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Abstract: The presented work is dedicated to the modeling of catalytic reactors using a multiscale
approach, based on the combination of cellular automata and Computational Fluid Dynamics (CFD).
This work describes the first step in the development of a complex model of catalytic reactors and
considers the diffusion of components inside a porous structure of an aluminosilicate catalyst. Various
cellular automata were used to generate virtual porous structures of catalysts with specific surface
areas equal to 250, 500, and 700 m2/g and to calculate the effective diffusion coefficient for the
substance transfer inside the catalysts. The obtained effective diffusion coefficient was included in
the CFD model of a laboratory scale reactor simulating extraction of aniline from the catalyst with
methanol. Results of numerical experiments carried out using the CFD model were compared with
the corresponding experimental data. It is shown that the proposed approach is suitable for describing
macroscopic and microscopic mass transfer phenomena on consideration of the catalyst’s structure.

Keywords: catalytic reactors; Computational Fluid Dynamics; CFD; cellular automata; porous
structure; diffusion

1. Introduction

The importance of heterogeneous catalysis for modern chemical production processes is doubtless.
Catalytical technologies are used for fuel production (the total number of oil refinery plants exceeds
400 units) [1], in large-capacity and fine chemicals (the annual output of large-capacity plants alone
exceeds $700 billion in cash equivalent) [2], to prevent environmental pollution via development of
low-waste technologies [3], to reduce the pollution level of wastewater [4], industrial emissions [5],
and transport exhaust gases [6]. Such relevance of catalytic processes leads to the fact that research and
development activities aimed at improving efficiency of catalysts, development of new technological
processes using catalysts, new equipment designs, etc., are continuously growing. When using solid
catalysts, an obvious way to improve their performance is to increase the catalyst’s specific surface area
available for contact with reagents. This target can be achieved by application of porous substances.

When using porous materials with a complex disordered structure, an important task is to study
the dynamics of the processes occurring both in the internal pore volume (diffusion, adsorption,
chemical transformations, heat transfer) and outside the structure (hydrodynamic processes, heat
and mass transfer). Due to the complexity and high costs of experimental methods for studying
these processes, mathematical and computer modeling are becoming important tools in solving these
problems [7]. It is obvious that the processes inside and outside porous structures, first, influence each
other, and, second, they have totally different spatial scales. These facts require the use of a multiscale
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approach for the models’ development [8]. Computational Fluid Dynamics (CFD), which has a number
of proven advantages [9], is the most widely used tool to simulate macroscopic processes occurring at
the scale of technological equipment. When describing microscopic phenomena in porous materials,
one of the most promising approaches is cellular automata (CA), which are especially common in
solving diffusion problems [10].

CA became quite a popular tool for digital material representation [11]. Among this type of CA,
it is worth highlighting aggregation models [12]. Witten and Sander proposed the first aggregation
model—the diffusion-limited aggregation (DLA) model [13]. An advantage of aggregation models is
that they can be easily modified and adapted to specific tasks. Further development of aggregation
models led to approaches with the combination of particle clusters. The first cluster–cluster model was
reported by Finegold [14]. Cluster–cluster aggregation models are widely used in modeling porous
microstructures such as aerogels [15].

As it was mentioned, CA are considered a good approach for diffusion modeling. Many CA type
have been developed for this purpose. The two most popular ones are lattice-gas automaton [16]
and block CA originally proposed by Margolous [17]. The latter approach was successfully used for
diffusion and convection modeling of flows in porous media [18], coal combustion modeling [19],
and lignin growth [20].

For the above reasons, we attempted to create a complex multiscale model of a catalytic reactor
with a porous aluminosilicate catalyst. This article presents the first stage of the work and includes
application of the CA approach to represent catalyst porous structure and to calculate the effective
diffusion coefficient inside a porous body. The CA approach can be considered as an alternative
to Molecular Dynamics (MD), which can be also used for material reconstruction and diffusion
simulations [21–24]. Choice of CA for such simulations is reasonable due to less computational costs,
relatively simple transition rules, and more efficient parallelization of computations. CA are an efficient
tool to simulate structures and phenomena with much larger scales in comparison to MD.

The results of CA modeling were used to build a hydrodynamic model of a test multicomponent
system. The model was implemented in the framework of Computational Fluid Dynamics. The main
goal of computational experiments carried out using the implemented model was to verify the
applicability of the selected methods for describing diffusion processes in porous aluminosilicate
catalysts, taking into account external macroscopic phenomena.

