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1. Introduction

Nonlinear equations, in particular systems of nonlinear algebraic or transcendental equations,
arise often when numerical methods are used for solving applied problems. A popular method
for solving such equations is Newton’s [1–3]. However, it requires differentiability of the nonlinear
function. This is not a requirement for difference methods [1–4]. They can be applied to equations
with a nondifferentiable function [5]. For some problems, the nonlinear function can be represented
as the sum of the differentiable and nondifferentiable parts. In this case, methods with operator
decomposition are often used [1,2,6–9]. Numerical examples show that the convergence is faster than
difference methods and the Newton-type method [10–12].

Let us consider an equation

H(x) ≡ F(x) + G(x) = 0, (1)

where F and G : D ⊂ X → Y. Here F is a differentiable operator, G is a continuous operator, D is an
open convex set, X and Y are Banach spaces.

We use Newton–Kurchatov method [8,13–16] for solving Equation (1) numerically

xn+1 = xn − A−1
n H(xn), n ≥ 0, (2)

where An = F′(xn) + G(2xn − xn−1; xn−1). It is a combination of Newton and Kurchatov
methods [3,4,17]. Their formulas for solving equation F(x) = 0 are of the form

xn+1 = xn − F′(xn)
−1F(xn), n ≥ 0

and

xn+1 = xn − F(2xn − xn−1; xn−1)
−1F(xn), n ≥ 0,

respectively; G(·; ·) and F(·; ·) denote a first-order divided difference. Let x̃ ∈ D. Denote
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B(x̃, R) = {x ∈ X : ‖x− x̃‖ < R},

and

B(x̃, R) = {x ∈ X : ‖x− x̃‖ ≤ R}.

Our semilocal convergence is based on some generalized conditions. Suppose that for each
x, y ∈ D:

‖A−1
0 (F′(x)− F′(x0))‖ ≤ ω0

1(‖x− x0‖), (3)

‖A−1
0 (G(x; y)− G(2x0 − x−1; x−1))‖ ≤ ω0

2(‖x− (2x0 − x−1)‖, ‖y− x−1‖), (4)

where ω0
1 : R+ → R+ and ω0

2 : R+ × R+ → R+ are nondecreasing functions. Let a > 0.
Suppose that equation

ω0
1(u) + ω0

2(3u + a, u + a) = 1 (5)

has at least one positive solution. Denote by R0 the smallest such solution. Set D0 = D ∩ B(x0, 3R0)

and suppose that for each x, y, u, v ∈ D0 with 2y− x ∈ D0

‖A−1
0 (F′(x)− F′(y))‖ ≤ ω1(‖x− y‖), (6)

‖A−1
0 (G(2y− x; x)− G(u; v))‖ ≤ ω2(‖2y− x− u‖, ‖x− v‖), (7)

where ω1 : R+ → R+ and ω2 : R+ × R+ → R+ are nondecreasing functions. Moreover,
ω1(tr) ≤ h(t)ω1(r), t ∈ [0, 1], r ∈ [0, R], h : [0, 1]→ R [11].

In this article, we also consider ε-type conditions for x, y ∈ D

‖A−1
0 (F′(x)− F′(x0))‖ ≤ ε0

1, (8)

‖A−1
0 (G(x; y)− G(2x0 − x−1; x−1))‖ ≤ ε0

2, (9)

for x̄, ȳ, u, v ∈ D0 with 2ȳ− x̄ ∈ D0

‖A−1
0 (F′(x)− F′(y))‖ ≤ ε1, (10)

‖A−1
0 (G(2ȳ− x̄; x̄)− G(u; v))‖ ≤ ε2, (11)

where ε0
1, ε1, ε0

2 and ε2 are positive constants, for some D0 ⊆ D.

2. Semilocal Analysis

Set Φ =
∫ 1

0 h(t)dt.

