r [
%

]

Memory Frequency: 810 MHz (Mem-l)

RMSE = 13.78%

Bl
ac

ks
ch

ol
es M
D

K-
m

ea
ns

M
ed

ia
nF

ilt
er Fl
te

Pe
rli

nN
oi

se BC

M
at

rix
M

ul
tip

ly

Co
nv

ol
ut

io
n

k-
NN AE

S M
T

−40

−20

0

20

40

Ab
so

lu
te

 e
rro

r [
%

]

Memory Frequency: 405 MHz (Mem-L)

RMSE = 13.9%

(b) Prediction error of normalized energy
Figure 12. Accuracy of speedup and normalized energy predictions with SMOTE.

5.5. Accuracy of the Predicted Pareto Set

Once the two models have predicted the speedup and normalized energy for all frequency
configurations, Algorithm 1 is used to calculate the predicted Pareto set. The accuracy analysis of
the Pareto set is not trivial because our predicted set may include points that, in actual measured
performance, are not dominant each other. In general, a better Pareto approximation is a set of solutions
that, in terms of speedup and normalized energy, is the closest possible to the real Pareto-optimal one,
which in our case has been evaluated on a subset of sampled configurations.

Lowest memory configuration Because of technical limitations of NVML, the memory
configuration mem-L only supports six core configurations, up to only 405 MHz; therefore it covers
only a limited part of the core-frequency domain. This leads to a lower accuracy of normalized energy
prediction (Figure 12b). In addition, the Pareto analysis shows that the last point is usually dominant
to the others, and it contributes to the overall set of Pareto points in 11 out of 12 codes, as shown in
Figure 13 (the six mem-L points are in green, the last point is blue when dominant).

Computation 2020, 8, 37 16 of 20

We used a simple heuristics to cover up with this issue: we used the predictive modeling approach
on the other three memory configurations, and added the last of the mem-L configuration in the Pareto
set. This simple solution is accurate for all but one code: AES.

Pareto frontier accuracy Figure 13 provides an overview of the Pareto set predicted by our
method and the real ones, over a collection of twelve test benchmarks. The gray points represent the
measured speedup and normalized energy of all the sampled frequency configurations (mem-H, mem-h
and mem-l), except for mem-L, which are in green because they are not modeled with our predictive
approach. The default configuration is marked with a black cross. The blue line represent the real
Pareto front P∗, while the red crosses represent our predicted Pareto set P′ (we did not connect these
points because they are not necessarily dominant each other).

Coverage difference Table 2 shows different metrics that evaluate the accuracy of our predicted
Pareto set. A measure that is frequently used in multi-objective optimization is the hypervolume (HV)
indicator [37], which measures the volume of an approximation set with respect of a reference point in
terms of the dominated area. In our case, we are interested on the coverage difference between two sets
(e.g., the real Pareto set P∗ and the approximation set P′). Therefore, we use the binary hypervolume
metric [38], which is defined by:

D(P∗, P′) = HV(P∗ + P′)− HV(P′) (2)

Because we maximize on speedup and minimize on normalized energy consumption, we select (0.0,
2.0) as the reference point. In addition, we also indicate the cardinality of both predicted and optimal
Pareto set.

The twelve test benchmarks in Figure 13 are sorted by coverage difference. Perlin Noise is the
code with the nearest distance to the optimal Pareto set: the 12 predicted points are very close to the 10
optimal ones, and the overall coverage distance is minimal (0.0059). Overall, the Pareto predictions
for the first six codes are very accurate (≤ 0.0208). Five more codes have some visible mispredictions
which, however, translate to a not so large error (≤ 0.0362). k -NN is the worst code because of lowest
accuracy of speedup prediction, which shows in Figure 12a.

Accuracy on Extrema We additionally evaluated the accuracy of our predictive approach on
finding the extreme configurations; e.g., the two dominant points that have, respectively, minimum
energy consumption and maximum speedup. Again, we removed from this analysis the mem-L
configurations, whose accuracy was discussed above. The rational behind this evaluation is that the
accuracy on the Pareto predictions may not reflect the accuracy on these extreme points. As shown in
Table 2, the point with maximum speedup is predicted exactly in 7 out of 12 cases, and the error is small.
In case of the point with minimum energy, we have larger mispredictions in general; in particular two
codes, AES and MT, have a very large error. This reflects the single-objective accuracy observed before,
where the accuracy of speedup is generally higher than the accuracy of energy. The high error on all
our analysis with the MT code is mainly due to the fact that lower memory configurations collapses to a
point (mem-L) and a line (mem-l), a behavior that is not showed by other codes.

