
computation

Article

Effect of Structure on the Thermal-Mechanical
Performance of Fully Ceramic
Microencapsulated Fuel

Yi Zhou, Zhong Xiao *, Shichao Liu *, Ping Chen, Hua Pang, Yong Xin, Yongjun Jiao, Shixin Gao,
Kun Zhang, Wenjie Li and Junchong Yu

Nuclear Power Institute of China, Science and Technology on Reactor System Design Technology Laboratory,
Chengdu 610200, China; YZ012@mail.tsinghua.edu.cn (Y.Z.); PingC123@mail.xjtu.edu.cn (P.C.);
2654805380@mail.cqu.edu.cn (H.P.); xyong042306@xsyu.cn (Y.X.); jyjun18@hrbeu.edu.cn (Y.J.);
gsx@alumni.sjtu.edu.cn (S.G.); kunz033@mail.tsinghua.edu.cn (K.Z.); wenjl042@mail.tsinghua.edu.cn (W.L.);
yujc1234@hit.edu.cn (J.Y.)
* Correspondence: xzhong031@mail.tsinghua.edu.cn (Z.X.); hit_lsc@163.com (S.L.); Tel.: +86-028-85908485 (Z.X.)

Received: 17 January 2020; Accepted: 17 February 2020; Published: 21 February 2020
����������
�������

Abstract: The effect of non-fuel part size on the thermal-mechanical performance of fully ceramic
microencapsulated (FCMTM) Fuel was investigated, and the non-fuel part size was selected according
to integrity maintaining of non-fuel part and silicon carbide (SiC) layers. The non-fuel part size can
affect the FCMTM temperature and stress distribution greatly by changing the distance between
tristructural isotropic (TRISO) particles. The maximum temperature of SiC matrix increased from
1220 K to 1450 K with the non-fuel part size increasing from 100 µm to 500 µm, and the matrix
temperature of all the samples was lower than the decomposition point of SiC ceramics. The maximum
hoop stress decreased with non-fuel part size, but the inner part exhibiteda crosscurrent trend.
The inner part of the SiC matrix lost structure integrity because of the large hoop stress caused by the
deformation of TRISO particles, however, the non-fuel parts of FCMTM pellet may maintain their
integrity when the non-fuel part size was larger than 300 µm. SiC layers hoop stress increased with
non-fuel part size, and the failure probability of SiC layer was lower than 2.2 × 10−4 for the FCMTM
pellet with small non-fuel part size. The integrity of non-fuel and SiC layers can be maintained for
the FCMTM pellet with the non-fuel part size from 300 µm to 400 µm.
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1. Introduction

Fully ceramic microencapsulated (FCM) fuel isformed by tristructural isotropic (TRISO) fuel
particles embedding in SiC matrix [1]. FCM is both an acronym and trademark of a patented technology
and is written as FCMTM in this paper. The TRISO particle was constituted of fuel kernel and four
coated layers including the low-density carbon buffer layer, the inner and outer pyroltytic graphite
layers which surround the silicon carbide (SiC) micropressure vessel. The function of the coated
layers and SiC matrix has been discussed [2,3]: the buffer layer offered the space to accommodate
the generated fission production; the inner and outer pyroltytic graphite layers are the protective
layers which can decrease the stress of SiC layer and protect the SiC shell from the energetic fission
product recoil damage. SiC layer is the main structural layer which can prevent fission gas release.
The functional coated layers and dense SiC matrix of FCMTM offered excellent oxidation resistance and
fission product capability, high thermal conductivity and irradiation stability [4,5]. FCMTM pellets are
contained by zircaloy cladding for using in light water reactors (LWR) and small modular reactors
(SMRs) [6,7].
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Obvious safety characteristics, including lower operation temperature and radionuclide production
release, can be obtained by using FCMTM fuel [3]. However, FCMs with UO2 or UCO kernel possessed
lower fissile loading compared with the UO2 pellet, which cannot satisfy loading requirement of
reactor core and limit the application of FCMTM fuel [8]. UN kernels are currently under investigation
to increase the fissile loading [8,9]. TRISO particle with high uranium dense has been fabricated in
order to increase the uranium loading. U-C-N was used as TRISO kernel to avoid the reaction between
the kernel and the buffer layer [10,11]. The performance of TRISO particles with UN kernel has been
investigated in previous reports [12,13].