Theorem 1. Let F and G be nonlinear operators with the specified properties. Assume that:

• linear operator A0, where x−1 and x0 ∈ D, is invertible;
•

‖A−1
0 (F(x0) + G(x0))‖ ≤ η, ‖x0 − x−1‖ ≤ α; (12)

• Equations (3) and (4) hold on D, Equations (6) and (7) hold on D0;
• equation

u

(
1− m

1−ω0
1(u)−ω0

2(3u + α, u + α)

)
− η = 0, (13)
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where m = Φω1(η) + max{ω2(η + α, α), ω2(2η, η)}, has at least one positive solution greater than η

and α. Denote by R the smallest such solution;
• ω0

1(R) + ω0
2(3R + α, R + α) < 1, M =

m
1−ω0

1(R)−ω0
2(3R + α, R + α)

< 1, B(x0, 3R) ⊂ D.

Then, the sequence {xn}n≥0, generated by Equation (2), is well-defined, remains in B(x0, R) and converges
to a unique solution x∗ ∈ B(x0, R) of Equation (1), and R < R0.

Proof. The proof of Theorem 1 is carried out by mathematical induction and is similar to the one in [8]
but there are some differences. By Equations (2) and (12), for n = 0 we have

‖x1 − x0‖ ≤ ‖A−1
0 (F(x0) + G(x0))‖ ≤ η < R

and x1 ∈ B(x0, R). Using the conditions in Equations (3) and (4), we get

‖I − A−1
0 A1‖ = ‖A−1

0 (A0 − A1)‖

≤ ω0
1(‖x1 − x0‖) + ω0

2(‖2x0 − x−1 − 2x1 + x0‖, ‖x−1 − x0‖)

≤ ω0
1(η) + ω0

2(2η + α, α) ≤ ω0
1(R) + ω0

2(2R + α, α)

≤ ω0
1(R) + ω0

2(3R + α, R + α) < 1.

According to the Banach lemma on inverse operators [1] A−1
1 A0 exists and

‖A−1
1 A0‖ ≤

1
1−ω0

1(R)−ω0
2(3R + α, R + α)

.

Then, we have

A−1
0 (F(x1) + G(x1))

= A−1
0 (F(x1)− F(x0)− F′(x0)(x1 − x0))

+A−1
0 (G(x1)− G(x0)− G(2x0 − x−1; x−1)(x1 − x0))

=
∫ 1

0
A−1

0 (F′(x0 + t(x1 − x0))− F′(x0)) dt(x1 − x0)

+A−1
0 (G(x1; x0)− G(2x0 − x−1; x−1))(x1 − x0).

Hence, by the conditions in Equations (6) and (7), we obtain

‖x2 − x1‖ = ‖A−1
1 (F(x1) + G(x1))‖ ≤ ‖A−1

1 A0‖‖A−1
0 (F(x1) + G(x1))‖

≤ Φω1(‖x1 − x0‖) + ω2(‖2x0 − x−1 − x1‖, ‖x−1 − x0‖)
1−ω1(R)−ω2(3R + α, R + α)

‖x1 − x0‖

≤ Φω1(η) + ω2(η + α, α)

1−ω0
1(R)−ω0

2(3R + α, R + α)
‖x1 − x0‖ ≤ M‖x1 − x0‖ < η.

On the other hand,

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖

≤ (M + 1)‖x1 − x0‖ ≤ (M + 1)η =
1−M2

1−M
η <

1
1−M

η = R.

Therefore, x2 ∈ B(x0, R). Suppose that for k = 1, . . . , n− 1 holds:
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• A−1
k A0 exists and ‖A−1

k A0‖ ≤
1

1−ω0
1(R)−ω0

2(3R + α, R + α)
;

• ‖xk+1 − xk‖ ≤ M‖xk − xk−1‖ ≤ Mk‖x1 − x0‖ < η;
• xk+1 ∈ B(x0, R).

Then, using the conditions in Equations (3) and (4), for k = n we have

‖I − A−1
0 An‖ = ‖A−1

0 (A0 − An)‖

≤ ω0
1(‖x0 − xn‖) + ω0

2(‖2x0 − x−1 − 2xn + xn−1‖, ‖x−1 − xn−1‖)

≤ ω0
1(R) + ω0

2(3R + α, R + α) < 1.

According to the Banach lemma on inverse operators [1] A−1
n A0 exists and

‖A−1
n A0‖ ≤

1
1−ω0

1(R)−ω0
2(3R + α, R + α)

.