Predictive modeling in a multi-objective optimization scenario is challenging because few
mispredicted points may impact the whole prediction, as they may dominate other solutions with
a good approximation. Moreover, errors are not all equals: overestimation on speedup, as well as
underestimation on energy, are much worse than the opposite, as they may introduce wrong dominant
solutions. Despite that, our predictive approach is able to deliver good approximations in ten out of
twelve test benchmarks.

Computation 2020, 8, 37 17 of 20

0.5 0.6 0.7 0.8 0.9 1.0
Speedup

0.6

0.7

0.8

0.9

1.0

1.1

1.2

No
rm

al
ize

d
En

er
gy

(a) Perlin Noise

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Speedup

0.8

0.9

1.0

1.1

1.2

1.3

No
rm

al
ize

d
En

er
gy

(b) MD

0.5 0.6 0.7 0.8 0.9 1.0
Speedup

0.7

0.8

0.9

1.0

1.1

1.2

1.3

No
rm

al
ize

d
En

er
gy

(c) K-means

0.5 0.6 0.7 0.8 0.9 1.0
Speedup

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

No
rm

al
ize

d
En

er
gy

(d) Median Filter

0.4 0.6 0.8 1.0
Speedup

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

No
rm

al
ize

d
En

er
gy

(e) Convolution

0.6 0.7 0.8 0.9 1.0
Speedup

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

No
rm

al
ize

d
En

er
gy

(f) Blackscholes

0.5 0.6 0.7 0.8 0.9 1.0
Speedup

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

No
rm

al
ize

d
En

er
gy

(g) MT

0.5 0.6 0.7 0.8 0.9 1.0
Speedup

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

No
rm

al
ize

d
En

er
gy

(h) Flte

0.4 0.6 0.8 1.0
Speedup

0.9

1.0

1.1

1.2

1.3

No
rm

al
ize

d
En

er
gy

(i) Matrix-multiply

0.5 0.6 0.7 0.8 0.9 1.0
Speedup

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

No
rm

al
ize

d
En

er
gy

(j) Bit Compression

0.5 0.6 0.7 0.8 0.9 1.0 1.1
Speedup

0.8

0.9

1.0

1.1

1.2

1.3

1.4

No
rm

al
ize

d
En

er
gy

(k) AES

0.2 0.4 0.6 0.8 1.0 1.2
Speedup

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d
En

er
gy

(l) k-NN

Figure 13. Accuracy of the predicted Pareto front. Measured solutions are shown for all configurations,
while the other data points are based only on the highest frequency configurations. Bottom
(energy)-right (speedup) is better.

Table 2. Evaluation of predicted Pareto fronts.

Benchmark D(P∗, P′) #Points Extrema Point Distance
|P′| |P∗| Max Speedup Min Energy

PerlinNoise 0.0059 12 10 (0.0, 0.0) (0.009, 0.008)
MD 0.0075 9 11 (0.0, 0.0) (0.0, 0.0)
K-means 0.0155 10 12 (0.0, 0.0) (0.007, 0.003)
MedianFilter 0.0162 11 6 (0.001, 0.094) (0.008, 0.006)
Convolution 0.0197 10 14 (0.0, 0.0) (0.042, 0.038)
Blackscholes 0.0208 9 7 (0.002, 0.097) (0.007, 0.016)
MT 0.0272 10 6 (0.003, 0.018) (0.505, 0.114)
Flte 0.0279 9 11 (0.012, 0.016) (0.0, 0.0)
MatrixMultiply 0.0286 9 10 (0.0, 0.0) (0.073, 0.050)
BitCompression 0.0316 11 6 (0.0, 0.0) (0.020, 0.023)
AES 0.0362 11 14 (0.0, 0.0) (0.214, 0.165)
k-NN 0.0660 9 8 (0.036, 0.183) (0.057, 0.004)

6. Conclusions

This paper introduces a modeling approach aimed at predicting the best memory and core
frequency settings for an OpenCL application on GPUs. The proposed methodology is based on
a two-phase machine learning approach. To handle the imbalanced dataset in the training phase,
SMOTE algorithm is introduced. After that the model built with oversampling data is used to predict
the best frequency configurations of a new input kernel.