Feasibility and fuel cycle cost of the FCMTM pellet used in different kinds of reactors has been
investigated, such as light water reactor, high-temperature gas-cooled reactor, and small pressurized
water reactor [14,15]. An FCMTM pellet can meet the requirements of different kinds of reactors
and increase the safety of the reactors, however, application of FCMTM may increase fuel cycle costs.
The report on thermal–mechanical performance simulation of FCMTM pellet was rare because of the
complex structure, contacting behavior and material properties. The behavior of TRISO particle has
been studied vastly and lots of software such as PARFUM, PASTA and STRESS3 has been developed [16].
The performance of TRISO particle can be used as input parameters for the FCMTMsimulation including
internal pressure and size deformation [17,18]. The performance of TRISO-based FCMTMfuel in LWR
environment was simulated by Schappel and co-workes using BISON [18]. UN was used as TRISO
particle kernel to increase the fissile loading of FCMTM. The properties of UN kernel and coated layers
were considered including thermal conductivity, swelling and creep of pyrolytic carbon (PyC), thermal
conductivity and swelling of chemical vapor deposition (CVD) and nano-infiltration and transient
eutectic (NITE) SiC. The simulated results of TRISO particle which calculated by BISON and PARFUM
code were compared. The interaction between particles with different distance was calculated but only
half of five particles were reserved in the pellet. FCMTMperformance was calculated by subtracting
out of TRISO particles and the maximum temperature and hoop stress of SiC matrix was studied.
The performance of coated layers was not detected and the interaction between TRISO particle and
matrix was not reflected in the literature. Effect of SiC matrix on the performance of TRISO particle was
investigated by Ougouag and co-worker [19]. A two-dimensional model was established by adding
SiC matrix on the single TRISO particle, the result indicated that the thickness of SiC matrix can affect
the stress distribution of the coated layers and SiC matrix. Stress and temperature distribution of the
SiC matrix among different TRISO particles was not discussed. The thermal-mechanical performance
and criterion to evaluate the integrity of the FCMTM pellet was discussed in our previous work for the
given structure, the effect of FCMTM structure such as TRISO particle distance and non-fuel part size
on the thermal-mechanical performance was not studied [16].

In this paper, the effect of structure on the FCMTM performance was studied for the given TRISO
particle fraction (40 vol%), and the structure was optimized to decrease stress and failure probability of
SiC layer and non-fuel part. The performance of the FCMTM pellet with different non-fuel part size
was simulated by using two-dimensional model. The internal pressure and size variation of TRISO
particles was calculated by using 1/8 characteristic unit, and the results was used as input parameters
for FCMTM simulation. The effect of FCMTM structure on the maximum temperature and hoop stress
of SiC matrix was studied.

2. Materials

Five different kinds of materials were used in FCMTM pellet in this paper, including Uranium
Nitride (UN), porous carbon buffer (buffer layer), dense pyrolytic carbon (PyC layer), chemical vapor
deposition SiC (SiC layer), and sintered SiC matrix material (SiC matrix). The properties of the coated
layers and SiC matrix have great effect on the performance of the FCMTM pellet. UN was chosen as
kernel to increase the uranium loading of reactor core. UN has excellent compatibility with buffer layer
and no reaction was occurred between kernel and carbon, which can decrease the internal pressure
obviously [20]. The buffer layer offered the space for accommodating the fission production because of
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the high porosity of buffer layer. The UN kernel and buffer layer weresubtracted out when simulate the
FCMTM pellet behavior because the gap appeared, and no interaction occurred between the buffer layer
and the other coated layers [17,18]. Inner and outer PyC layers are designed to provide mechanically
pliable layers supporting the SiC micro-pressure vessel [17]. SiC matrix and layer in TRISO particles
are expected to offer improved containment of fission production under accident condition. At the
same time, SiC matrix possessed higher thermal conductivity compared with UO2, which can decrease
the operation temperature obviously for comparative rod average linear power [18].