By equality

A−1
0 (F(xn) + G(xn)) = A−1

0 (F(xn)− F(xn−1)− F′(xn−1)(xn − xn−1))

+A−1
0 (G(xn)− G(xn−1)− G(2xn−1 − xn−2; xn−2)(xn − xn−1))

=
∫ 1

0
A−1

0 (F′(xn−1 + t(xn − xn−1))− F′(xn−1)) dt(xn − xn−1)

+A−1
0 (G(xn; xn−1)− G(2xn−1 − xn−2; xn−2))(xn − xn−1)

and the conditions in Equations (6) and (7), we have

‖xn+1 − xn‖ = ‖A−1
n (F(xn) + G(xn))‖ ≤ ‖A−1

n A0‖‖A−1
0 (F(xn) + G(xn))‖

≤ 1
1−ω0

1(R)−ω0
2(3R + α, R + α)

(
Φω1(‖xn − xn−1‖)

+ω2(‖2xn−1 − xn−2 − xn‖, ‖xn−1 − xn−2‖)
)
‖xn − xn−1‖

≤ Φω1(η) + ω2(2η, η)

1−ω0
1(R)−ω0

2(3R + α, R + α)
‖xn − xn−1‖

≤ M‖xn − xn−1‖ ≤ Mn‖x1 − x0‖ < η.

Next, we show that xn+1 ∈ B(x0, R). Indeed,

‖xn+1 − x0‖ ≤ ‖xn+1 − xn‖+ ‖xn − xn−1‖+ . . . + ‖x1 − x0‖

≤ (Mn + Mn−1 + . . . + M + 1)‖x1 − x0‖ ≤
1−Mn+1

1−M
η <

1
1−M

η = R,

and xn+1 ∈ B(x0, R). Moreover, we show that sequence {xn}n≥0 is fundamental. Indeed, for p ≥ 1

‖xn+p − xn‖ ≤ ‖xn+p − xn+p−1‖+ ‖xn+p−1 − xn+p−2‖+ . . . + ‖xn+1 − xn‖

≤ (Mp−1 + Mp−2 + . . . + 1)‖xn+1 − xn‖

=
1−Mp

1−M
‖xn+1 − xn‖ ≤

1−Mp

1−M
Mnη <

Mn

1−M
η.

Therefore, {xn}n≥0 is a fundamental sequence and converges to x∗ ∈ B(x0, R). Furthermore,
we prove that x∗ is a unique solution of Equation (1). Since
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‖A−1
0 H(xn)‖ ≤ (Φω1(η) + ω2(2η, η))‖xn − xn−1‖

and ‖xn − xn−1‖ → 0 for n → ∞, so H(x∗) = 0. Finally, suppose there exists y∗ ∈ B(x0, R), y∗ 6= x∗

such that H(y∗) = 0. Denote

A =
∫ 1

0
F′(x∗ + t(y∗ − x∗)) dt + G(y∗; x∗).

Using the conditions in Equations (3) and (4), we get

‖A−1
0 (A0 − A)‖ ≤

∫ 1

0
ω0

1(‖x0 − x∗ − t(y∗ − x∗)‖) dt

+ω0
2(‖2x0 − x−1 − y∗‖, ‖x−1 − x∗‖)

≤
∫ 1

0
ω0

1((1− t)‖x0 − x∗‖+ t‖x0 − y∗‖) dt

+ω0
2(‖x0 − x−1‖+ ‖x0 − y∗‖, ‖x−1 − x0‖+ ‖x0 − x∗‖)

≤ ω0
1(R) + ω0

2(R + α, R + α) < 1.

According to the Banach lemma on inverse operators A is invertible and in view of

A(y∗ − x∗) = H(y∗)− H(x∗)

it follows y∗ = x∗.

Theorem 2. Let F and G be nonlinear operators with the specified properties. Assume that

• linear operator A0, where x−1 and x0 ∈ D, is invertible;
• Equations (8)–(11) hold;
• numbers η > 0, γ and R > 0 such that

‖A−1
0 (F(x0) + G(x0))‖ ≤ η, ‖x0 − x−1‖ < R, 0 < ε0

1 + ε0
2 < 1,

γ =
ε1 + ε2

1− (ε0
1 + ε0

2)
< 1,

η

1− γ
< R, B(x0, 3R) ⊂ D.