The work was carried out in accordance with the following sequence:

• at the first step, using CA, virtual three-dimensional structures of porous aluminosilicate catalysts
were generated that have structural characteristics similar to real samples (specific surface area,
pore size distribution);

• further, using CA with Margolus neighborhood, medium diffusion inside the generated catalyst
structure was simulated;

• based on the CA simulations, the effective diffusion coefficient taking into account catalyst
structure influence on the matter mass transfer was determined;

• the obtained effective diffusion coefficient was used in the CFD model to calculate the test process
for substance extraction from a porous catalyst.

The model was verified by comparing the calculated and experimental curves for the substance
mass change inside the reactor. Experimental studies were conducted in a laboratory scale setup using
aniline and methanol.

2. Materials and Methods

There are several different CA-based or CA-like methods for generating structures of porous
materials with realistic specific surface area and pore size distribution. The following models were
selected and implemented in an own software: DLCA (diffusion-limited cluster aggregation), MultiRLA
(reaction-limited aggregation with multiple aggregation centers), OSM (overlapping spheres method),
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BPCA (ballistic particle–cluster aggregation) and RW (random walker). Catalyst porosity and sizes of
globules forming the skeleton of the material were taken as the initial data for structure generation.

General definitions of the selected algorithms are given below, whereas more details can be found
in the referenced materials.

The overlapping spheres model [25] can be described as follows: the volume is filled with slightly
overlapping spheres, then the spheres are removed until the desired porosity is obtained and links
between all spheres exist. The diffusion limited cluster aggregation model [26] is a well-known and
widely used model. The particles following Brownian motion are aggregated into set of clusters
that eventually encounter each other forming resulting clusters. Reaction limited aggregation with
multiple centers is a rather new model that is based on reaction limited aggregation [27] but introduces
multiple seeds or aggregation centers. This model provides an opportunity to take into account
different processes occurring between particles, but this leads to high computational complexity. Thus,
this model is very flexible, meaning that it can be adopted according to the needs. The ballistic
particle–cluster aggregation model [28] operates with particles that follow straight line trajectories
between the starting point and the position of the seed. The cluster that is being formed in this model
is filled out very evenly, being nearly disk-shaped. Random Walker is a general-purpose algorithm
that describes the random movement of single particles. When multiple particles are added to the
volume, their paths form a structure full of fiber-like objects. It is also possible to use this model for
particle-containing materials.

To simulate diffusion through the pores of the catalyst’s generated structure, a CA model based
on a reversible cellular automaton with Margolus neighborhood proposed by Norman Margolus [29]
was used. In detail the CA model is described in [30]. The model is briefly described below. Program
implementation was performed using parallel algorithm utilizing CUDA®(Compute Unified Device
Architecture) technology to speed up calculations. The rules of the developed CA are:

• alphabet of states: S0 is empty cell, S1 is diffusing substance, S2 is catalyst structure cell; every cell
in the lattice is of the same size;

• at each iteration the lattice is divided into set of 2 × 2 blocks according to Margolus neighborhood
(Figure 1) that are partitioned (Figure 2) in two ways (odd and even);

• for a pair of two adjacent cells, the interaction energy (which depends on cell types) is calculated;
• at each iteration the total energy of the block is calculated;
• at each iteration each block can rotate clockwise, counter-clockwise or stay unmoved depending

on the energy of the block;
• the following assumption has been used: binary diffusion coefficient does not depend on the

aniline concentration in alcohol;
• the free diffusion coefficient is fixed and when converted to CA units is equal to 1.78 [unit of

length]2/iteration.
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Figure 2. Even (a) and odd (b) partitioning of the lattice. 
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The energy effect of pair interactions between cells is related to the change of Gibbs energy of the
system. In order to take into account entropy (s) and enthalpy (ε) factors, interaction energy has to be
calculated. Interaction energy is the sum of enthalpy and entropy factors:

f jk = ε jk − Ts jk, (1)

which corresponds to the Gibbs free energy ∆G = ∆H − T∆S.
The total energy of the block is the sum of all pair interaction energies within the block Fin

i and
interaction energies with adjacent cells from other blocks Fout

i :

Fi = Fin
i + Fout

i , (2)

In order to speed up calculations, all pair interaction energies within the block can be neglected.
For example, the probability to stay unmoved for the block is
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Values in Equation (3) with “um” index correspond to “unmoved” transition rule, with
“cw”—clockwise rotations, and with “ccw”—counter-clockwise rotation.