2.1. Uranium Nitride

Thermal conductivity of UN (KUN) is the function of burn-up (Bu), temperature (T) and porosity
(p) [21]. The thermal expansion coefficient (αUN) and specific heat (Cp,UN) are the functions of
temperature (T). The relative properties can be expressed by the following equations [21]:

KUN = 1.37T0.361
1− P
1 + P

(1− 0.025Bu) (1)

αUN = 7.096× 10−6 + 1.409× 10−9T (2)

Cp,UN = 205.3834·
(365.7

T

)2
·

exp
(

365.7
T

)
(
exp

(
365.7

T

)
− 1

)2 + 0.0381T + 1.061× 1012
·T−12 exp

(
−

18081
T

)
(3)

The irradiation swelling of UN kernel was measured in space reactor; the swelling rate of UN
kernel had great influence on the dimensional change of coated layers [13]. UN kernel swelling was
given by

∆V
V

= 4.768× 10−11T3.12Bu0.83ρ0.5 (4)

where ∆V and V are the volume increment (%) caused by irradiation and the initial volume respectively.
T is the temperature (K), Bu is the burnup (MW·d/TU), and ρ is the density of UN kernel (kg/m3).

Fission gas (Xe, Kr, and He) release was calculated according to two mechanisms: the recoil release
and diffusion release. The release of Xe and Kr was controlled by the two mechanisms but the release
of He will be only considered coming from diffusion release mechanism [22]. The recoil release will be
the predominant mechanism at low temperature and its portion of fission gas can be calculated from
the following empirical equation [8]:

f =
1
2

S
V
α (5)

where f is the portion of Xe and Kr, S is the superficial area of fuel particle (m2), V is the volume of fuel
particle (m3), and α is the mean recoil range of fission gas atoms (m). The mean recoil range of Xe and
Kr is 3.98 µm and 5.68 µm, respectively [22].

The main mechanism of fission gas release at high temperature is diffusion release, and the Booth
classical diffusion model was employed in this study to compute the final release fission gas of loose
pyrolytic carbon and the gap through diffusion mechanism. The grain of UN was considered as the
ideal sphere of 20 µm in diameter, which means the solving equation can be simplified as 1-dimensional
form. The effective diffusion coefficient of fission gas atoms within the fuel grains can be set from the
following empirical relation [22]:

Dg = 6.66454× 10−8 exp
(
−

19164
T

)
(6)

where Dg is the effective diffusion coefficient of fission gas atoms within the fuel grains.
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2.2. Buffer Layer

The density of buffer was about 0.9–1.0 g/cm3. Buffer layer is expected to isotropically shrink
under irradiation condition, and the gap appeared due to the shrinkage of buffer layer. Internal
pressure can be decreased by increasing the thickness of buffer layer. Porosity has great influence on
the thermal conductivity of buffer layer. The thermal conductivity of buffer layer can be written as
follows [22]:

Kbu f f er =
10.9866(1− P)

1 + 9P
(7)

where P is the porosity of buffer layer (%). The thermal conductivity of buffer layer increased with
neutron fluence due to the densification of buffer layer [18].

The elastic modulus of the buffer layer is isotropic, the expression can be written as follows [22]:

Ebu f f er = 11.06(1 + 0.23Φ) · (0.956 + 0.00015T) (8)

where Φ is the fast neutron flux (1025n·m−2) and T is temperature (K).

2.3. PyCLayer

High density pyrolytic carbon was used as IPyC and OPyC layers to protect SiC layer from fission
production corrosion and matrix defects. The desity of IPyC and OPyC layers are about 1.9–2.1 g/cm3.
PyC layers are expected to shrink initially and then the radial direction is expected to expand while the
tangential direction is expected to continue shrinking when the neutron fluence reached 2 × 1025 n/m2.
The radial and tangential irradiation strain of PyC layers are expressed by the following equations [22].

.
εr = −0.077 exp(−Φ) + 0.031 (9)

.
εθ = −0.036 exp(−2.1Φ) − 0.01 (10)

where
.
εr and

.
εθ are the radial and tangential irradiation strain (%), Φ is the fast neutron flux (1025n·m−2).