Computation 2020, 8, 37 18 of 20

The modeling approach is designed to address both energy and performance in a multi-objective
context. Different models are build to predict the normalized energy and the speedup. Successively,
these models are used together to derive a set of Pareto-optimal solutions. Results on an NVIDIA Titan
X show that it is possible to accurately predict a set of good memory configurations that are better than
the default predefined one.

In the future, we believe that novel modeling approaches are required, given the rising interest in
multi-objective problems involving energy efficiency, approximate computing and space optimization.

Author Contributions: Conceptualization, K.F.; Methodology, B.C. and K.F.; Software, K.F.; Validation, K.F.;
Formal analysis, K.F.; Investigation, K.F.; Resources, B.J.; Data curation, K.F.; Writing–original draft preparation,
K.F.; Writing–review and editing, B.C.; Visualization, K.F.; Supervision, B.J.; Project administration, B.C. and B.J.;
Funding acquisition, B.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been partially funded by the DFG project CELERITY (CO 1544/1-1, project number
360291326) and by the China Scholarship Council.

Acknowledgments: We want to acknowledge the anonymous reviewers for their valuable insights.

Conflicts of Interest: The authors declare no conflict of interest.The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Intel. RAPL (Running Average Power Limit) Power Meter. Available online: https://01.org/rapl-power-
meter (accessed on 24 April 2020).

2. NVIDIA. NVIDIA Management Library (NVML). Available online: https://developer.nvidia.com/nvidia-
management-library-nvml (accessed on 24 April 2020).

3. Fan, K.; Cosenza, B.; Juurlink, B.H.H. Predictable GPUs Frequency Scaling for Energy and Performance.
In Proceedings of the 48th International Conference on Parallel Processing, ICPP, Kyoto, Japan, 5–8 August
2019; pp. 52:1–52:10.

4. Mei, X.; Yung, L.S.; Zhao, K.; Chu, X. A Measurement Study of GPU DVFS on Energy Conservation.
In Proceedings of the Workshop on Power-Aware Computing and Systems, Berkleley, CA, USA, 3–6
November 2013; pp. 10:1–10:5.

5. Calore, E.; Gabbana, A.; Schifano, S.F.; Tripiccione, R. Evaluation of DVFS techniques on modern HPC
processors and accelerators for energy-aware applications. Concurr. Comput. Pract. Exp. 2017, 29, e4143.

6. Ge, R.; Vogt, R.; Majumder, J.; Alam, A.; Burtscher, M.; Zong, Z. Effects of Dynamic Voltage and Frequency
Scaling on a K20 GPU. In Proceedings of the 42nd International Conference on Parallel Processing, ICPP,
Lyon, France, 1–4 October 2013.

7. Tiwari, A.; Laurenzano, M.; Peraza, J.; Carrington, L.; Snavely, A. Green Queue: Customized Large-Scale
Clock Frequency Scaling. In Proceedings of the International Conference on Cloud and Green Computing,
CGC, Xiangtan, China, 1–3 November 2012.

8. Vysocky, O.; Beseda, M.; Ríha, L.; Zapletal, J.; Lysaght, M.; Kannan, V. MERIC and RADAR Generator: Tools
for Energy Evaluation and Runtime Tuning of HPC Applications. In Proceedings of the High Performance
Computing in Science and Engineering - Third International Conference, HPCSE, Karolinka, Czech Republic,
22–25 May 2017; Revised Selected Papers; pp. 144–159.

9. Hamano, T.; Endo, T.; Matsuoka, S. Power-aware dynamic task scheduling for heterogeneous accelerated
clusters. In Proceedings of the 23rd IEEE International Symposium on Parallel and Distributed Processing,
IPDPS, Rome, Italy, 23–29 May 2009; pp. 1–8.

