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Abstract: This paper sequentially estimates the inverse coefficient of variation of the normal
distribution usingHall’s three-stage procedure. We find theorems that facilitate finding a confidence
interval for the inverse coefficient of variation that has pre-determined width and coverage
probability. We also discuss the sensitivity of the constructed confidence interval to detect a possible
shift in the inverse coefficient of variation. Finally, wefind the asymptotic regret encountered in point
estimation of the inverse coefficient of variation under the squared-error loss function with linear
sampling cost. The asymptotic regret provides negative values, which indicate that the three-stage
sampling does beĴer than the optimal fixed sample size had the population inverse coefficient of
variation been known.

Keywords: inverse coefficient of variation; normal distribution; regret; squared-error loss function;
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1. Introduction

Let 𝑋1, 𝑋2, … be a sequence of independent and identically distributed IID random variables
from a normal distribution 𝑁(𝜇, 𝜎2) with mean 𝜇 ∈ R and variance 𝜎2 ∈ R+, where both parameters
are finite but unknown. The population coefficient of variation is the population standard deviation
divided by the population mean that is 𝜎/𝜇, 𝜇 ≠ 0, mostly presented as a percentage. It is useful
when we seek relative variability rather than the absolute variability. It is a dimensionless quantity,
which enables researchers to compare different distributions, regardless of their measurable units.
Such practicality makes it widely used in different areas of science, such as engineering, finance,
economics, medicine, and others. Nairy and Rao [1] conducted a survey of several applications in
engineering, business, climatology, and other fields. Ahn [2] used the coefficient of variation to predict
the unknown number of flaw trees, while Gong and Li [3] used it to estimate the strength of ceramics.
Faber and Korn [4] applied the measure in the mean synaptic response of the central nervous system.
Hammer et al. [5] used the measure to test the homogeneity of bone samples in order to determine the
effect of external treatments on the properties of bones. Billings et al. [6] used it to study the impact
of socioeconomic status on hospital use in New York City. In finance, Brief and Owen [7] used the
coefficient of variation to evaluate the project risks considering the rate of return as a random variable.
Pyne et al. [8] used the measure to study the variability of the competitive performance of Olympic
swimmers. In health sciences, see Kelley [9] and Gulhar et al. [10].

The disadvantage of the measure lies in the singularity point 𝜇 = 0. Therefore, it is preferable
to work with the reciprocal of the measure, inverse coefficient of variation, 𝜃 = 𝜇/𝜎 defined over R.
The inverse coefficient of variation is equal to the signal-to-noise ratio, which measures the signal
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strength relative to background noise. In quality control, it represents the magnitude of the process
mean compared to its variation. In other words, it quantifies how much signal has been corrupted by
noise, see McGibney and Smith [11]. In finance, it is called Sharpe’s index, which measures portfolio
performance, for example, see Knight and Satchell [12].

Having observed a random sample 𝑋1, 𝑋2, … , 𝑋𝑛 of size (𝑛 ≥ 2) from the normal population,
we continue to use both 𝑋𝑛 and 𝑆𝑛 as the sample mean and the sample standard deviation point
estimates of the normal distribution mean 𝜇 and standard deviation 𝜎, respectively. Consequently,
we define the sample inverse coefficient of variation ̂𝜃𝑛 = 𝑋𝑛/𝑆𝑛.

Hendricks and Robey [13] studied the sampling distribution of the coefficient of variation.
Koopmans et al. [14] showed that without any prior restriction to the range of the population mean,
it is impossible to obtain confidence intervals for the population coefficient of variation that have finite
length with a probability one, uniformly for all values of 𝜇 𝑎𝑛𝑑 𝜎 except by using purely sequential
procedure. Rao and BhaĴa [15] approximate the distribution function of the sample coefficient of
variation using the Edgeworth series to obtain a more accurate large-sample test for the population
coefficient of variation under normality. McKay [16] derived a confidence interval for the population
coefficient of variation, which is based on the chi-squared distribution. He found that the constructed
confidence interval works well when the coefficient of variation is less than 0.33, see Umphrey [17].
Later Vangel [18]modifiedMcKay’s confidence interval, which shown to be closely related toMcKay’s
confidence interval, but is more accurate and nearly exact under normality. Miller [19] discussed the
approximate distribution function of the sample coefficient of variation andproposed the approximate
confidence interval for the coefficient of variation under normality. Lehmann [20] found an exact
form for the distribution function of the sample coefficient of variation, which depends mainly on the
non-central 𝑡-distribution (defined overR), so it is computationally cumbersome. Curto and Pino [21]
studied the distribution of the sample coefficient of variation in the case of non-IID random variables.

Sharma and Krishna [22] mathematically derived an asymptotic confidence interval for
the population inverse coefficient of variation without any prior assumption regarding the
underline distribution. Albatineh, Kibria, and Zogheib, [23] studied the performance of their
constructed confidence interval using Monte Carlo simulation. They used randomly generated
data from different distributions—normal, log-normal, 𝜒2 (Chi-squared-distribution), Gamma, and
Weibull distributions.

Regarding sequential estimation, Chaturvedi and Rani [24] proposed a sequential procedure
to construct a fixed-width confidence interval for the population inverse coefficient of variation of
a normal distribution with a preassigned coverage probability. They mathematically showed that
the proposed procedure aĴains asymptotic efficiency and consistency in the sense of Chow and
Robbins [25]. ChaĴopadhyay and Kelley [26] used the purely sequential procedure [25] to estimate
the population coefficient of variation of the normal distribution under a squared-error loss function
using a Nagar-type expansion.

Yousef andHamdy [27] utilizedHall’s three-stage sampling procedure to estimate the population
inverse coefficient of variation of the normal distribution using a Monte Carlo Simulation. They
found a unified stopping rule, which is a function of the unknown population variance that tackles
both a fixed-width confidence interval for the unknown population mean with a pre-assigned
coverage probability and a point estimation problem for the unknown population variance under
a squared-error loss function with linear sampling cost. In other words, they found the asymptotic
coverage probability for the population mean and the asymptotic regret incurred by estimating the
population variance by the sample variance. As an application, they write FORTRAN codes and
use Microsoft Developer Studio software to find the simulated coverage probability for the inverse
coefficient of variation and the simulated regret. The simulation results showed that the three-stage
procedure aĴains asymptotic efficiency and consistency in the sense of Chow and Robbins [25].

Up to our knowledge, none of the existing papers in the literature discussed the three-stage
estimation of the population inverse coefficient of variation theoretically. Here, the procedure
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is different than in Yousef and Hamdy [27]; the stopping rule depends directly on the sample
inverse coefficient of variation. We derive mathematically an asymptotic confidence interval for the
population inverse coefficient of variation that has a fixed-width 2𝑑(> 0) and coverage probability at
least 100(1 − 𝛼)%.

Moreover, we tackle a point estimation problem for the population inverse coefficient of variation
using a squared-error loss function with linear sampling cost. Then we examine the capability of
the constructed confidence interval to detect any potential shift that occurs in the population inverse
coefficient of variation. Here, the stopping rule depends on the asymptotic distribution of the sample
inverse coefficient of variation.