Elastic modulus of the PyC layer is anisotropic and can be calculated by the following equation [22]:

EPyC = 25.5(0.384 + 0.000324ρPyC)(0.481 + 0.519BAF)
(1 + 0.23Φ)(0.9560275 + 0.00015T)

(11)

where Φ is the neutron flux (×1025 n/m2), and T is the temperature (K), BAF is the anisotropic parameters
of PyC.

PyC and buffer layers exhibit same creep strain, the expression was given by the following
equation [21]:

.
εcr,r = Kpyc[σr − vc(σθ + σΦ)]

.
Φ (12)

where
.

Φ is the fast neutron flux rate (1025n·m−2
·s−1), vc is the Poisson ratio, and Kpyc is the creep

constant (n·m−2
·s−1).The expression was given by

Kpyc = 2K0[1 + 2.38(1.9− ρ0)] (13)

where ρ0 is the initial density (g/cm3). K0 is the function of temperature, and the expression was
written as

K0 = 1.996× 10−29
− 4.415× 10−32T + 3.6544× 10−35T (14)

where T is the temperature (K).
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2.4. Silicon Carbide

Silicon carbide experiences irradiation-induced swelling at all temperatures, but the swelling
mechanism of SiC is different at different temperatures. The point defects swelling may be the dominant
mechanism at relative low temperature. At higher temperature (1173–1673 K), Frank faulted loops
of interstitial type was the dominant defects, and the Frank faulted loops appear for temperature
neutron irradiation at extremely high doses. The irradiation swelling was the function of temperature
and neutron flux [23]. The thermal conductivity was modeled as the function of volume swelling
and temperature.

The swelling model of the SiC is the function of temperature and neutron flux, which can be
written as follows [23]:

·

S = ksγ
−1/3 exp

(
−
γ

γsc

)
(15)

where S is the swelling rate (s−1); ks is the coefficient of the swelling rate (dpa−2/3); γ is the neutron flux
(dpa); γsc is the characteristic dose for swelling saturation by the negative feedback mechanism (dpa).
The swelling of SiC can be obtained from the time integration of the Equation (15).

S = Ss

[
1− exp

(
−
γ

γsc

)]2/3

(16)

where, Ss and γsc are the function of the temperature, and can be expressed as below:

Ss(T) = 0.05837− 1.0089× 10−4T + 6.9368× 10−8T2
− 1.8152× 10−11T3 (17)

γsc(dpa) = −0.4603 + 2.6674× 10−3T − 4.3176× 10−6T2 + 2.3803× 10−9T3 (18) (18)

The thermal conductivity model of SiC layer was expressed [17] as

k =
1

R0 + Rirr
(19)

where R0 and Rirr are the thermal resistance (K/W) of the prior- and post-irradiated SiC layer,
respectively.

The thermal resistance of SiC layer before irradiation is expressed as below [17]:

R0 =
1

−3.7× 10−8T3 + 1.54× 10−4T2 − 0.214T + 153.1
(20)

The thermal resistance induced by the irradiation can be written [17] as

Rirr =
1

6.08 · S
(21)

where S is the volume swelling (%).
Thermal conductivity of SiC matrix can be expressed by multiplying a parameter on the thermal

conductivity expression of SiC layer because the thermal conductivity exhibited similar variation trend
and the value was different between SiC matrix and layer [24]. The parameter was defined as 0.75.

The specific heat, elastic modulus and elastic Poisson Ratio of SiC was set as constant, the values
are 1200 J·kg−1

·K−1, 450 GPa, and 0.2 respectively [23].
The creep model of SiC can be expressed as follows:

.
εcreep = K1

.
Φσe (22)
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where K1 is a temperature-dependent creep coefficient, the value of K1 was 0.4×10−31 n/(m2
·MPa),

.
Φ is

the neutron flux in n/(m2
·s), and σe is the effective stress.

Failure probability of the SiC layer was calculated according to the strength and stress distribution
of FCMTM pellet. The failure probability of SiC layer can be calculated by the following equation [23]:

P = 1− exp
[
−

∫ 1

V

(
σp

σ0

)m

dV
]

(23)

where V is the characteristic volume (m3), m is the Weibull modulus of SiC layer, σ0 is the characteristic
strength (MPa), and σp is the true stress (MPa). The characteristic strength and the Weibull modulus
ofSiC layer were 350MPa and five, respectively [17].