10. Lopes, A.; Pratas, F.; Sousa, L.; Ilic, A. Exploring GPU performance, power and energy-efficiency bounds with
Cache-aware Roofline Modeling. In Proceedings of the 2017 IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS, Santa Rosa, CA, USA, 24–25 April 2017; pp. 259–268.

11. Ma, K.; Li, X.; Chen, W.; Zhang, C.; Wang, X. GreenGPU: A Holistic Approach to Energy Efficiency in
GPU-CPU Heterogeneous Architectures. In Proceedings of the 41st International Conference on Parallel
Processing, ICPP, Pittsburgh, PA, USA, 10–13 September 2012; pp. 48–57.

https://01.org/rapl-power-meter
https://01.org/rapl-power-meter
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml

Computation 2020, 8, 37 19 of 20

12. Song, S.; Lee, M.; Kim, J.; Seo, W.; Cho, Y.; Ryu, S. Energy-efficient scheduling for memory-intensive GPGPU
workloads. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition, Dresden,
Germany, 24–28 March 2014; pp. 1–6.

13. Choi, J.; Vuduc, R.W. Analyzing the Energy Efficiency of the Fast Multipole Method Using a DVFS-Aware
Energy Model. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium
Workshops, Chicago, IL, USA, 23–27 May 2016; pp. 79–88.

14. Lee, J.H.; Nigania, N.; Kim, H.; Patel, K.; Kim, H. OpenCL Performance Evaluation on Modern Multicore
CPUs. Sci. Program. 2015, 2015, doi:10.1155/2015/859491.

15. Shen, J.; Fang, J.; Sips, H.J.; Varbanescu, A.L. An application-centric evaluation of OpenCL on multi-core
CPUs. Parallel Comput. 2013, 39, 834–850.

16. Harris, G.; Panangadan, A.V.; Prasanna, V.K. GPU-Accelerated Parameter Optimization for Classification
Rule Learning. In Proceedings of the International Florida Artificial Intelligence Research Society Conference,
FLAIRS, Key Largo, FL, USA, 16–18 May 2016; pp. 436–441.

17. Pohl, A.; Cosenza, B.; Juurlink, B.H.H. Portable Cost Modeling for Auto-Vectorizers. In Proceedings
of the 27th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, MASCOTS 2019, Rennes, France, 21–25 October 2019; pp. 359–369.

18. Panneerselvam, S.; Swift, M.M. Rinnegan: Efficient Resource Use in Heterogeneous Architectures.
In Proceedings of the 2016 International Conference on Parallel Architectures and Compilation, PACT,
Haifa, Israel, 11–15 September 2016.

19. Wang, Q.; Chu, X. GPGPU Performance Estimation with Core and Memory Frequency Scaling.
In Proceedings of the 24th IEEE International Conference on Parallel and Distributed Systems, ICPADS 2018,
Singapore, 11–13 December 2018; pp. 417–424. doi:10.1109/PADSW.2018.8645000.

20. Kofler, K.; Grasso, I.; Cosenza, B.; Fahringer, T. An automatic input-sensitive approach for heterogeneous
task partitioning. In Proceedings of the International Conference on Supercomputing, ICS’13, Eugene, OR,
USA, 10–14 June 2013; pp. 149–160.

21. Ge, R.; Feng, X.; Cameron, K.W. Modeling and evaluating energy-performance efficiency of parallel
processing on multicore based power aware systems. In Proceedings of the 23rd IEEE International
Symposium on Parallel and Distributed Processing, IPDPS, Rome, Italy, 25–29 May 2009; pp. 1–8.

22. Bhattacharyya, A.; Kwasniewski, G.; Hoefler, T. Using Compiler Techniques to Improve Automatic
Performance Modeling. In Proceedings of the International Conference on Parallel Architecture and
Compilation, San Francisco, CA, USA, 18–21 October 2015.

23. de Mesmay, F.; Voronenko, Y.; Püschel, M. Offline library adaptation using automatically generated heuristics.
In Proceedings of the 24th IEEE International Symposium on Parallel and Distributed Processing, IPDPS,
Atlanta, GA, USA, 19–23 April 2010.

24. Zuluaga, M.; Krause, A.; Püschel, M. e-PAL: An Active Learning Approach to the Multi-Objective
Optimization Problem. J. Mach. Learn. Res. 2016, 17, 104:1–104:32.

