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Abstract: Recent developments in the density-functional theory of electron correlations in many-body
lattice models are reviewed. The theoretical framework of lattice density-functional theory (LDFT) is
briefly recalled, giving emphasis to its universality and to the central role played by the single-particle
density-matrix γ. The Hubbard model and the Anderson single-impurity model are considered as
relevant explicit problems for the applications. Real-space and reciprocal-space approximations to
the fundamental interaction-energy functional W[γ] are introduced, in the framework of which the
most important ground-state properties are derived. The predictions of LDFT are contrasted with
available exact analytical results and state-of-the-art numerical calculations. Thus, the goals and
limitations of the method are discussed.
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1. Introduction

Density-functional theory (DFT) is currently the most widespread method of determining the
electronic properties of matter from first principles [1,2]. Formulated initially as a general approach to
the inhomogeneous electron gas [3], this theory, although far from being infallible, has demonstrated a
remarkable efficiency in the most wide variety of physical and chemical situations. In the meantime,
it has become part of most advanced quantum mechanics curricula. The founding idea, both simple
and revolutionary at that time, is to replace the wave function by the electron density ρ(r) as the basic
variable of the many-body problem [4]. From a purely theoretical, fundamental perspective, the beauty
of the theory relies, most probably, in its elegance and universality. From a practical perspective,
however, the actual breakthrough has been achieved with the Kohn–Sham (KS) scheme, which allows
one to obtain the ground-state of any interacting many-body problem from the solution of a set of
self-consistent single-particle equations [5]. This formulation, being formally exact, is in principle able
to account for all the consequences of electronic correlations within a self-consistent single-particle
framework. Clearly, this constitutes a critical paradigm shift which provides a new basis for potentially
exact effective single-particle methods. Nevertheless, despite this formal simplification, a central
difficulty remains: To render any application of the theory possible, it is necessary to be in possession of
a good approximation to the universal kinetic and interaction-energy functionals T[ρ(r)] and W[ρ(r)],
which are not known in an exact explicit form. The most common approximations used in past years
are the local density approximation (LDA) [5], the local spin-density approximation (LSDA) [6] and
the generalized gradient approximations (GGAs) [7–9]. Although successful in countless applications,
the above-mentioned local or semilocal functionals have been shown to be unable to provide a
satisfactory description of systems where strong electronic correlations play an important role. This
concerns, for example, some reaction energies in chemistry [10], the dissociation of closed-shell
molecules [11], the physics of heavy-fermion materials [12], high-temperature superconductors [13] and
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Mott-insulators [14–16]. Understanding the physics of strongly correlated systems in the framework
of DFT remains therefore a major theoretical challenge.

Several extensions to the early functionals have been developed in order to cope with these
difficulties. For example, density functionals based on range separation have been introduced in
order to describe nonlocal correlation effects, which are a consequence of the long-range character
of the Coulomb interaction [17]. This method has been successfully applied to rare-gas and
alkaline-earth-metal dimers, which are bound through weak van der Waals forces [18–22]. Another
perspective is provided by the hybrid functionals, which incorporate a portion of the exchange energy
given by Hartree–Fock theory and a portion of the exchange and correlation energy obtained in
various ways. In this context one should mention Becke’s three-parameter Lee–Yang–Parr (B3LYP)
functional [23], the Perdew, Burke, and Ernzerhof functional [24], as well as the screened Coulomb
potential functional by Heyd, Scuseria, and Ernzerhof (HSE) [25]. These approaches have been
applied to study a number of different molecular properties, including ground-state structures, bond
lengths, cohesive energies and vibrational frequencies, which could not be correctly predicted by
using other DFT methods. Furthermore, from the perspective of strong electron correlations, one
finds applications to actinide and transition-metal oxides, which demonstrate the ability of these
functionals to capture the Mott-insulating behavior [26–30]. In this context, one should also mention
the studies of the fundamental gap in strongly-correlated Mott insulators by means of the so-called
power functional [31,32].