3. Geometry Parameters and Modeling Approach

The kernel diameter was 800 µm which was larger than the traditional TRISO particle (about
450 µm) to increase the fissile loading in order to meet the requirement of LWR. The thickness of the
coated layers was designed, the thickness of buffer, IPyC, SiC, and OPyC layers were 100 µm, 30 µm,
40 µm, and 30 µm, respectively.

A FCMTM pellet with 40vol% TRISO particle loading was simulated. FCMTM pellets with different
non-fuel part size were design, and the effect non-fuel part size on the performance of FCMTM was
investigated. FCMTM pellet with non-fuel part has been fabricated by our group, the microstructure
was obtained by using X-ray imaging techniques as shown in Figure 1. The irradiation measurement
will be conducted in the future in our own testing reactor. The definition of a non-fuel part isshown in
Figure 1. The distance between two TRISO particles decreased with the increasing of non-fuel part size
due to the certain TRISO particle loading in FCMTM pellet. The FCMTM pellet samples with different
non-fuel part size were labeled. For example, N100 means the non-fuel pare size of the sample was
100 µm.Computation 2020, 8, x FOR PEER REVIEW 7 of 15 
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Figure 1. Definition of non-fuel part in FCMTM pellet.

The temperature and stress distribution in FCMTM and TRISO fuel was calculated using heat
transfer and the solid mechanical model, respectively, which was offered by COMSOL multi-physics
software (COMSOL-5.2, MERCURY LEARNING AND INFORMATION LLC, Dulles, Virginia).
The heat conduction equation and heat flux used to calculate the FCMTM performance have been
introduced in our previous work [17]. The fission gas release was calculated according to two
mechanisms including the recoil release and diffusion release. The model of the fission gas release
was discussed in above section. The internal pressure was calculated according to the ideal gas low,
the temperature, amount of fission gas, and gap volume, which were investigated using the TRISO
particle model.

The schematic of the calculation flow used COMSOL-5.2 software, as shown in Figure 2. Here,
a 1/8 sphere unit was used to simulate the performance of TRISO particle, the internal pressure under
different temperatures were calculated as input parameters for FCMTM simulation. Two-dimensional
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models of FCMTM pellet with different structure parameters were established. Solid mechanics and
heat transfer modules were selected for normal condition. Materials property models were input by
defining the analytic functions. The boundary condition of TRISO particle and FCMTM pellet was
defined, symmetry boundary condition and surface temperature were defined for the three sides and
surface of TRISO particle respectively. The boundary conditions of FCMTM pellet have been introduced
in our previous work [17]. The temperature field, stress distribution and failure probability were
output and the structure of FCMTM pellet was optimized.
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4. Results and Discussion

4.1. Deformation and Fission Gas Release

The dimensional change of TRISO particle can affect the stress distribution of SiC matrix and SiC
layer because of the interaction between TRISO particle and SiC matrix. The dimensional change of
kernel and coated layers was shown in Figure 3. The deformation of TRISO particle may be caused
by the thermal and irradiation deformation of the kernel and coated layers. UN kernel swells as a
function of burn-up and temperature shown in equation (4), and the radius of UN kernel increased with
operation time. Buffer and IPyC layer deboned and the gap appeared at beginning. This phenomenon
was caused by the shrinkage of buffer and IPyC layers. Buffer and IPyC layers shrink because of the
irradiation densification and irradiation shrinkage as mentioned in Sections 2.2 and 2.3. The gap size
increased firstly because the radius of buffer layer decreased rapidly. Then the gap size decreased due
to the swelling of kernel and IPyC layer, this result was good agreement with literature [20]. The radius
of OPyC layer decreased slightly because of the irradiation shrink of OPyC layer, the deformation
of OPyC provide protection of SiC layer by pressing the inner layer, but the deformation of TRISO
particle may induce tensile stress on SiC matrix especially the part among TRISO particles. The radius
of IPyC layer decreased with operation time due to the irradiation shrink.
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The fission gas release and internal pressure of TRISO particle were shown in Figure 4. The amount
of fission gas release including He, Kr and Xe were calculated. The release rate was controlled by
recoil and diffusion mechanisms as mentioned above. The release amount of He, Kr and Xe were
4.41 × 10−8mol, 5.85 × 10−9mol and 4.33 × 10−9mol respectively at the end of life. The total amount
of fission gas was about 5.43 × 10−8mol. The amount fission gas release increased with operation
time linearly, this trend was similar with literature [20]. The internal pressure was approximately
linear increased with operation time, which caused by the accumulation of fission gas release [20].
The internal pressure of UN kernel TRISO particle was much lower than the UO2 kernel, because there
was no CO or other reactivity gas produced by the reaction between UO2 kernel and buffer layers [12].
The internal pressure of TRISO particle with UN kernel was about 2.2 MPa at the end of life which was
much lower than the UO2 kernel (about 45MPa) reported in the literature [25]. UN kernel can decrease
the internal pressure obviously by avoiding the reaction between kernel and coated layers.Computation 2020, 8, x FOR PEER REVIEW 9 of 15 
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4.2. Matrix Temperature