The Layout of the Paper

In Section 2, we present preliminary asymptotic results that facilitate finding the asymptotic
distribution of the sample inverse coefficient of variation. In Section 3, we present Hall’s three-stage
procedure and find the asymptotic characteristics for both the main-study phase and the fine-tuning
phase. In Section 4, we find the asymptotic coverage probability for the population inverse coefficient
of variation. In Section 5, we discuss the capability of the constructed interval to detect any shift in
the inverse coefficient of variation. In Section 6, we find the asymptotic regret.

2. Preliminary Results

The following Corollaries are necessary to find the asymptotic distribution of the sample inverse
coefficient of variation ̂𝜃𝑛 = 𝑋𝑛/𝑆𝑛.

Corollary 1. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from 𝑁(𝜇, 𝜎2). Let 𝑆2
𝑛 = ∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)
2
/(𝑛 − 1), 𝑛 ≥ 2

and 𝑋 = ∑𝑛
1 𝑋𝑖/𝑛 for 𝑛 ≥ 1. Then for all 𝑛 ≥ 6, we have

(i) 𝐸(𝑆𝑛) = 𝜎 − 𝜎
4𝑛 + 𝑂(𝑛−2)

(ii) 𝐸(𝑆4
𝑛 ) = 𝜎4 + 2𝜎4

𝑛 + 𝑂(𝑛−2)
(iii) 𝐸(𝑆−1

𝑛 ) = 𝜎−1 + 3𝜎−1

4𝑛 + 𝑂(𝑛−2)
(iv) 𝐸(𝑆−2

𝑛 ) = 𝜎−2 + 2𝜎−2

𝑛 + 𝑂(𝑛−2)
(v) 𝐸(𝑆−4

𝑛 ) = 𝜎−4 + 6𝜎−4

𝑛 + 𝑂(𝑛−2)

Proof. By using the fact (𝑛−1)
𝜎2 𝑆2

𝑛 ∼ 𝜒2(𝑛 − 1) we get 𝐸(𝑆𝑛) = √
2

𝑛−1
Γ(

𝑛
2 )

Γ(
𝑛
2 − 1

2 )
𝜎, 𝐸(𝑆4

𝑛 ) = (
𝑛+1
𝑛−1 )𝜎4,

𝐸(𝑆−1
𝑛 ) = √

𝑛−1
2

Γ(
𝑛
2 −1)

Γ(
𝑛
2 − 1

2 )
𝜎−1, 𝐸(𝑆−2

𝑛 ) = 𝑛−1
𝑛−3 𝜎−2, and 𝐸(𝑆−4

𝑛 ) = (𝑛−1)2

(𝑛−3)(𝑛−5) 𝜎−4, where Γ(𝑢) =

∫∞
0 𝑡𝑢−1𝑒−𝑡𝑑𝑡. The asymptotic expansion of √

2
𝑛−1

Γ(
𝑛
2 )

Γ(
𝑛
2 − 1

2 )
= 1 − 1

4𝑛 + 𝑂(𝑛−2), the asymptotic expansion

of √
𝑛−1

2
Γ(

𝑛
2 −1)

Γ(
𝑛
2 − 1

2 )
= 1 + 3

4𝑛 + 𝑂(𝑛−2), (
𝑛+1
𝑛−1 ) = 1 + 2

𝑛 + 𝑂(𝑛−2), while the asymptotic expansion of

(𝑛−1)2

(𝑛−3)(𝑛−5) = 1 + 6
𝑛 + 𝑂(𝑛−2). By direct substitution, we get the results. The proof is complete. □

The next corollary provides the asymptotic characteristics of ̂𝜃𝑛 = 𝑋𝑛/𝑆𝑛 in the case of fixed
sample size 𝑛, as shown in Chaturvedi and Rani [24].

Corollary 2. For all 𝑛 ≥ 8, as 𝑛 → ∞ we have

(i) 𝐸( ̂𝜃𝑛) = 𝜃(1 + 3
4𝑛 ) + 𝑂(𝑛−1)
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(ii) 𝐸( ̂𝜃2
𝑛) = 𝜃2 + 1

𝑛 (1 + 2𝜃2) + 𝑂(𝑛−1)
(iii) 𝑉 𝑎𝑟( ̂𝜃𝑛) = 1

𝑛 (1 + 𝜃2

2 ) + 𝑂(𝑛−1)
(iv) 𝐸( ̂𝜃4

𝑛) = 𝜃4 + 6𝜃2

𝑛 (1 + 𝜃2) + 𝑂(𝑛−1)
(v) 𝑉 𝑎𝑟( ̂𝜃2

𝑛) = 2𝜃2

𝑛 (2 + 𝜃2) + 𝑂(𝑛−1).

Proof. The proof follows from Lemma 1 and Lemma 2 in Chaturvedi and Rani [24]. □

For simplicity, let us consider 𝑉 𝑎𝑟( ̂𝜃𝑛) ≅ 𝜃2

2𝑛 , then from the central limit theorem as

𝑛 → ∞, 𝑄 = √2𝑛( ̂𝜃𝑛−𝜃)
𝜃 → 𝑁(0, 1) in distribution. To satisfy the requirement of having a confidence

interval for 𝜃 that has a fixed-width 2𝑑 and coverage probability with at least 100(1 − 𝛼)%, we need

𝑃
(|

√2𝑛( ̂𝜃𝑛 − 𝜃)
𝜃 |

≤ 𝑑√2𝑛
𝜃 )

≥ 1 − 𝛼,

From which we get,

𝑛 ≥ 𝑛∗ = 𝜉𝜃2, 𝜉 = 𝑎2

2𝑑2 (1)

where 𝑎 = 𝑍𝛼/2 is the upper 𝛼/2 cut off point of the 𝒩 (0, 1).
Since 𝜃 is unknown, then no fixed sample size procedure can achieve the above confidence

interval uniformly for all 𝜇, and 𝜎, see Danĵig [28]. Therefore, we resort to the three-stage procedure
to estimate the unknown population inverse coefficient of variation 𝜃 via estimation of 𝑛∗.

3. Three-Stage Sequential Estimation

Hall [29,30] introduced the idea of sampling in three-stages for constructing a confidence
interval for the mean of the normal distribution that has prescribed width and coverage probability.
His findings motivated many researchers to utilize the procedure to generate inference for other
distributions; for a complete list of research, see Ghosh, Mukhopadhyay, and Sen [31]. Others
have introduced point estimation under some error loss functions or tried to improve the quality
of inference like protecting the inference against type II error probability, studying the operating
characteristic curve, or/and discussing the sensitivity of the three-stage sampling when the underline
distribution departs away from normality. For details, see Costanzo et al. [32], Hamdy et al. [33], Son
et al. [34], Yousef et al. [35], Hamdy et al. [36], and Yousef [37,38].