Similarly, other probabilities (to rotate the block clockwise or counter-clockwise) are calculated.
The described approach can be used to predict penetration and extraction kinetics as temperature

functions, and in this case at least two extraction experiments using samples with the same structural
properties at different temperatures and the same alcohol density are required in order to determine
both enthalpy and entropy factors.

However, when the temperature dependence of the kinetics is not taken into account, only the
total interaction energy between the diffusing substance and the catalyst’s structure has to be defined
(without the need to determine enthalpy and entropy factors separately).

The effective diffusion coefficient in CA is obviously lower than the free diffusion coefficient and
when the number of particles in CA is equal to the number of boundary layer cells or less than that,
then it can be considered as a constant. In this case, the diffusion coefficient is determined only by the
interaction energy of substances with the catalyst structure and free substance diffusion in pores.

∂c
∂t

=
∂
∂x

(
D(c)

∂c
∂x

)
=
∂D
∂x
·
∂c
∂x

+ D
∂c2

∂x2 , (4)

In the following calculations, we assume that the diffusion coefficient in CA depends on
concentration as a threshold function:

c < cK; D = De f f
c ≥ cK; D = DCA

, (5)
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where cK is the concentration that corresponds to the amount of substance in the volume equal to the
size of the boundary layer in CA. In order to check the dynamics of such an assumption, Equation (4) is
to be solved numerically by using an explicit difference scheme with the following recurrence relation:

cn+1
i =

∆t
∆x2

(1
4

(
Dn

i+1 −Dn
i−1

)(
cn

i+1 − cn
i−1

)
+ Dn

i

(
cn

i+1 + cn
i−1 − 2cn

i

))
+ cn

i , (6)

In order to determine the effective diffusion coefficient De f f , it is necessary to optimize the value
of De f f based on the solution of the diffusion equation for the desired shape of the sample and
the corresponding experimental initial and boundary conditions. After this procedure is done and
the interaction energy is determined, it can be used in CA simulations for the system described in
the experiment.

CA Structure generations were performed using a workstation with Intel Core i5 CPU, 2 GB
RAM, and NVidia GeForce GTX 1060 GPU. Each structure generation took approximately 20 minutes
of real time. CA diffusion calculations were performed using a workstation assembled for GPU
parallelization with Intel Core i7 3.4 GHz CPU, 64 GB RAM, and two NVIDIA GeForce GTX 1080
GPUs supporting CUDA technology, which total performance is 17.746 TFLOPs. Each CA diffusion
numerical experiment required approximately 5 hours of real time.

The determined effective diffusion coefficient was used for the CFD model of aniline extraction
from a catalyst in a laboratory scale reactor. The modeled system was similar to the experimental set
up and incuded the internal volume of the reactor with a block of a catalyst fully filled with aniline
and placed in the central area of the reactor.

The following assumptions were made for development of the CFD model:

• the system is considered as a two-component homogenous medium (which is a viscous
compressible liquid) “methanol–aniline”;

• there are two computational domains—the void volume of the reactor θ and the porous body
volume (catalyst with aniline) Ω;

• the mass flow in the porous body is described by Fick’s diffusion equation using the calculated
effective diffusion coefficient without any convective transport;

• the reactor’s wall temperature is constant.

The model’s geometry is shown in Figure 3. It consists of two computational domains—the void
volume of the reactor and the porous catalyst. The reactor has 3 inlets and 2 outlets 2 mm in diameter
each. The reactor is represented as a horizontal cylinder with 55 mm diameter and 105 mm length.
The catalyst has a form of a box with dimensions 50 × 50 × 5 mm (L ×W × H).
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The mathematical model of the aniline extraction process is a system of differential equations,
which includes the mass conservation equations of methanol and aniline, the momentum conservation
equations, and the equation of energy conservation.