Temperature variation and distribution of the FCMTM pellets with different non-fuel part size in
an LWR environment was shown in Figure 5. The maximum temperature was located in the inner part
of FCMTM pellet. The maximum temperature of SiC matrix increased with non-fuel part size, which
increased from about 1349K to 1586K. TRISO particles flock together in the sample with large non-fuel
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part and the heat transfer path was less compared with the small non-fuel part ones. All the SiC
matrix maximum temperature was much lower than the decomposition or molten point of SiC ceramic,
which was met the requirements of temperature-limited criteria [24]. The maximum temperature of
the samples was lower than UO2 pellet under same condition due to the high thermal conductivity of
the SiC matrix. All samples exhibit similar temperature variation trend, maximum temperature of
the SiC matrix increased rapidly and then was followed by a slower linear increase. This result was
caused by the thermal conductivity variation of SiC matrix. Thermal conductivity of the SiC matrix
decreased rapidly at first because of the increasing vacancy accumulation and then saturated [24], and
the thermal conductivity of SiC matrix was stable according to Equations (19) and (21).
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4.3. Stress Distribution of SiCMatrix

Variation of hoop stress on non-fuel parts of the FCMTM pellets with different non-fuel parts
size located in different parts were shown in Figure 6. The maximum hoop stress on non-fuel part
decreased with the increasing of non-fuel part size because of the stress concentration on the non-fuel
part with small size. Hoop stress on different samples exhibit similar variation trend. The hoop stress
decreased firstly and then increased [17]. The SiC matrix swelled rapidly at first, and the OPyC layers
shrank. The interaction between SiC matrix and TRISO particle was small. SiC matrix swelling reached
saturation at about 1 dpa, the temperature gradient increased and non-uniformity deformation of SiC
matrix occurred [19]. The interaction between matrix and TRISO particle increased, which caused
the non-fuel part hoop stress increased. The difference between different parts in the same sample
was caused by the temperature distribution and interaction among TRISO particles. The maximum
hoop stress on non-fuel part decreased from about 1200 MPa to 400 MPa with the non-fuel part size
increasing from 100 µm to 500 µm. The non-fuel part hoop stress of the FCMTM pellet with 500 µm
non-fuel part size was about 400 MPa, which was similar to the SiC matrix strength. The decreasing of
non-fuel part hoop stress was benefit to the integrity maintaining of FCMTM pellet.
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Figure 7 shows the hoop stress of inner SiC matrix located between the two TRISO particles in
the FCMTM pellet with different non-fuel part size. The maximum hoop stress of the inner SiC matrix
increased with the non-fuel part size. The maximum inner SiC matrix hoop stress of the pellet with
100 µm non-fuel part was about 900 MPa at the end of life but the value with 500 µm non-fuel part
reached 3000 MPa. The increasing of non-fuel part may cause the decrease of distance between TRISO
particles. Shearing action between the TRISO particle and the SiC matrix was enlarged because the two
TRISO particle next together [16,24]. The hoop stress variation of the inner SiC matrix and non-fuel
part are similar, the hoop stress decreased firstly and then increased, which may be caused by the
deformation of SiC matrix and TRISO particle. The hoop stress of all samples was much higher than
the strength of the sintered SiC ceramics at the end of life. The high hoop stress may have caused the
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broken of SiC matrix according to the stress criterion. This result has been proved by Schappel in
adoctoral thesis [24].
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4.4. Performance of the SiC Layer