In the following lines, we present Hall’s three-stage procedure, as described by Hall [29,
30]. The procedure based on three phases: The pilot phase, the main-study phase, and the
fine-tuning phase.
The Pilot Phase: In the pilot study phase a random sample of size (𝑚 ≥ 3) is taken from the normal
distribution say, (𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑚) to initiate sample measure, 𝑋𝑚 for the population mean 𝜇 and
𝑆𝑚 for the population standard deviation 𝜎. Hence, we propose to estimate the inverse coefficient of
variation 𝜃 by the corresponding sample measure ̂𝜃𝑚.
TheMain Study Phase: We estimate only a portion 𝛾(0 < 𝛾 < 1) of 𝑛∗ to avoid possible oversampling.
In literature, 𝛾 is known as the design factor.

𝑁1 = 𝑚𝑎𝑥{𝑚, [𝛾𝜉 ̂𝜃2
𝑚] + 1} (2)

where, [·] means the largest integer function.
If ≥ 𝑁1, then we stop at this stage; otherwise, we continue to sample an extra sample of size

𝑁1 − 𝑚, say (𝑋𝑚+1, 𝑋𝑚+2, 𝑋𝑚+3, … , 𝑋𝑁1), then we update the sampling measures 𝑋𝑁1 , 𝑆𝑁1 and
̂𝜃𝑁1 for the unknown population parameters, 𝜇, 𝜎, and 𝜃, respectively.



Computation 2019, 7, 69 5 of 17

The Fine-Tuning Phase: In the fine-tuning phase, the decision to stop sampling or continue based on
the following stopping rule

𝑁 = 𝑚𝑎𝑥{𝑁1, [𝜉 ̂𝜃2
𝑁1] + 1} (3)

If 𝑁1 ≥ 𝑁 , sampling is terminated, else we continue to sample and an additional sample of size
𝑁 − 𝑁1, say(𝑋𝑁1+1, 𝑋𝑁1+2, 𝑋𝑁1+3, … , 𝑋𝑁 ).Hence, we augment the previously collected𝑁1 samples

with the new 𝑁 − 𝑁1 to update the sample estimates to 𝑋𝑁 , 𝑆𝑁 and ̂𝜃𝑁 for the unknown parameters
𝜇, 𝜎, and 𝜃. Upon terminating the sampling process, we propose to estimate the unknown inverse
coefficient of variation 𝜃 with the fixed 2𝑑 confidence interval 𝐼𝑁 = ( ̂𝜃𝑁 − 𝑑, ̂𝜃𝑁 + 𝑑).

The following asymptotic results are developed under the general assumptions set forward
by Hall [28] to develop a theory for the three-stage procedure, condition (A) by definition, 𝜉 > 0,
𝑛∗ → ∞ ⇒ lim𝑠𝑢𝑝(

𝑚
𝑛∗ ) < 𝛾 and 𝜉(𝑚) = 𝑂(𝑚𝑘), 𝑘 > 1.

The following Helmert’s transformation is necessary to obtain asymptotic results regarding 𝑆2𝑘
𝑁1

and𝑆2𝑘
𝑁 for any real number 𝑘. We need to express the sample variance𝑆2

𝑛 as an average of IID random
variables. To do so let

{
𝑊𝑖 = ∑𝑖

𝑗(𝑍𝑗 − 𝑖𝑍𝑖+1)/√𝑖(𝑖 + 1), 𝑖 = 1, 2, … , 𝑛 − 1
𝑊𝑛 = 𝑛−1 ∑𝑛

𝑗=1 𝑍𝑗

where 𝑍𝑖 = 𝑋𝑖−𝜇
𝜎 , ∀𝑖 = 1, … , 𝑛. It follows that 𝑊𝑖 is IID 𝑁(0, 1)∀𝑖 = 1, 2, … , 𝑛. If we set 𝑉𝑖 = 𝜎2𝑊 2

𝑖
then 𝑉𝑖 ∼ 𝜎2𝜒2(1) for ∀𝑖 = 2, … , 𝑛. From Lemma 2 of Robbins [39], it follows that 𝑆2

𝑛 and
𝑉 𝑛 = (𝑛 − 1)−1 ∑𝑛

𝑖=2 𝑉𝑖 are identically distributed. So, in all the proofs we use 𝑉 𝑛 instead of 𝑆2
𝑛 , 𝑛 ≥ 2

to develop asymptotic results regarding 𝐸(𝑆2
𝑁1) and 𝐸(𝑆2

𝑁 ).
Under condition (A),

𝑃 (𝑁 = ([𝜉 ̂𝜃2
𝑁1] + 1)) → 1, and 𝑁1

𝛾𝑛∗ → 1 in probability as 𝑚 → ∞.

From Anscombe’s [40] central limit Theorem, we have as 𝜉 → ∞ ,

(i) √2𝑁1( ̂𝜃𝑁1 − 𝜃) → 𝒩 (0, 𝜃2) in distribution

(ii) √𝑁1( ̂𝜃2
𝑁1

− 𝜃2
) → 𝑁(0, 2𝜃4) in distribution

Now, 𝑁 = [𝜉 ̂𝜃2
𝑁1] + 1, except possibly on a set 𝜂 = (𝑁1 < 𝑚 ∪ 𝜉 ̂𝜃2

𝑁1
< 𝛾𝜉 ̂𝜃2

𝑚 + 1) of measure zero.
Therefore, for real 𝑟, we have

𝐸(𝑁𝑟) = 𝐸(𝜉 ̂𝜃2
𝑁1

+ 𝛽𝑁1 )𝑟 + ∫𝜂
𝑁𝑟𝑑𝑃 ⇒ 𝐸(𝑁𝑟) = 𝐸(𝜉 ̂𝜃2

𝑁1
+ 𝛽𝑁1 )𝑟 + 𝑜(𝜉𝑟−1)

Provided that the 𝑟𝑡ℎ moment exists and as 𝜉 → ∞, 𝛽𝑁1 = (𝜉 ̂𝜃2
𝑁1) − [𝜉 ̂𝜃2

𝑁1] ∼ 𝑈(0, 1).

3.1. The Asymptotic Characteristics of the Main-Study Phase

The following theorem gives a second-order approximation regarding the 𝑘𝑡ℎ moment of the
sample average of the main-study phase.

Theorem 1. For the three-stage sampling rule in Equation (2), if condition (A) holds then, as 𝜉 → ∞ ,

𝐸(𝑋𝑘
𝑁1) = 𝜃𝑘𝜎𝑘 + 𝑘(𝑘 − 5)𝜃𝑘−2𝜎𝑘

2𝛾𝑛∗ + 𝑜(𝜉−1).
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Proof. We write

𝐸(𝑋𝑘
𝑁1) = 𝜃𝑘𝜎𝑘𝐸

(
1 +

∑𝑁1
𝑖=1 𝑍𝑖
𝜃𝑁1 )

𝑘

Then, we expand the above expression in infinite series while conditioning on the 𝜎–field
generated by 𝑍1, 𝑍2, … , 𝑍𝑚, where 𝑍𝑖 = (𝑋𝑖−𝜇)

𝜎 are standard normal variates. Notice also that,

𝐸(
𝑁1 − 𝑚

𝑁1 )
𝑘

= 𝑜(𝜉−1) as 𝜉 → ∞.