The model equations for the void volume of the reactor (computational domain θ) are:

∂(ρY1)

∂t
+∇

(
ρ
→
v Y1

)
= ∇(ρD∇Y1) − J1, (7)

∂(ρ
→
v
)

∂t
+∇

(
ρ
→
v
→
v
)
= −∇P +∇

(
τkl

)
+ ρ

→
g , (8)

∂(ρE)
∂t

+∇
(
→
v (ρE + p)

)
= ∇(λ∇T), (9)

The model equations for the volume of the catalyst (computational domain Ω) are:

∂(ρY1)

∂t
= ∇(ρD∇Y1) + J1, (10)

∂(ρE)
∂t

= ∇(λ∇T), (11)

Additional correlations are:
J1 = 0, J2 = 0 i f x, y, z < Γ, (12)

J1 = ρD
Y1Θ −Y1Ω

ael
i f x, y, z ∈ Γ, (13)

J2 = ρD
Y2Θ −Y2Ω

ael
i f x, y, z ∈ Γ, (14)

τkl = µ
[(
∇
→
v + ∇

→
v

T)
−

2
3
∇·
→
v I

]
, (15)

where ρ is the mixture density, kg/m3;
→
v is the mixture velocity vector, m/s; T is the mixture temperature,

K; P is the pressure, Pa; Y1 is the methanol mass fraction, kg/kg; Y2 is the aniline mass fraction;
→
g is the

gravity acceleration, m/s2; D is the diffusion coefficient, m2/s; λ is the thermal conductivity, W/m·K; E is
the specific total energy, J/kg; τkl is the stress tensor; J1 and J2 are mass transfer fluxes of components
through the interior, dividing two domains; Γ is the interior, dividing two domains (catalyst border);
Y1Ω is the methanol mass fraction at the border of the domain Ω; Y2Ω is the aniline mass fraction at the
border of the domain Ω; Y1Θ is the methanol mass fraction at the border of the domain Θ; Y2Θ is the
aniline mass fraction at the border of the domain Θ; ael is the border unit area, m2; µ is the viscosity,
kg/m·s; I is the unit tensor; indexes: in corresponds to a value at the inlet, w corresponds to a value at
the wall, b corresponds to a value at the border between two domains.

The considered system is a compressible liquid, therefore the Peng–Robinson (Equation (16))
equation of state [31] was used for density calculations. This equation was chosen as the most universal
one and the most suitable one for describing multicomponent systems:

P =
RT
ν− b

−
a

ν(ν+ b) + b(ν− b)
, (16)

where ν is the molar volume, m3/kmol; R is the universal gas constant, J/kmol·K; a, b are empirical
coefficients, that depend on the nature of substances and mixture composition.

Coefficients a and b are calculated as:

a =
0.457247R2Tcr

2

Pcr

{
1 + n

[
1−

( T
Tcr

)0.5]}2

, (17)
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n = 0.37464 + 1.54226ω− 0.26992ω2, (18)

b =
0.07780RTcr

Pcr
, (19)

whereω is the acentric factor of the mixture.
Van der Waals mixing rules have been used for the calculation of mixture pseudocritical parameters:

Tcr =

(
x1Tcr1
Pcr1

2 + x2Tcr2
Pcr22

)2

x1Tcr1
Pcr1

+ x2Tcr2
Pcr2

, Pcr =
Tcr

x1Tcr1
Pcr1

+ x2Tcr2
Pcr2

, (20)

where Tcr is the pseudocritical temperature of the mixture, K; Pcr is the pseudocritical pressure of the
mixture, Pa.

The described CFD model was implemented using ANSYS Fluent 17.0 software. The corresponding
generated initial mesh consists of tetrahedrons and hexahedral cells (tetrahedrons are used for the
void volume of the reactor, hexahedrons are used for the catalyst to create structured mesh for this
zone). The total number of cells is around 280,000. The initial mesh was adapted using an iterative
procedure to increase the model’s accuracy. A second-order pressure-based segregated algorithm was
used for numerical solution.

XZ and YZ cross sections of the initial mesh are shown in Figure 4. XZ cross section of the adapted
mesh is shown in Figure 5.
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CFD calculations were performed using HP ProLiant BL460c server with Xeon E5345 Quad Core
CPU and 16 GB RAM. Each numerical experiment required approximately 3–4 h of real time.

To conduct an experiment on the extraction of aniline from a porous aluminosilicate catalyst, an
installation of its own design was used. The installation principal diagram is shown in Figure 6.
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4—micro filters; 5—out valve; 6—programmable logic controller; 7—personal computer.