Then, the sequence {xn}n≥0, generated by Equation (2), is well-defined, remains in B(x0, R) and converges
to a unique solution x∗ ∈ B(x0, R) of Equation (1). Moreover, the following inequality holds for each n ≥ 0

‖xn − x∗‖ ≤ γn

1− γ
η. (14)

Notice that one possibility is ε0
1 and ε0

2 in practice may be functions of ‖x− x0‖. That is

ε0
1 : [0, ∞)→ [0, ∞) and ε0

2 : [0, ∞)→ [0, ∞)

to be nondecreasing and continuous functions.
Suppose that equation

ε0
1(u) + ε0

2(u) = 1

has a minimal positive solution ρ. Then, the set D0 can be defined as D0 = D ∩ B(x0, ρ). Moreover, in
this case we have

‖A−1
0 (A0 − An)‖ ≤ ε0

1 + ε0
2 < 1,
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so ‖A−1
n A0‖ ≤

1
1− (ε0

1 + ε0
2)

.

However, D0 can also be defined in other ways too depending on the construction of F and G.
Let

ω0
1(‖x− y‖) = 2`0‖x− y‖, ω0

2(‖x− u‖, ‖y− v‖) = p0(‖x− u‖+ ‖y− v‖),

ω1(‖x− y‖) = 2`‖x− y‖, ω2(‖x− u‖, ‖y− v‖) = p(‖x− u‖+ ‖y− v‖).

Next, we obtain from Theorem 1 the convergence analysis of the method in Equation (2) under
the Lipschitz conditions.

Corollary 1. Let F and G be nonlinear operators with the specified properties. Assume that:

• linear operator A0, where x−1 and x0 ∈ D, is invertible;
• numbers η > 0 and α > 0 such that Equation (12) is satisfied;
• the Lipschitz conditions are fulfilled for each x, y ∈ D

‖A−1
0 (F′(x0)− F′(y))‖ ≤ 2`0‖x− y‖,

‖A−1
0 (G(x; y)− G(2x0 − x−1; x−1))‖ ≤ p0(‖x− (2x0 − x−1)‖+ ‖y− x−1‖),

and for each x, y, u, v ∈ D0

‖A−1
0 (F′(x)− F′(y))‖ ≤ 2`‖x− y‖,

‖A−1
0 (G(x; y)− G(u; v))‖ ≤ p(‖x− u‖+ ‖y− v‖);

• equation

s
(

1− m
1− 2`0s− p0(4s + 2α)

)
− η = 0,

where m = `η + max {p(η + 2α), 3pη} has at least one positive solution greater than η and α. Denote
by R the smallest such solution;

• 2`0R + p0(4R + 2α) < 1, M =
m

1− 2`0R− p0(4R + 2α)
< 1, B(x0, 3R) ⊂ D.

Then, the sequence {xn}n≥0, generated by Equation (2), is well-defined, remains in B(x0, R) and converges
to a unique solution x∗ ∈ B(x0, R) of Equation (1).

Remark 1. The corresponding Equations (6) and (7) to conditions in [8] are given for each x, y, u, v ∈ D by

‖A−1
0 (F′(x)− F′(y))‖ ≤ ω1

1(‖x− y‖), (15)

‖A−1
0 (G(x; y)− G(u; v))‖ ≤ ω1

2(‖x− u‖, ‖y− v‖). (16)

Notice that ω1 = ω1(ω
0
1) and ω2 = ω2(ω

0
2), i.e. they are functions of ω0

1 and ω0
2, and since D0 ⊆ D

ω0
1(t) ≤ ω1

1(t), (17)

ω0
2(t) ≤ ω1

2(t), (18)

ω1(t) ≤ ω1
1(t), (19)

ω2(t) ≤ ω1
2(t), (20)

m ≤ m1, (21)

ε0
1 ≤ ε1

1, ε0
2 ≤ ε1

2, ε1 ≤ ε1
1, ε2 ≤ ε1

2, (22)

l0 ≤ l1, (23)

and p0 ≤ p1, (24)
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where m1 = Φω1
1(η) + max {ω1

2(η + α, α), ω1
2(2η, η)}, M1 =

m1

1−ω1
1(R1)−ω1

2(3R1 + α, R1 + α)
.