Thus

𝐸(𝑋𝑘
𝑁1) = 𝜃𝑘𝜎𝑘𝐸(1 +

∑𝑚
𝑖=1 𝑍𝑖
𝜃𝑁1 )

𝑘
.

Consider the first three terms in the infinite Binomial series and expand (𝑁1)
−𝑘 in Taylor series

around 𝛾𝑛∗ and taking the expectation all through, the statement of Theorem 1 is immediate. □

Special cases of Theorem 1, when 𝑘 = 1 and 𝑘 = 2, provide

𝐸(𝑋𝑁1) = 𝜇 − 2𝜎
𝜃𝛾𝑛∗ + 𝑜(𝜉−1) (4)

𝐸(𝑋2
𝑁1 ) = 𝜇2 − 3𝜎2

𝛾𝑛∗ + 𝑜(𝜉−1) (5)

It follows from Equations (4) and (5),

𝑉 𝑎𝑟(𝑋𝑁1) = 𝜎2

𝛾𝑛∗ + 𝑜(𝜉−1) (6)

Theorem 2 below gives the 𝑘𝑡ℎ moment of the three-stage sample variance of the
main-study phase.

Theorem 2. For the three-stage sampling rule in Equation (2), if condition (A) holds then, for real k and as
𝜉 → ∞

𝐸(𝑆2𝑘
𝑁1) = 𝜎2𝑘 + 𝑘(𝑘 − 1)𝜎2𝑘

𝛾𝑛∗ + 𝑜(𝜉−1).

Proof. First, write 𝐸(𝑆2𝑘
𝑁1) = 𝐸(𝑉 2𝑘

𝑁1 ). Hence, we condition on the 𝜎− field generated by 𝑉1, 𝑉2, 𝑉3,
… , 𝑉𝑚−1 write

𝐸(𝑆2𝑘
𝑁1) = 𝐸(𝑁1 − 1)

−𝑘𝐸(∑𝑚−1
𝑖=1 𝑉𝑖 + ∑𝑁1−1

𝑖=𝑚 𝑉𝑖)
𝑘
|𝑉1, 𝑉2, 𝑉3, … , 𝑉𝑚−1.

Then we expand the binomial term as an infinite series as

𝐸(𝑆2𝑘
𝑁1) = 𝐸{(𝑁1 − 1)

−𝑘∑∞
𝑗=0𝜁(𝑘, 𝑗)(∑𝑚−1

𝑖=1 𝑉𝑖)
𝑘−𝑗𝐸(∑𝑁1−1

𝑖=𝑚 𝑉𝑖)
𝑗
}|𝑉1, 𝑉2, 𝑉3, … , 𝑉𝑚−1

where 𝜁(𝑘, 𝑗) = 1, when 𝑗 = 0, and 𝜁(𝑘, 𝑗) = ∏𝑗
𝑟=1(𝑘−𝑟+1)

𝑗! for 𝑗 = 1, 2, 3, …
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Conditioning on 𝑉1, 𝑉2, 𝑉3, … , 𝑉𝑚−1 the random variable (∑𝑁1−1
𝑖=𝑚 𝑉𝑖) is distributed according to

𝜎2𝜒2
𝑁1−𝑚

and therefore 𝐸(∑𝑁1−1
𝑖=𝑚 𝑉𝑖)

𝑗
= (𝑁1 − 𝑚)

𝑗𝜎2𝑗(1 + 𝑂(𝑁1
−1)). Thus,

𝐸(𝑆2𝑘
𝑁1) = 𝜎2𝑘𝐸

(
1 +

∑𝑚−1
𝑖=1 𝑤𝑖

𝑁1 − 1 )

𝑘

+ 𝑜(𝜉−1)

where 𝑤𝑖 = 𝑉𝑖−𝜎2

𝜎2 , with 𝐸(𝑤𝑖) = 0, and 𝑉 𝑎𝑟(𝑤𝑖) = 2.
Consider the first three terms in the infinite expansion of the above expression in addition to a

remainder term, and then we have

𝐸(𝑆2𝑘
𝑁1) = 𝜎2𝑘 + 𝜎2𝑘𝑘𝐸

(
∑𝑚−1

𝑖=1 𝑤𝑖
𝑁1 − 1 )

+ 1
2𝜎2𝑘𝑘(𝑘 − 1)𝐸

(
∑𝑚−1

𝑖=1 𝑤𝑖
𝑁1 − 1 )

2

+ 𝐸(𝑅(𝑤)).

Recall 𝐸(𝑅(𝑤)) = 𝑀𝐸(
∑𝑚−1

𝑖=1 𝑤𝑖
𝑁1−1 )

3
, where 𝑀 is a generic constant. Since −1 ≤ 𝑁1 − 1, we have

𝐸(𝑅(𝑤)) = 𝑀𝐸
(

∑𝑚−1
𝑖=1 𝑤𝑖

𝑚 − 1 )

3

= 𝑀(𝑚 − 1)3𝐸(𝑉 𝑚 − 𝜎2)3/(𝑚 − 1)3 = 𝑀𝐸(𝑉 𝑚 − 𝜎2
)

3
= 0.

Consider the second term 𝜎2𝑘𝑘𝐸(
∑𝑚−1

𝑖=1 𝑤𝑖
𝑁1−1 ), and expand (𝑁1 − 1)−1 in Taylor series

(𝑁1 − 1)
−1 = (𝛾𝑛∗)−1 − (𝑁1 − 𝛾𝑛∗)(𝛾𝑛∗)−2 + (1/2)(𝑁1 − 𝛾𝑛∗)2(𝜌)−3,

where 𝜌 is a random variable lies between 𝑁1 and 𝛾𝑛∗. It is not hard to show that

𝐸{(∑𝑚−1
𝑖=1 𝑤𝑖)(𝑁1 − 𝛾𝑛∗)2(𝜌)−3} = 𝑜(𝜉−1).

We omit details for brevity.

𝜎2𝑘𝑘𝐸
(

∑𝑚−1
𝑖=1 𝑤𝑖

𝑁1 − 1 )
= 𝜎2𝑘−2𝑘𝑚𝐸{(𝑉 𝑚 − 𝜎2

){(𝛾𝑛∗)−1 − 𝑚(𝑋2
𝑚𝑉 −1

𝑚 − 𝜃2)/𝜃2(𝛾𝑛∗) + o(𝜉−1)}}

𝜎2𝑘𝑘𝐸
(

∑𝑚−1
𝑖=1 𝑤𝑖

𝑁1 − 1 )
= −𝜎2𝑘−2𝑘𝑚2

𝜃2(𝛾𝑛∗)
{−𝐸(𝑋2

𝑚𝑉 −1
𝑚 𝑉 𝑚) + 𝜎2𝐸(𝑋2

𝑚𝑉 −1
𝑚 )} + 𝑜(𝜉−1) = 𝑜(𝜉−1)

Likewise, we recall the third term and expand (𝑁1 − 1)−2 in Taylor series we get

1
2𝜎2𝑘𝑘(𝑘 − 1)𝐸

(
∑𝑚−1

𝑖=1 𝑤𝑖
𝑁1 − 1 )

2

= 𝜎2𝑘𝑘(𝑘 − 1)
(𝛾𝑛∗) .