The methanol was supplied to the system using pump (2) from methanol suction line (1) at ambient
temperature. Methanol was fed to a 250 mL reactor (3). The flow of methanol was controlled using the
pump flow rate. The temperature inside the reactor was controlled by a temperature controller (TC).
The temperature inside the reactor was determined using a KTL-01 thermocouple (TE 3, accuracy of
±0.1 °C), and the pressure was measured using a manometer (accuracy ± 0.01 bar). The temperature of
the flow was determined using a KTL-01 thermocouple (TE 2).

Data collection from TE3, PT4 sensors was carried out by a programmable logic controller (6).
Furthermore, all data from the programmable logic controller (PLC) were transferred to a personal
computer (7).

Aluminosilicate catalyst filled with aniline was loaded into the reactor. The reactor was hermetically
sealed and methanol was fed into it. The output aniline concentration was measured using High
Performance Liquid Chromatography (HPLC).

3. Results and Discussion

After a number of test generations with the developed software, it was decided to use the DLCA
algorithm as the most appropriate for generating particle-based structures similar to aluminosilicate
catalysts. The DLCA algorithm was chosen based on the comparison of a catalyst sample’s measured
characteristics and the corresponding values calculated for the generated structures. Specific surface
areas and mean pore diameters were compared (Table 1).

Table 1. Comparison of measured and calculated structural properties.

Experimental DLCA OSM Multi RLA BPCA

Specific surface area, m2/g 320.7 317.8 334.4 284.7 302.7
Mean pore diameter, nm 13 14.96 15.2 148 180

3D structures were generated for 3 catalysts:

• the specific surface area is approximately 250 m2/g, average pore diameter is 10 nm (catalyst 1);
• the specific surface area is approximately 500 m2/g, average pore diameter is 5–15 nm (catalyst 2);
• the specific surface area is approximately 700 m2/g, average pore diameter is 5.7 nm (catalyst 3).

The generated structures are shown in Figure 7.
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Figure 7. Generated structures of aluminosilicate catalysts with (a) 250, (b) 500, and (c) 700 m2/g specific
surface area.

The model parameters were adjusted in such a way as to ensure a given catalyst surface area,
which was the main criterion for the suitability of the created structures for subsequent modeling.
A separate verification of the generated structures by such a parameter as the pore size distribution
was not performed, since the calculation results obtained using the developed complex model, taking
into account the features of virtual structures, were evaluated.

The generated structures were imported into a diffusion modeling CA-based software to calculate
the effective diffusion coefficient, taking into account the influence on the components’ diffusion both
the catalyst structure and the nature of the substances.

Assuming that the aniline extraction time of CA and of the numerical solution of the model should
match, the most suitable value for the effective diffusion coefficient Deff can be found as described above.
The corresponding curves obtained using the PDE (partial differential equation) and CA approach are
shown in Figure 8. These data were obtained for the catalyst 1.
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Figure 8. Cellular automata model in comparison with PDE numerical solution.

The presented curves demonstrate the evolution of the number of cells with the state “S1”
(corresponds to aniline) predicted by the CA and PDE approaches, and the main target of comparing
these curves is to adjust the CA model parameters. During the adjustment of the CA model parameters,
the corresponding curve approaches the curve obtained using the PDE model. Figure 8 shows the
accuracy achieved in this work with regard to the adjustment.
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First-type boundary conditions were used for the numerical solution

c(0, t) = 0
c(L, t) = 0

, (21)

and the following initial condition:
c(x, 0) = c0, (22)

To verify the developed CA model, experimental data on the aniline extraction from a porous
catalyst were used. For this, a sample of a porous catalyst of a cylindrical shape with a diameter of
5 mm and a height of 15 mm, impregnated with aniline, was placed in an experimental cell with an
inner diameter of 5 mm. Thus, the possibility of methanol flowing around the catalyst sample was
excluded. The experimental data is the change of the aniline concentration leaving the catalyst over
time, which was measured using HPLC.