An alternative to the original density-functional perspective is adopted in reduced density-matrix
functional theory (RDMFT). In this framework, one considers the complete first-order reduced
density matrix (1RDM) γ(r, r′), rather than only the diagonal density ρ(r) = γ(r, r), as the central
variable of the many-body problem [33]. This implies that the exact forms of the kinetic-energy and
exchange-energy functionals are now available. Therefore, only the correlation part of the interaction
energy functional needs to be approximated. Müller [34] and later Goedecker and Umrigar [35], in
fact, proposed approximations to the interaction-energy in terms of the 1RDM. These functionals have
been used in particular to describe the dissociation of H2 [36,37], which can be very difficult within
DFT. Later on other approximations were proposed to model the potential energy curves of diatomic
molecules [36,38–44]. In this way, RDMFT has grown into an effective approach to the dissociation of
closed-shell molecules into open-shell fragments.

Well before the popularization of DFT and its ready-to-use implementations on large computer
facilities, there was already a long standing and most successful research activity in condensed-matter
theory, whose aim is to understand the properties of strongly correlated fermions on the basis of
many-body lattice-model Hamiltonians. Among the most emblematic examples, one should mention
the Anderson and Hubbard models [45–50], the sd and Kondo models [12], and the models describing
superconducting pairing [51]. These Hamiltonians focus on the many-body states that dominate
the low temperature physics, particularly when they involve localized orbitals and strong Coulomb
repulsions. Despite the simplifications inherent to the model interactions and to the discretized basis
set, the physics behind these problems remains highly nontrivial [52]. Under these circumstances, and
taking into account the remarkable success of DFT in dealing with the inhomogeneous electron gas
in the continuum, it seems quite natural to attempt to adapt and transfer the concepts of DFT to the
study of many-body lattice models. This would not only provide us with an alternative approach to
the physics of strong correlations but should also be useful for the development of DFT itself.

The existing density functional theories of lattice models can be divided essentially in two
categories. The first one uses only the local site occupations ni as basic variables of the many-body
problem. This approach has been introduced by Gunnarsson and Schönhammer, who proposed
a local-density approximation in order to study the band-gap problem within a semiconductor
model [53,54]. The second type of approach takes into account on equal footing all, diagonal and
off-diagonal elements γij of the single-particle density matrix (SPDM) with respect to the lattice sites i
and j. This was initially introduced by Schindlmayr and Godby [55]. In a more general framework,
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it is possible to consider different basic variables and different energy functionals depending on the
model under study [56]. More recently, Lima et al. proposed a local approximation in terms of
the site occupations ni = γii, which is based on the Bethe-ansatz solution of the one-dimensional
Hubbard model [57,58]. This functional has been applied to systems far from equilibrium [59], to single
impurities [60,61], and to the inhomogeneous Hubbard model [62]. Nevertheless, the problem of
electron localization cannot be investigated within a strictly local framework, since the basic variable
involves only the local occupations ni, which are strictly the same in the fully localized and delocalized
states. Moreover, it is easy to see that any formulation based exclusively on ni cannot be universal
since the associated functionals necessarily depend on the lattice structure. Such restrictions do not
apply to functionals which take into account the off-diagonal components γij of the density matrix.
The work of Carlsson et al., which belongs to the latter universal perspective [63,64], introduces an
interaction-energy functional for the Hubbard model by interpolating between well-established limits.
In addition, a functional for the Anderson model is proposed, which relies on a rigorous inequality for
the interaction energy. A further interesting density-matrix functional approach is the so-called lattice
density-functional theory (LDFT) on which the remainder of this review is focused [65–72].

The rest of the paper is organized as follows. In Section 2, the basic concepts, notation and
formalism of the density-functional theory of lattice models are recalled. The main role played by
the density matrix γij with respect to the orbitals or lattice sites i and j is discussed. Once γij is
regarded as the central variable of the many-body problem, the associated energy functionals and the
corresponding variational principle are introduced. Sections 3 and 4 are devoted to specific applications
of LDFT. In Section 3, the single-impurity Anderson model (SIAM) is investigated. Taking advantage
of the invariance of the interaction-energy functional W[γ] with respect to unitary transformations,
a simple two-level approximation to W[γ] is derived. Subsequently, the LDFT results are compared
with exact numerical calculations in order to assess the accuracy of the method. Section 4 concerns
the Hubbard model and the development of interaction-energy functionals from both real-space and
reciprocal-space perspectives. The first approximation is based on the scaling properties of W[γ] as a
function of the degree of delocalization of the electrons in their immediate environment, while the
second one exploits a remarkable correlation between W and the single-particle entropy associated
to the distribution of Bloch-state occupation numbers. The accuracy of the theory is assessed in
applications to a variety of lattices with different dimensions. Finally, Section 5 summarizes the main
conclusions.