It’s easy to see that if R1 ≤ R then M1 ≤ M, and if R1 ≥ R then M1 ≥ M.
If ω1

1 , ω1
2 are constant functions

ω1
1(‖x− y‖) = 2`1‖x− y‖, ω1

2(‖x− u‖, ‖y− v‖) = p1(‖x− u‖+ ‖y− v‖).

It follows from the above that we obtain the following improvements:
1. Weaker sufficient convergence criteria, since

ω0
1(‖x0 − xn‖) + ω0

2(‖2x0 − x−1 − 2xn + xn−1‖, ‖x−1 − xn−1‖)
≤ ω1

1(‖x0 − xn‖) + ω1
2(‖2x0 − x−1 − 2xn + xn−1‖, ‖x−1 − xn−1‖)

and

Φω1(‖xn − xn−1‖) + ω2(‖2xn−1 − xn−2 − xn‖, ‖xn−1 − xn−2‖)
≤ Φω1

1(‖xn − xn−1‖) + ω1
2(‖2xn−1 − xn−2 − xn‖, ‖xn−1 − xn−2‖)

⇒ Mn ≤ M1
n ⇒ Mn‖xn − xn−1‖ ≤ M1

n‖xn − xn−1‖,

where

Mn =
Φω1(‖xn − xn−1‖) + ω2(‖2xn−1 − xn−2 − xn‖, ‖xn−1 − xn−2‖)

1−ω0
1(‖x0 − xn‖)−ω0

2(‖2x0 − x−1 − 2xn + xn−1‖, ‖x−1 − xn−1‖)
≤ M,

M1
n =

Φω1
1(‖xn − xn−1‖) + ω1

2(‖2xn−1 − xn−2 − xn‖, ‖xn−1 − xn−2‖)
1−ω1

1(‖x0 − xn‖)−ω1
2(‖2x0 − x−1 − 2xn + xn−1‖, ‖x−1 − xn−1‖)

≤ M1,

but not necessarily vice versa unless, if

ω1
1 = ω0

1 and ω1
2 = ω0

2.

2. Fewer iterates to obtain a desired error accuracy on ‖xn+1 − xn‖.
3. Better information on the location of the solution x∗.

Notice that (ω0
1 , ω1), (ω0

2 , ω2) are special cases of the old functions ω1
1 , ω1

2 , respectively. So no additional
information or computational effort are required to obtain these improvements. This technique of using
the restricted convergence region can be used to extend the applicability of other iterative methods
along the same lines. Finally, Lipschitz functions and parameters can become at least as small, if D0

is replaced by D1 := D ∩ B(x1, R0 − b), b = max{η, α}. Notice that D1 ⊆ D0. The results then can be
adjusted in this setting. Numerical examples where Equations (17)–(24) hold as strict inequalities can
be found in [1,6].

3. Numerical Results

In this Section, we test the old and the new convergence criteria.
Let X = Y = R. In this case ‖x‖ = |x| for x ∈ X or x ∈ Y, D = (a, b), D0 = (a0, b0). Let us define

function F + G : R→ R, where

F(x) = ex−0.5 + x3 − 1.3, G(x) = 0.2x|x2 − 2|.

The exact solution of F(x) + G(x) = 0 is x∗ = 0.5. Let D = (0, 1.4). Then, we have

F′(x) = ex−0.5 + 3x2,
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G(x, y) =
0.2x(2− x2)− 0.2y(2− y2)

x− y
= 0.2(2− x2 − xy− y2).

A0 = ex0−0.5 + 3x2
0 + 0.2(2− x2

−1 − x−1x0 − x2
0),

and

|A−1
0 (F′(x)− F′(y))| ≤ eb−0.5 + 3|x + y|

|A0|
|x− y|,

|A−1
0 (G(x, y)− G(u, v))| ≤ 0.2

|A0|

(
|u + x + y||u− x|+ |v + y + u||v− y|

)
.