Finally, collect terms, and the statement of Theorem 2 is complete. □

A particular case for Theorem 2 at 𝑘 = − 1
2 and 𝑘 = −1 are as follows

𝐸(𝑆−1
𝑁1) = 𝜎−1 + 3

4𝛾𝑛∗ 𝜎−1 + 𝑜(𝜉−1) (7)

and
𝐸(𝑆−2

𝑁1) = 𝜎−2 + 2
𝛾𝑛∗ 𝜎−2 + 𝑜(𝜉−1) (8)
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Asymptotic results of the sample inverse coefficient of variation of the main-study phase
Theorems 1, and 2, above provided the following approximate upper bound estimates

Corollary 3. For the three-stage sampling rule in Equation (2), if condition (A) holds, then as 𝜉 → ∞ we have

(i) 𝐸( ̂𝜃𝑁1) = 𝜃 + 3𝜃
4𝛾𝑛∗ + 𝑜(𝜉−1)

(ii) 𝐸( ̂𝜃2
𝑁 1) = 𝜃2 + 2𝜃2

𝛾𝑛∗ + 𝑜(𝜉−1)
(iii) 𝑉 𝑎𝑟( ̂𝜃𝑁1 ) = 𝜃2

2𝛾𝑛∗ + 𝑜(𝜉−1)

Proof. The proof of (i), and (ii) follows immediately from Equations (4), (5), (7) and (8). Part (iii)
follows from (i) and (ii). The proof is complete. □

3.2. The Asymptotic Characteristics of the Fine-Tuning Phase

Recall the representation of 𝑁 and write

𝐸(𝑁) =𝐸𝜉 ̂𝜃2
𝑁1

+ 𝐸(𝛽𝑁1) + 𝑜(1) = 𝑛∗ + 4+𝛾
2𝛾 + 𝑜(1)

𝐸(𝑁2) = 𝑛∗+6𝛾−1𝑛∗ + 𝑜(𝜉)
(9)

and
𝑉 𝑎𝑟(𝑁) = (2 − 𝛾)

𝛾 𝑛∗ + 𝑜(𝜉) (10)

Theorem 3 gives a second-order approximation of a continuously differentiable and bounded
real-valued function of 𝑁.

Theorem3. If condition (A) holds and (

1 
 

 > 0) be a real-valued continuously differentiable and bounded function,
such that sup

𝑛>𝑚
|ℎ‴ (𝑛)| = 𝑜|ℎ‴ (𝑛∗)|, then

𝐸

1 
 

 (𝑁) =

1 
 

 (𝑛∗) + (
4 + 𝛾

2𝛾 )

1 
 

 

′(𝑛∗) + (
2 − 𝛾

2𝛾 )𝑛∗

1 
 

 

″ (𝑛∗) + 𝑜(𝜉2

1 
 

 

‴ (𝑛∗)).

Proof. The proof follows by expanding ℎ(𝑁) around 𝑛∗ using the Taylor series. Then utilizing
Equations (9) and (10) in the expansion, we get the result. □

Theorem 4. For the three-stage sampling rule in Equation (3), if Condition A holds then, as 𝜉 → ∞ ,

𝐸(𝑋𝑘
𝑁 ) = 𝜃𝑘𝜎𝑘 + 𝑘𝜃𝑘−2𝜎𝑘{𝛾(𝑘 − 1) − 4}

2𝑛∗ + 𝑜(𝜉−1).

Proof. First, write

𝐸(𝑋𝑘
𝑁 ) = 𝜃𝑘𝜎𝑘𝐸

(
1 +

∑𝑁
𝑖=1 𝑍𝑖
𝑁𝜃 )

𝑘

,

then write down the binomial expression as an infinite series as

𝐸
(

1 +
∑𝑁

𝑖=1 𝑍𝑖
𝑁𝜃 )

𝑘

= ∑
∞
𝑗=0 𝜁(𝑘, 𝑗)𝐸{(∑

𝑁
𝑖=1 𝑍𝑖)

𝑗
(𝑁𝜃)−𝑗},

where, 𝜁(𝑘, 𝑗) = 1, when 𝑗 = 0, and 𝜁(𝑘, 𝑗) = ∏𝑗
𝑟=1(𝑘−𝑟+1)

𝑗! for 𝑗 = 1, 2, 3, …
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Now, conditioning on the 𝜎−field generated by𝑍1, 𝑍2, 𝑍3, … , 𝑍𝑁1 andwewrite the conditional

sum (∑𝑁
𝑖=1 𝑍𝑖)

𝑗
|𝑍1, 𝑍2, 𝑍3, … , 𝑍𝑁1 = (∑𝑁1

𝑖=1 𝑍𝑖 + ∑𝑁
𝑖=𝑁1+1 𝑍𝑖)

𝑗
|𝑍1, 𝑍2, 𝑍3, … , 𝑍𝑁1 as a binomial

expansion, then take the conditional expectation we get

𝐸(𝑋𝑘
𝑁 ) = 𝜃𝑘𝜎𝑘𝐸

(
1 +

∑𝑁1
𝑖=1 𝑍𝑖
𝑁𝜃 )

𝑘

,

where 𝑍𝑖 are standard normal variates.

(∑𝑁
𝑖=𝑁1

𝑍𝑖)|𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑁1 is distributed 𝑁(𝜇 = 0, 𝜎2 = 𝑁 − 𝑁1)

Therefore, (∑𝑁
𝑖=𝑁1

𝑍𝑖/√(𝑁 − 𝑁1)
2
|𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑁1 is distributed as 𝜒2

1 . Hence,

𝐸
(

∑𝑁
𝑖=𝑁1

𝑍𝑖

𝑁 )

𝑘

|𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑁1 ≈ 𝐸
(

√𝑁 − 𝑁1
𝑁 )

𝑘

= 0

as 𝜉 → ∞. and finally, we have 𝐸(𝑋𝑘
𝑁 ) = 𝜃𝑘𝜎𝑘𝐸 (1 + ∑𝑁1

𝑖=1 𝑍𝑖
𝑁𝜃 )

𝑘
, where 𝑍𝑖 are standard normal

variates.
Consider the first three terms and the remainder in the infinite series, expand 𝑁−1, and 𝑁−2 and

take the expectation through, then the statement of Theorem 4 is proved. It is not hard to prove the
remainder term is of order 𝑜(𝜉−1). We omit any further details. □

Special cases of Theorem 4, for 𝑘 = 1, 2, 𝑎𝑛𝑑 4 are particularly important

𝐸(𝑋𝑁 ) = 𝜇 − 2𝜎
𝜃𝑛∗ + 𝑜(𝜉−1) (11)

𝐸(𝑋2
𝑁 ) = 𝜇2 + (𝛾 − 4)𝜎2

𝑛∗ + 𝑜(𝜉−1) (12)

𝐸(𝑋4
𝑁 ) = 𝜇4 + 2(3𝛾 − 4)𝜃2𝜎4

𝑛∗ + 𝑜(𝜉−1) (13)

Theorem 5 gives a second-order approximation for the 𝑘𝑡ℎ moment of the fine-tuning
sample variance.