2. Basic Concepts of Lattice Density Functional Theory

The general many-body Hamiltonian on a lattice or discrete basis set is given by

Ĥ = T̂ + Ŵ = ∑
αβσ

tσ
αβ ĉ†

ασ ĉβσ +
1
2 ∑

αβγδ
σσ′

Vαβγδ ĉ†
ασ ĉ†

βσ′ ĉδσ′ ĉγσ , (1)

where ĉ†
ασ creates an electron with spin σ in the orbital ϕα. The single-particle basis set {ϕα(r)}

corresponds, for instance, to localized atomic-like orbitals centered at the lattice sites or to delocalized
conduction-band states. The hopping integrals

tσ
αβ =

∫
d3r ϕ∗α(r)

(
− h̄2∇2

2m
+ vσ

ext(r)

)
ϕβ(r) (2)

include contributions of both the kinetic energy and the external potential vσ
ext(r), which depends

on σ in the presence of an external magnetic field. Notice that, once the set of basis orbitals {ϕα(r)}
has been chosen, the kinetic-energy contribution to tσ

αβ is independent of the problem under study.
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Thus, tσ
αβ is univocally determined by vσ

ext(r) and vice versa. The electron–electron interaction Ŵ is
characterized by the integrals

Vαβγδ =
∫∫

d3r d3r′ ϕ∗α(r) ϕ∗β(r
′)w(|r− r′|) ϕγ(r) ϕδ(r′) , (3)

where the Coulomb repulsion w(|r− r′|) is usually approximated as short ranged (e.g., intra-atomic).
Obviously, Ŵ is universal, i.e., independent of the problem under study. Therefore, from the
model perspective, the specific problem under study is defined by the hopping integrals tσ

αβ alone.
In other words, tσ

αβ defines the lattice structure, its dimensionality, and the range and symmetry of
the hybridizations. One concludes that in LDFT the hopping integrals tσ

αβ play the role given in
conventional DFT to the external potential vσ

ext(r).
To develop a density-functional theory of lattice models, it is necessary to identify the simplest

observable that can replace the wave function as the fundamental variable. To this aim, let us first
recall that in the inhomogeneous gas the external potential vσ

ext(r) defines the problem and that it
enters the Hamiltonian linearly in a product with the electronic density operator n̂σ(r) = ψ̂†

σ(r)ψ̂σ(r).
This explains why the electronic density ρσ(r) = 〈n̂σ(r)〉 is the simplest fundamental variable in
conventional DFT [1–3,73,74]. However, as discussed above, in LDFT the hopping integrals tσ

αβ define

the specific problem under study. According to Equation (1), these integrals tσ
αβ enter Ĥ in a matrix

product with ĉ†
ασ ĉβσ. Therefore, it follows that the single-particle density matrix

γαβσ = 〈Ψ|ĉ†
ασ ĉβσ|Ψ〉 (4)

between the sites αβ replaces the continuum density ρσ(r) as the basic variable of the many-body
problem on a lattice. A more rigorous theoretical justification for this important property is provided
by the lattice version of the Hohenberg–Kohn theorem [71]. It has been indeed shown that, for
non-degenerate ground states, the mapping between the wave function |Ψ〉 and the ground-state
density matrix γ is injective and therefore invertible. Therefore, it is valid to regard |Ψ〉 = |Ψ[γ]〉 and
the ground-state expectation value of all observables derived from it as functionals of γ [71].

The total energy E of the system can be expressed in terms of γ by using the constrained search
formalism of Levy and Lieb [27]. In this way, one obtains

E[γ] = min
Ψ→γ
〈Ψ|Ĥ|Ψ〉 = T[γ] + W[γ] , (5)

where the single-particle energy functional

T[γ] = ∑
αβσ

tσ
αβ γαβσ (6)

describes the kinetic and potential energy associated with the electronic motion in the lattice, and

W[γ] = min
Ψ→γ
〈Ψ|Ŵ|Ψ〉 = min

Ψ→γ

{
1
2 ∑

αβγδ
σσ′

Vαβγδ 〈Ψ|ĉ†
ασ ĉ†

βσ′ ĉδσ′ ĉγσ|Ψ〉
}

(7)

is the interaction-energy functional. Notice that T[γ] is explicitly given in terms of matrix elements
of γ. However, the interaction-energy term W[γ] involves a constrained minimization over all
N-particle states |Ψ〉 yielding the given γ. The minimum in Equation (7), i.e., W[γ] has a clear
physical interpretation: it represents the lowest possible value of the interaction energy compatible
with a given density matrix γ. Finally, the variational principle satisfied by E allows one to determine
the actual electronic ground-state energy E0 and the corresponding ground-state density matrix γ0 by
the minimization of E[γ] with respect to all physical density matrices γ.