Based on the provided experimental data, the average diffusion coefficient of aniline in methanol
was determined, which is equal to 1.3 × 10−9 m2/s. This coefficient corresponds to the fixed free
diffusion coefficient in the used CA model. Based on this, the single time step of the cellular automaton
is equal to:

∆t =
DCA
D0

∆h2 = 7.1·10−11s, (23)

The ratio of free (D0) and effective (Deff) diffusion coefficients was also determined from
experimental data, which was 2.5/0.41. Using this relation, Equation (4) was numerically solved.
As a result of this, the aniline extraction kinetics was obtained, which was compared with the results
obtained using a cellular automaton (Figure 9). The presented curves describe the aniline amount
decrease due to diffusion in a relatively small area of the porous catalyst. In this case, the PDE curve
corresponds to experimental data. Thanks to the comparison of experimental and calculated curves, the
interaction energy of aniline molecules with the structure of the catalyst was determined by optimizing
the parameters of the cellular automaton. This energy is 9300 J/mol.
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Figure 9. Kinetics of the aniline extraction from a porous catalyst: PDE—experimental data, cellular
automata (CA)—calculated.

A visual representation of aniline diffusion in a porous catalyst, obtained using a cellular automaton
model, is shown in Figure 10. Cells marked in red correspond to the aniline, the blue color relates
to the catalyst skeleton. As one can see, the aniline leaves the catalyst internal volume in a certain
direction determined by the alcohol flux and boundary conditions. However, the aniline spatial
inhomogeneity itself is not analyzed in this work, and the aniline integrated amount is considered as
the most important data.
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Figure 10. Extraction of aniline from the porous catalyst calculated using CA approach.

A comparison of the curves presented in Figure 9 shows that the simulation results obtained using
the used CA model are in a good agreement with the experimental data.

However, the above data do not take into account phenomena occurring outside the catalyst,
which is observed in real systems. Therefore, a combination of the cellular automaton approach and
CFD was required.

After substitution of the calculated effective diffusion coefficient in the CFD model several
numerical experiments were carried out. The studied cases were both transient and steady-state.

The velocity of methanol at the inlet was set to 0.006 m/s. The temperature at the inlet was 293.15 K.
The temperature of the wall was 318.15 K. The properties of aniline and methanol are taken from
ChemCAD database and the reference conditions are shown in Table 2.

Table 2. Properties of substances (298 K, 1 atm).

Substances Density
(ρ, kg/m3)

Specific Heat
(Cp, J/kg·K)

Thermal Conductivity
(q, W/m·K)

Viscosity
(µ, kg/m·s)

Aniline 1030 2062 0.1733 0.00391
Methanol 785 2534 0.2022 0.00055

Steady-state simulations were used to analyze methanol path lines, temperature, and
velocity profiles.

Figure 11 demonstrates the path lines starting from inlets. As can be seen, there are some circular
loops because of hydrodynamic effects. These circulating flows cause substances to stay in the reactor
longer than they should. The same thing can be seen from the velocity vector fields shown in Figures 12
and 13. These velocity vector fields are projections of velocity vectors on YZ and XZ cross sections
respectively. In spite of comparatively low velocities three jets are clearly visible underneath the inlets.
The central jet because of the impact with the porous body surface goes sidewards and upwards then
creating multiple loops. At the same time outer jets interacting with the reactor wall at the bottom
show a similar behavior with circular loops underneath the catalyst.
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Figure 11. Path lines starting from inlets (The Figure is prepared with the outer face cut to show
boundary surfaces and internal area at the same time).
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boundary are not shown, color map is indicated in m/s units).
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Figure 13. Velocity vector field (XZ projection, middle cross section, the reactor walls and the catalyst
boundary are not shown, color map is indicated in m/s units).

Mixture temperature profiles are shown in Figures 14 and 15. Figures 16–18 show aniline mass
fraction profiles at different cross sections within the process time.
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Figure 14. Temperature profile (YZ middle cross section, the reactor walls and the catalyst boundary
are not shown, color map is indicated in K units).
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Figure 15. Temperature profile (XZ middle cross section, the reactor walls and the catalyst boundary
are not shown, color map is indicated in K units).

Computation 2020, 8, 11 13 of 17 

 

 

Figure 14. Temperature profile (YZ middle cross section, the reactor walls and the catalyst boundary 

are not shown, color map is indicated in K units). 