Theorem 5. For the three-stage sampling rule in Equation (3), if condition (A) holds then, for real k as 𝜉 → ∞

𝐸(𝑆2𝑘
𝑁 ) = 𝜎2𝑘 + 𝛾𝜎2𝑘𝑘(𝑘 − 1)

𝑛∗ + 𝑜(𝜉−1).

Proof. The proof of Theorem 5 can be justified along the lines of the proof of Theorem 4 if we condition
on the 𝜎− field generated by 𝑉1, 𝑉 , 𝑉3, … , 𝑉𝑁1 and expand (∑𝑁1

𝑖=1 𝑉𝑖 + ∑𝑁
𝑖=𝑁1

𝑉𝑖)
𝑘
as an infinite series,

to get,

𝐸(𝑉 𝑘
𝑁 ) = 𝐸(∑

∞
𝑗=0 𝜁(𝑘, 𝑗)(∑

𝑁−1
𝑖=1 𝑉𝑖)

𝑘−𝑗
𝐸(∑

𝑁−1
𝑖=𝑁1

𝑉𝑖)
𝑗
)|𝑉1, 𝑉 , 𝑉3, … , 𝑉𝑁1 ,

where, 𝜁(𝑘, 𝑗) = 1, when 𝑗 = 0, and 𝜁(𝑘, 𝑗) = ∏𝑗
𝑟=1(𝑘−𝑟+1)

𝑗! for 𝑗 = 1, 2, 3, …

The random sum (∑𝑁−1
𝑖=𝑁1

𝑉𝑖)|𝑉1, 𝑉2, 𝑉3, … , 𝑉𝑁1 is distributed as a 𝜎2𝜒2
(𝑁−𝑁1) and

𝐸(∑
𝑁
𝑖=𝑁1

𝑉𝑖)
𝑗
|𝑉1, 𝑉 , 𝑉3, … , 𝑉𝑁1 = (𝑁 − 𝑁1)𝑗𝜎2𝑗(1 + 𝑂(𝑁−1)).
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Thus, 𝐸(𝑉 𝑘
𝑁 ) = 𝜎2𝑘 + 𝜎2𝑘𝐸(1 + ∑𝑁1

𝑖=1 𝑊𝑖
𝑁 )

𝑘
+ 𝑜(𝜉−1), where 𝑊𝑖′𝑠 are as defined before.

Consider the first three terms in the infinite series and the remainder, then write down 𝑁−1, 𝑁−2

In the Taylor series, then take the expectation all through while applying Wald’s first and second
equations [41], and then the statement of Theorem 5 is justified. □

Special cases of Theorem 5, at 𝑘 = − 1
2 , −1 𝑎𝑛𝑑 𝑘 = −2, are particularly among our interest to

obtain the moments of ̂𝜃𝑁 .

𝐸(𝑆−1
𝑁 ) = 𝜎−1 + 3𝛾𝜎−1

4𝑛∗ + 𝑜(𝜉−1) (14)

𝐸(𝑆−2
𝑁 ) = 𝜎−2 + 2𝛾𝜎−2

𝑛∗ + 𝑜(𝜉−1) (15)

𝐸(𝑆−4
𝑁 ) = 𝜎−4 + 6𝛾𝜎−4

𝑛∗ + 𝑜(𝜉−1) (16)

Corollary 4. For the three-stage sampling rule in Equation (3), If condition (A) holds, then as 𝜉 → ∞ we have

(i) 𝐸( ̂𝜃𝑁 ) = 𝜃 + (3𝛾𝜃2−8)
4𝜃𝑛∗ + 𝑜(𝜉−1)

(ii) 𝐸( ̂𝜃2
𝑁 ) = 𝜃2 + (𝛾(2𝜃2+1)−4)

𝑛∗ + 𝑜(𝜉−1)

(iii) 𝑉 𝑎𝑟( ̂𝜃𝑁 ) =
𝛾(𝜃2+2)

2𝑛∗ + 𝑜(𝜉−1)

(iv) 𝐸( ̂𝜃4
𝑁 ) = 𝜃4 +

6𝛾𝜃2
(𝜃2+1)−8𝜃2

𝑛∗ + 𝑜(𝜉−1).

Proof. Part (i) and Part (ii) follow from Equations (11), (12), (14) and (15). Part (iii) follows from (i)
and (ii) while part (iv) follows from Equations (13) and (16). The proof is complete. □

3.3. The Asymptotic Coverage Probability of the Inverse Coefficient of Variation

Recall the three-stage sampling confidence interval 𝐼𝑁 = ( ̂𝜃𝑁 − 𝑑, ̂𝜃𝑁 + 𝑑) of the inverse
coefficient variation, the coverage probability is given by

𝑃 (𝜃 ∈ 𝐼𝑁 ) = ∑
∞
𝑛=𝑚(𝑃 | ̂𝜃𝑁 − 𝜃| ≤ 𝑑, 𝑁 = 𝑛) = ∑

∞
𝑛=𝑚(𝑃 | ̂𝜃𝑁 − 𝜃| ≤ 𝑑|𝑁 = 𝑛)𝑃 (𝑁 = 𝑛).

From Anscombe [39], we have as 𝜉 → ∞, √2𝑁( ̂𝜃𝑁 −𝜃)
𝜃 → 𝒩 (0, 1) which is independent of the

random variable 𝑁 = 𝑚, 𝑚 + 1, 𝑚 + 2, …, thus

𝑃 (𝜃 ∈ 𝐼𝑁 ) = ∑
∞
𝑛=𝑚(

𝑃
|
√2𝑛( ̂𝜃𝑁 − 𝜃)

𝜃 |
≤ 𝑑√2𝑛

𝜃 )
𝑃 (𝑁 = 𝑛) = 𝐸{2Φ

(
𝑑√2𝑁

𝜃 )
− 1}.

Utilizing Theorem 3, we get

𝑃 (𝜃 ∈ 𝐼𝑁 ) = (1 − 𝛼) + 𝑎𝜙(𝑎)
4𝛾𝑛∗ (𝑎2(𝛾 − 2) + 3(𝛾 + 2)) + 𝑜(𝑑2) (17)

where, Φ(.) and 𝜙(.) are the cumulative and the density functions of the standard normal distribution,
respectively.