FCMTM pellet failure can be reflected by the integrity of inner SiC matrix, non-fuel part and SiC
layers in TRISO particle as we mentioned in the first section [17,18]. SiC ceramics possessed excellent
fission products capabilities because of the high density and low transfer diffusion of fission production.
Inner SiC matrix was broken due to the high hoop occurred during operation. The hoop stress of
non-fuel part was decreased with the increasing of non-fuel part size, and the integrity of non-fuel may
be maintained for the FCMTM pellet with large non-fuel part size (>300µm). The performance of SiC
layer is an important factor for the evaluation criterion of FCMTM pellet failure and the performance of
SiC layers in FCMTM pellet with different non-fuel part size was studied in this work.

The hoop stress of SiC layers embed in different location of FCMTM pellet was shown in Figure 8,
and the effect of non-fuel part size on the performance of SiC layers was also discussed. The maximum
hoop stress increased with non-fuel part size. The maximum SiC layer hoop stress of the pellet with
100 µm non-fuel part was about 120 MPa at the end of life but the value with 500 µm non-fuel part
reached about 400 MPa. Because of the distance between TRISO particle decreased with the increasing
of non-fuel part size, the interaction between different TRISO particles enlarged and the hoop stress
of SiC layer increased. Maximum hoop stresses for the pellets with 300µm and 400µm non-fuel
part size were 120MPa and 200 MPa respectively, which were much lower than the strength of SiC
layer [26]. The failure probability of SiC layer can be calculated using Weibull distribution as shown in
equation (23). The failure probability of SiC ceramics using Weibull distribution has been reported in
previous works [26]. SiC layer located in different parts suffered different deformation, the variation
and hoop stress were different for SiC layers located in different pellet parts; this result had been
introduced in our previous work [17].
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The failure probability of SiC layers in FCMTM pellets with different non-fuel part size was shown
in Figure 9. The maximum failure probability of SiC layers increased with non-fuel part size because
of the increasing of SiC layers hoop stress. The hoop stress of SiC may be caused by the interaction
between TRISO particle and SiC matrix, the contribution of internal pressure and fission gas release
was limited [19]. The maximum failure probability of SiC layers in FCMTM pellets with 100 µm and
500 µm non-fuel part was about 9.0 × 10−5 and 1.2 × 10−2 respectively. Maximum failure probability
for the pellets with 300µm and 400 µm non-fuel part size were 1.05 × 10−4 and 2.2 × 10−4, respectively,
so the low failure probability ensured the integrity of the SiC layers when the non-fuel size lower than
500 µm [20].Computation 2020, 8, x FOR PEER REVIEW 13 of 15 
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5. Conclusions

A two-dimensional model of FCMTM pellet with different non-fuel part size was established to
simulate the thermal-mechanical performance of the FCMTM pellet. The effect of structure on the
performance of the FCMTM pellet was discussed, and structure parameters was selected according
to the integrity maintaining of non-fuel and SiC layers. The internal pressure of UN-TRISO particle
increased linearly with operation time, and the maximum internal pressure was about 2.1 MPa, which
was much lower than the UO2 kernel. The maximum SiC matrix temperature increased with non-fuel
part size, and the maximum temperature was about 1586 K. The non-fuel part hoop stress decreased
with non-fuel size while the hoop stress of inner matrix exhibited crosscurrent trend. The SiC layers
hoop stress and failure probability increased with the non-fuel part. The structure integrity for the
non-fuel part and SiC layers may be maintained for the pellet with 300µm and 400µm non-fuel part
size. 300µm and 400µm non-fuel part size may be a suitable choice for the FCMTM pellet in order to
maintain the integrity of the FCMTM pellet and the SiC layers.
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