 

Figure 15. Temperature profile (XZ middle cross section, the reactor walls and the catalyst boundary 

are not shown, color map is indicated in K units). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 16. Aniline mass fraction profile (YZ middle cross section, the reactor walls are not shown,
maximum value of the color map corresponds to pure aniline): (a) 500 s, (b) 10,000 s, (c) 20,000 s,
(d) 30,000 s.
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Figure 17. Aniline mass fraction profile (XZ middle cross section, the reactor walls are not shown, 

maximum value of the color map corresponds to pure aniline): (a) 500 seconds, (b) 10,000 seconds, (c) 
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Figure 17. Aniline mass fraction profile (XZ middle cross section, the reactor walls are not shown,
maximum value of the color map corresponds to pure aniline): (a) 500 s, (b) 10,000 s, (c) 20,000 s,
(d) 30,000 s.
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Figure 18. Aniline mass fraction profile (catalyst external surface, maximum value of the color map
corresponds to pure aniline): (a) 500 s, (b) 10,000 s, (c) 20,000 s, (d) 30,000 s.

Circulation occurring due to impact of the catalyst on the alcohol flux (in case of the central
jet) and due to the position of the inlets (in case of side inlets, where incoming jets come in contact
with the wall of the reactor) causes non uniform aniline concentration distribution. Obviously, this is
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especially important at the boundary of the catalyst. Increase or decrease of aniline concentration at
the boundary limits or intensifies the diffusion mass transfer inside the catalyst. This can be clearly
seen in Figures 17 and 18 at the early stages of the process (ribbed patterns in the cross section of the
catalyst and circle patterns on its surface respectively). As a result, concentration gradients occur in
the catalyst. These gradients are not so important for the first step of our work, since no chemical
reactions were currently considered, but they definitely had to be taken into account at later stages.
Similarly, aniline concentration nonuniformity in the bulk fluid does not affect the description in this
work process, since the diffusion inside the catalyst is the main bottle neck, and it is sensitive mainly to
the concentration at the boundary.

Comparison of experimental and calculated data is shown in Figure 19. The curves represent
change of aniline total mass inside the reactor within time. Experimental data were calculated using
the measured concentrations at the outlet of the reactor. Calculated data were obtained via integration
over the computational domain.
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The calculated relative deviation is 7.3% for catalyst 3 and 10.1% for catalyst 2.
The simulation results show that the proposed multiscale approach is quite suitable for describing

the diffusion of the reaction mixture components in a porous catalyst, which is one of the most
important steps to build a complete model of a catalytic synthesis process. However, it should be
noted that even with respect to diffusion, additional studies should be carried out, since the proposed
model has not yet considered the issues of multicomponent diffusion, when individual components
can significantly affect the transport of other components. This aspect is very important, since more
than two components are involved in many catalytic processes.

Despite this drawback, the proposed model is a good starting point for further development. The
calculation results showed that the model explicitly allows considering the influence of the catalyst
structure on the process: extraction of the substance from the catalyst with a larger surface area and
smaller pore size proceeds more slowly (Figure 19). In addition to this, the use of the cellular automaton
approach itself is also advantageous, since adding new transition rules to the cellular automaton
is relatively simple, CA calculations can be efficiently parallelized, CA models can reproduce the
behavior of rather complex systems while maintaining the simplicity of the transition rules. Spatial
scales of individual cells in CA are large enough not to consider intramolecular degrees of freedom and
intermolecular interactions, and at the same time it is still possible to simulate processes associated
with these phenomena. As a result, there is a potential opportunity to take into account phenomena of
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multicomponent diffusion and chemical reactions, considering them at the microscopic level, which
will allow the behavior of a system with a high spatial discretization to be studied.

4. Conclusions

A multiscale approach to the construction of an aluminosilicate catalyst model using a cellular
automaton model and subsequent verification calculation using the CFD model is proposed.
The cellular-automaton model allows high-precision modeling of the heterogeneous nature of porous
structures (in this case, aluminosilicate catalyst) due to local rules of behavior for each cell. Using a
cellular automaton approach, virtual structures of aluminosilicate catalyst were generated and the
process of medium diffusion inside the generated structures was simulated. Based on the calculations,
the effective diffusion coefficient of aniline with methanol was determined, which amounted to
1.3 × 10−9 m2/s. The obtained effective diffusion coefficient was used in the CFD model to calculate the
test process for the displacement of aniline from a porous aluminosilicate catalyst. When comparing
the experimental and calculated data, the average relative error was 8.7%. The proposed multiscale
approach opens up broad prospects for modeling the structure of the catalyst, its physicochemical
properties, and the processes occurring in catalytic reactors. This will lead to optimization of both the
structure of the catalyst itself and the geometry of the reactor.
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