The asymptotic coverage probability in Equation (17) depends on the choice of 𝛾 and 𝑎. If we
choose the design factor 𝛾 < 2(

𝑎2−3
𝑎2+3 ) then 𝑃 (𝜃 ∈ 𝐼𝑁 ) < 1 − 𝛼; otherwise, it exceeds the desired 1 − 𝛼.
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To study the effect of changing 𝛾 on the performance of the asymptotic coverage probability in
Equation (17) as the optimal sample size increases, we take 𝑛∗ = 24, 43, 61, 76, 96, 125, 171, 246 and
500 as preferred byHall [29] and take 𝛾 = 0.2, 0.3 and 0.5. Table 1 below shows the results for 90%, 95%,
and 99% confidence coefficients. We noticed that at 90%, the asymptotic coverage probability exceeds
0.9 for all chosen 𝛾 , while at 95%, the asymptotic coverage probability exceeds 0.95 only at 𝛾 = 0.5 and
𝛾 = 0.8. At 99%, the asymptotic coverage probability exceeds 0.99 only at 𝛾 = 0.8.

Table 1. Asymptotic coverage probabilities for different values of 𝛾 as the optimal sample
size increases.

1−𝛼 = 0.90 1−𝛼 = 0.95 1−𝛼 = 0.99
n* 𝛾 = 0.2 𝛾 = 0.5 𝛾 = 0.8 𝛾 = 0.2 𝛾 = 0.5 𝛾 = 0.8 𝛾 = 0.2 𝛾 = 0.5 𝛾 = 0.8
24 0.91528 0.91216 0.91138 0.94812 0.95415 0.95565 0.97964 0.98810 0.99021
43 0.90853 0.90679 0.90635 0.94895 0.95231 0.95315 0.98422 0.98894 0.99012
61 0.90601 0.90478 0.90448 0.94926 0.95163 0.95222 0.98592 0.98925 0.99008
76 0.90482 0.90384 0.90359 0.94941 0.95131 0.95178 0.98673 0.98940 0.99007
96 0.90382 0.90304 0.90285 0.94953 0.95104 0.95141 0.98741 0.98952 0.99005
125 0.90293 0.90233 0.90218 0.94964 0.95080 0.95109 0.98801 0.98962 0.99004
171 0.90214 0.90171 0.90160 0.94974 0.95058 0.95079 0.98855 0.98973 0.99003
246 0.90149 0.90119 0.90111 0.94982 0.95040 0.95055 0.98899 0.98981 0.99002
500 0.90073 0.90058 0.90055 0.94991 0.95020 0.95027 0.98950 0.98991 0.99001

This means that the three-stage procedure aĴains consistency or asymptotic consistency in the
sense of Chow and Robbins [25], depending on the choice of the design factor and the confidence
coefficient. It looks like the three-stage procedure loses consistency as (1 − 𝛼) increases. Figure 1,
Figure 2, and Figure 3 show the results of the tables as graphs for clarification.Computation 2019, 7, 69 10 of 15 
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The quantity { 𝑎2(𝛾−2)+3(𝛾+2)
4𝛾 } known as the cost of ignorance (the cost of not knowing the variance

𝜎2), see Simons [42] for details.

4. The Sensitivity of Three-Stage Sampling to Shift in the Population Inverse Coefficient
of Variation

The word sensitivity of sequential procedures means either sensitivity to departure from the
underline distribution or sensitivity to shifting in the true parameter value. BhaĴacharjee [43],
Blumenthal and Govindarajulu [44], Ramkaran [45], Sook and DasGupta [46] were the first who
examined the robustness of Stein’s two-stage sampling procedure [47] to departure from normality.
Costanza et al. [32] and Son et al. [34], were the first to address the issue of the sensitivity of the
three-stage confidence interval against the type II error probability while estimating the mean of the
normal distribution. Hamdy [33] studied the sameproblem for the exponential distribution. However,
Hamdy et al. [36] provided a more comprehensive analysis of the departure of both the underline
distribution and the shift in the true parameter.

Suppose we need to investigate the capability of the constructed fixed-width confidence interval
𝐼𝑁 to signify potential shifts in the true population inverse coefficient of variation 𝜃0 of distance 𝑙(≥ 0)
occurring outside the interval when it is incorrectly thought that such shifts never took place. In some
applications, like in quality control, it is a maĴer of concern to closely monitor the sensitivity of the
interval to depict any departure from the centerline in order to ensure the creditability of the interval.
In this regard, we derive both the null and alternative hypotheses as follows:

𝐻0 : 𝜃 = 𝜃0 𝑣𝑠. 𝐻𝑎 : 𝜃 = 𝜃1 = 𝜃0 ± 𝑑(𝑙 + 1) ∉ 𝐼𝑁 for all 𝑙 ≥ 0, (18)

where 𝐻0 : 𝜃 = 𝜃0, claims that no departure of the true parameter 𝜃0 has taken place, against the
alternative hypotheses 𝐻𝑎 which alleges that the parameter value differs from 𝜃0 by a distance 1 + ℓ
measured in units of the precision 𝑑.

The probability of not detecting a shift in the true parameter can statistically measure by the
corresponding type II error probability (𝛽-risk), which is, in fact, the conditional probability of not
depicting a departure from 𝜃0, when, in fact, the departure actually occurred. In quality assurance
(𝛽-risk), is known as the operating characteristic function

𝛽(ℓ) = 𝑃 (𝜃0 ∈ 𝐼𝑁 |𝐻𝑎) = 𝑃 ( ̂𝜃𝑁 − 𝑑 ≤ 𝜃 ≤ ̂𝜃𝑁 + 𝑑|𝜃1 = 𝜃0 ± d(𝑙 + 1)).

Since the process has an equal probability of commiĴing a type II error probability above the
centerline or below the centerline, we, therefore, consider only the probability of commiĴing a positive
shift from the true parameter value 𝜃0.
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Let 𝜏 be the probability of commiĴing a type II error probability, which is the probability of
no shift occurring given that an actual shift occurred. Our objective is to control the probability of
commiĴing a type II error probability. We do so by finding the characteristic operating curve 𝑂𝐶
that gives the probability of acceptance of various possible values of 𝜃1. The minimum sample size
required to control both 𝛼 𝑎𝑛𝑑 𝜏 is

𝑛0 = (𝑎 + 𝑏)2

2𝑑2 𝜃2 (19)

where 𝑏 = 𝑍𝜏/2 is the upper 𝜏/2 point of 𝑁(0, 1). For more details, see Nelson [48,49], Hamdy [33],
and Son et al. [34].

The second-order approximation of the characteristic operating function under Equations (18)
and (19) as 𝜉 → ∞

𝛽(𝑙) = 𝑃 (𝜃 ∈ 𝐼𝑁 |𝐻𝑎) = ∑∞
𝑛=𝑚 𝑃 (| ̂𝜃𝑁 − 𝜃1| ≤ 𝑑|𝑁 = 𝑛)𝑃 (𝑁 = 𝑛)

= ∑∞
𝑛=𝑚 𝑃 (−(2 + 𝑙)𝑑 ≤ ̂𝜃𝑁 − 𝜃0 ≤ −𝑙𝑑)𝑃 (𝑁 = 𝑛)

= 𝐸𝑁 (Φ(−𝑙𝑑√2𝑁/𝜃)) − 𝐸𝑁 (Φ(−(2 + 𝑙)𝑑√2𝑁/𝜃)).