25. Grewe, D.; O’Boyle, M.F.P. A Static Task Partitioning Approach for Heterogeneous Systems Using OpenCL.
In Proceedings of the 20th International Conference on Compiler Construction, CC, Saarbrücken, Germany,
26 March–3 April 2011; pp. 286–305.

26. den Steen, S.V.; Eyerman, S.; Pestel, S.D.; Mechri, M.; Carlson, T.E.; Black-Schaffer, D.; Hagersten, E.;
Eeckhout, L. Analytical Processor Performance and Power Modeling Using Micro-Architecture Independent
Characteristics. IEEE Trans. Comput. 2016, 65, 3537–3551.

27. Abe, Y.; Sasaki, H.; Kato, S.; Inoue, K.; Edahiro, M.; Peres, M. Power and Performance Characterization
and Modeling of GPU-Accelerated Systems. In Proceedings of the IEEE 28th International Parallel and
Distributed Processing Symposium, Phoenix, AZ, USA, 19–23 May 2014; pp. 113–122.

28. Guerreiro, J.; Ilic, A.; Roma, N.; Tomás, P. GPU Static Modeling using PTX and Deep Structured Learning.
IEEE Access 2019, 7, 159150–159161.

29. Guerreiro, J.; Ilic, A.; Roma, N.; Tomas, P. GPGPU Power Modelling for Multi-Domain Voltage-Frequency
Scaling. In Proceedings of the 24th IEEE International Symposium on High-Performance Computing
Architecture, HPCA, Vienna, Austria, 24–28 February 2018.

30. Wu, G.Y.; Greathouse, J.L.; Lyashevsky, A.; Jayasena, N.; Chiou, D. GPGPU performance and power
estimation using machine learning. In Proceedings of the 21st IEEE International Symposium on High
Performance Computer Architecture, HPCA 2015, Burlingame, CA, USA, 2 October 2015; pp. 564–576.

https://doi.org/10.1109/PADSW.2018.8645000

Computation 2020, 8, 37 20 of 20

31. Isci, C.; Martonosi, M. Runtime Power Monitoring in High-End Processors: Methodology and Empirical
Data. In Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture, 2003,
MICRO 36, San Diego, CA, USA, 5 December 2003.

32. Cummins, C.; Petoumenos, P.; Wang, Z.; Leather, H. Synthesizing benchmarks for predictive modeling.
In Proceedings of the International Symposium on Code Generation and Optimization, CGO, Austin, TX,
USA, 4–8 February 2017; pp. 86–99.

33. Cosenza, B.; Durillo, J.J.; Ermon, S.; Juurlink, B.H.H. Autotuning Stencil Computations with Structural
Ordinal Regression Learning. In Proceedings of the IEEE International Parallel and Distributed Processing
Symposium, IPDPS, Orlando, FL, USA, 29 May–2 June 2017; pp. 287–296.

34. Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222.
35. Li, B.; Li, J.; Tang, K.; Yao, X. Many-Objective Evolutionary Algorithms: A Survey. ACM Comput. Surv. 2015,

48, 13:1–13:35.
36. Lemaître, G.; Nogueira, F.; Aridas, C.K. Imbalanced-learn: A Python Toolbox to Tackle the Curse of

Imbalanced Datasets in Machine Learning. J. Mach. Learn. Res. 2017, 18, 1–5.
37. Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; da Fonseca, V.G. Performance Assessment of

Multiobjective Optimizers: An Analysis and Review. Trans. Evol. Comp. 2003, 7, 117–132.
38. Zitzler, E. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D.

Thesis, University of Zurich, Zürich, Switzerland, 1999.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	 Related Work
	Background
	Overview
	Features
	Training Data
	Predictive Modeling
	Speedup Prediction
	Normalized Energy Model
	Deriving the Pareto Set

	Modeling Imbalanced Dataset
	Frequency Domain and Test Setting
	Imbalance of Available Frequency Configurations

	Experimental Evaluation
	Experimental Evaluation of Oversampling
	Application Characterization Analysis
	Input-Size Analysis
	Accuracy of Speedup and Normalized Energy Predictions
	Accuracy of the Predicted Pareto Set

	Conclusions
	References