In view of this, we can write

ω0
1(|x− x0|) =

eb−0.5 + 3|1.4 + x0|
|A0|

|x− x0|,

ω0
2(|x− (2x0 − x−1)|, |y− x−1|) =

0.2
|A0|

(
|2x0 − x−1 + 2b||x− (2x0 − x−1)|+ |2x0 + b||y− x−1|

)
,

ω1(|x− y|) = eb0−0.5 + 6b0

|A0|
|x− y|, ω2(|2y− x− u‖, |x− v|) = 0.6b0

|A0|
(|2y− x− u|+ |x− v|),

ω1
1(|x− y|) = eb−0.5 + 6b

|A0|
|x− y|, ω1

2(|x− u|, |y− v|) = 0.6b
|A0|

(
|x− u|+ |y− v|

)
.

Let x0 = 0.55, x−1 = 0.551. Then, we get α = 0.001, η ≈ 0.0479, R0 ≈ 0.2011, m ≈ 0.1431,
m1 ≈ 0.1750, D0 = D ∩ B(x0, 3R0) = (0, 1.153). To get the radius of convergence we solve Equation
(13) and similar one from [8]. Every such equation has two positive solutions. The smallest solutions
satisfy conditions of appropriate theorems. So, we get R ≈ 0.0602, R1 ≈ 0.0714, M ≈ 0.2043,
M1 ≈ 0.3283, B(x0, 3R) = (0.3693, 0.7307) ⊂ D and B(x0, 3R1) = (0.3359, 0.7641) ⊂ D. The error
estimates are given in Table 1. For error |xn+1 − xn|, n ≥ 1, holds

|xn+1 − xn| ≤ Mn|xn − xn−1| ≤ M|xn − xn−1|

and

|xn+1 − xn| ≤ M1
n|xn − xn−1| ≤ M1|xn − xn−1|.

Table 1. Results for ε = 10−15.

n |xn+1− xn| Mn|xn− xn−1| M|xn− xn−1| M1
n|xn− xn−1| M1|xn− xn−1|

1 2.0602 × 10−3 6.8518 × 10−3 9.7951 × 10−3 9.1409 × 10−3 1.5738× 10−2

2 3.1428 × 10−6 8.9551 × 10−5 4.2097 × 10−4 1.1958 × 10−4 6.7636 × 10−4

3 7.0617 × 10−12 5.2824 × 10−9 6.4218 × 10−7 7.0457 × 10−9 1.0318 × 10−6

4 0 1.8032 × 10−17 1.4429 × 10−12 2.4050 × 10−17 2.3184 × 10−12

Let x0 = 0.53, x−1 = 0.6. Then, we get α = 0.07, η ≈ 0.0293, R0 ≈ 0.1892,
m ≈ 0.1114, m1 ≈ 0.1431, D0 = D ∩ B(x0, 3R0) = (0, 1.0975). In this case only
the largest solutions satisfy conditions of appropriate theorems. So, we get R ≈ 0.1624,
R1 ≈ 0.1109, and M ≈ 0.8199, M1 ≈ 0.7362. Moreover, B(x0, 3R) = (0.3676, 0.6924) ⊂ D and
B(x0, 3R1) = (0.4191, 0.6409) ⊂ D. The error estimates are given in Table 2.

So, more accurate error estimates are retrieved because Mn|xn − xn−1| ≤ M1
n|xn − xn−1|.

Although M|xn − xn−1| ≤ M1|xn − xn−1| in the first case and M|xn − xn−1| ≥ M1|xn − xn−1| in
the second case.
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Table 2. Results for ε = 10−15.

n |xn+1 − xn| Mn|xn − xn−1| M|xn − xn−1| M1
n|xn − xn−1| M1|xn − xn−1|

1 7.3779 × 10−4 3.1227 × 10−3 2.3990 × 10−2 4.2444 × 10−3 2.1541 × 10−2

2 3.9991 × 10−7 1.6564 × 10−5 6.0489 × 10−4 2.2443 × 10−5 5.4314 × 10−4

3 1.1419 × 10−13 2.1230 × 10−10 3.2787 × 10−7 2.8737 × 10−10 2.9440 × 10−7

4 0 3.2808 × 10−20 9.3616 × 10−14 4.4410 × 10−20 8.4060 × 10−14
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