Utilizing Theorem 3, we obtain

𝐸𝑁 (Φ(−𝑙𝑑√2𝑁/𝜃)) = Φ(−𝑙(𝑎 + 𝑏)) − (𝑎 + 𝑏)
8𝛾𝑛0 𝜙(−𝑙(𝑎 + 𝑏))𝑙{(𝑎 + 𝑏)2(𝛾 − 2)𝑙2 + 3(𝛾 + 2)}.

Similarly for 𝐸𝑁 (Φ(−(2 + 𝑙)𝑑√2𝑁/𝜃)).
Hence,

𝛽(𝑙) = Φ(−𝑙(𝑎 + 𝑏)) − Φ(−(2 + 𝑙)(𝑎 + 𝑏)) − 𝑄1 − 𝑄2 + 𝑜(𝜉−2) (20)

where
𝑄1 = (𝑎 + 𝑏)

8𝛾𝑛0 𝜙1𝑙{(𝑎 + 𝑏)2(𝛾 − 2)𝑙2 + 3(𝛾 + 2)},

and
𝑄2 = −(𝑎 + 𝑏)

8𝛾𝑛0 𝜙2(2 + 𝑙){(𝑎 + 𝑏)2(𝛾 − 2)(𝑙 + 2)2 + 3(𝛾 + 2)}

𝜙1 = 𝜙(−𝑙(𝑎 + 𝑏)) and 𝜙2 = 𝜙(−(2 + 𝑙)(𝑎 + 𝑏)).
Costanza et al. [32] and Son et al. [34] treated the case of the mean of the normal distribution.
Equation (20) depends on the shift 𝑙, the design factor 𝛾, and the optimal sample size 𝑛0. Table 2

below shows the 𝛽 − 𝑟𝑖𝑠𝑘 values as the shift 𝑘 increases, and the optimal sample size increases, taking
𝑘 = 0, 0.1, … , 1. As the shift increases, the risk decreases. Figure 4 below demonstrates this idea.

Table 2. The sensitivity of the three-stage procedure as the shift and the optimal sample size increases
𝛾 = 0.5 𝑎𝑛𝑑 𝛼 = 𝜏 = 5%.

Shift 24 43 61 76 96 125 171 246 500

0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
0.1 0.3366 0.3414 0.3432 0.3441 0.3448 0.3454 0.3460 0.3465 0.3470
0.2 0.2008 0.2077 0.2103 0.2115 0.2126 0.2135 0.2143 0.2150 0.2158
0.3 0.1065 0.1124 0.1146 0.1156 0.1165 0.1172 0.1179 0.1185 0.1192
0.4 0.0512 0.0544 0.0556 0.0561 0.0566 0.0570 0.0574 0.0577 0.0581
0.5 0.0229 0.0238 0.0242 0.0243 0.0245 0.0246 0.0247 0.0248 0.0249
0.6 0.0098 0.0096 0.0095 0.0095 0.0095 0.0094 0.0094 0.0094 0.0094
0.7 0.0040 0.0036 0.0034 0.0034 0.0033 0.0032 0.0032 0.0031 0.0031
0.8 0.0015 0.0012 0.0011 0.0011 0.0010 0.0010 0.0010 0.0009 0.0009
0.9 0.0005 0.0004 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002
1.0 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
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5. The Asymptotic Regret Encountered in Point Estimation of the Inverse Coefficient of Variation

In this section, we aim to find the asymptotic regret that occurs when we use the sample
inverse coefficient of variation rather than the population inverse coefficient of variation. We use
squared-error loss function with linear sampling cost. A typical situation is in constructing a quality
control chart to the inverse coefficient of variation where both estimation of control limits (the upper
and the lower control limits) and the centerline are required.

What if wewant to utilize the available data to provide a point estimate of 𝜃 (the centerline) under
the squared-error loss function with linear sampling cost. Therefore, we assume that the cost incurred
in estimating 𝜃 is given by

𝐿𝑛(𝐴) = 𝐴( ̂𝜃𝑛 − 𝜃)
2 + 𝑐𝑛,

where 𝑐 is the cost per unit sample. Regarding 𝐴, the literature in sequential point estimation
customarily assumes that 𝐴 is a known constant, which reflects the cost of estimation and can be
permiĴed to approach ∞. However, here, we try to give a beĴer understanding of the nature of 𝐴 in
this context. First, the risk associated with the above loss function is given by

𝑅𝑛(𝐴) = 𝐸𝐿𝑛(𝐴) = 𝐴 𝜃2

2𝑛 + 𝑐𝑛.

Minimizing the risk associated with the loss function provides the optimal sample size

𝑛0 = √
𝐴
2𝑐 𝜃. If we have to use the optimal sample size used to construct a fixed 2𝑑 confidence

interval for 𝜃, where the coverage probability is at least the nominal value, to propose ̂𝜃𝑛 for 𝜃 under
the squared error loss function, the constant 𝐴 should be chosen such that

𝐴 = 𝑐𝑎4𝜃2

2𝑑4 = 𝑎2

𝑑2 (𝑐𝑛∗).

Clearly as 𝑑 → 0, 𝐴 → ∞, where

𝐴 = (𝐹 𝑖𝑠ℎ𝑒𝑟 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛, 𝑎2

𝑑2 ) × (𝑡ℎ𝑒 𝑜𝑝𝑖𝑚𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑐𝑛∗).

In this case, the optimal risk is given by 𝑅𝑛∗ (𝑑) = 2𝑐𝑛∗. The asymptotic regret, which is defined
as the difference between the risk of using the three-stage procedure minus the optimal risk see,
Robbins [38] would be

𝜔(𝑑) = 𝑅𝑁 (𝑑) − 𝑅𝑛∗ (𝑑),
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where
𝑅𝑁 (𝑑) = 𝐴𝐸( ̂𝜃𝑁 − 𝜃)

2 + 𝑐𝐸(𝑁).

The risk of the three-stage sampling can be approximated by the upper bound

𝑅𝑁 (𝑑) = 𝑐𝑛∗(𝛾 + 1) + 𝑐(
4 + 𝛾

2𝛾 ).

Hence, the asymptotic regret is

𝜔(𝑑) = 𝑐𝑛∗(𝛾 − 1) + 𝑐(
4 + 𝛾

2𝛾 ) as 𝑑 → 0.

Which provides negative regret. This means that the three-stage procedure does beĴer than the
optimal fixed sample size had 𝜃 been known. Martinsek [50] discussed the issue of negative regret in
sequential point estimation.

6. Conclusions

This paper theoretically tackles three estimation problems for the population inverse coefficient
of variation of the normal distribution under Hall’s three-stage procedure. We obtain asymptotic
mathematical forms for the population inverse coefficient of variation, the asymptotic coverage
probability, the characteristics operating function, and the asymptotic regret. We find the range of
the design factor that makes the three-stage procedure achieve consistency or asymptotic consistency
as thewidth of the interval approaches zero. The asymptotic regret has negative values for all possible
values of the design factor.
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