Computation 2019, 7, 66 5 of 26

At this point, the question about the representability, i.e., the mathematical characterization of
such physical density matrices, must be raised, since this is the domain of definition of E[γ]. It is clear
that a physical γ is hermitian, has a trace equal to the number of electrons N, and derives from some
N-particle state |Ψ〉. One then also says that γ is pure-state N representable. Unfortunately, it is not
possible at present to formulate an explicit characterization of pure-state N representable γ. However,
a simple characterization is indeed available for the larger set of density matrices γ, which derive
from mixed states. These are known as ensemble representable density matrices. For this reason, the
domain of definition of the functionals in Equations (5)–(7) is extended to include all γ of this form [75].
A density matrix γ is said to be ensemble representable if a set of pure states |Ψm〉 and weights wm ≥ 0
with ∑m wm = 1 exist, such that the mixed state Γ̂ = ∑m wm|Ψm〉〈Ψm| satisfies

γαβσ = Tr
{

Γ̂ ĉ†
ασ ĉβσ

}
= ∑

m
wm 〈Ψm|ĉ†

ασ ĉβσ|Ψm〉 (8)

for all α, β and σ. One can then show that γ is ensemble representable if and only if it is hermitian and
all its eigenvalues ηkσ (occupation numbers) satisfy [1,2]

0 ≤ ηkσ ≤ 1 with ∑
kσ

ηkσ = N . (9)

The corresponding eigenvectors ukσ of γ are known as natural orbitals. Notice that the occupation
numbers ηkσ do not necessarily take integer values. In fact, electronic correlations necessarily imply
that, unless protected by some particular symmetry, the occupations of basically all single-particle
states are fractional in any interacting eigenstate of the Hamiltonian Ĥ.

Having described the domain of definition of the functionals E[γ] and W[γ], the main challenge is
to understand the functional dependence of the interaction energy W[γ]. An explicit general expression
for W[γ] is not known, since the minimization implied in Equation (7) cannot be performed in practice.
To find suitable approximations, it is important to keep in mind, first of all, that W[γ] is independent
of the system under study. This means that it only depends on the density matrix γ and on the
interaction integrals Vαβγδ, which define the operator Ŵ. The universality of the interaction energy
W[γ] constitutes a fundamental guiding principle along the search for its practical approximations.

The theoretical description of many-body lattice models by using only the orbital occupations
〈n̂α〉 = γαα is formally correct and has provided good results in many applications [53,54,57,59–61,76].
However, such a restrictive choice of basic variables spoils the universality of the corresponding
functionals. In fact, for given site occupations γαα, the total energy of a system can be expressed in
terms of the on-site energy ∑α tααγαα, which is an explicit function of {γαα}, and of the functional

F[{γαα}] = min
Ψ→{γαα}

{
〈Ψ| ∑

α 6=β
σ

tαβ ĉ†
ασ ĉασ +

1
2 ∑

αβγδ
σσ′

Vαβγδ ĉ†
ασ ĉ†

βσ′ ĉδσ′ ĉγσ |Ψ〉
}

, (10)

which involves the interaction energy as well as parts of the kinetic energy and the external potential.
In this case, the constrained minimization runs over all states |Ψ〉 which yield the site or orbital
occupations nα = γαα for all α. It is important to notice that the off-diagonal hopping integrals
tαβ, which describe the electronic motion throughout the lattice, depend on and actually define the
lattice under consideration. Therefore, site-occupation approaches are not universal, since the central
functional F[{γαα}] depends on the dimensionality of the lattice, on the range of the hopping integrals
and on the external potential. This has no significant consequences in problems addressing the
effects of inhomogeneities or even disorder in the on-site lattice potentials tαα. In fact, in these cases,
site-occupation approaches perform very well. However, problems involving correlation-induced
changes in the degree of electronic delocalization and in the kinetic energy remain beyond reach, since
they require to have access to the off-diagonal elements of γ.
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Taking into account the complete single-particle density-matrix not only allows an accurate
description of the kinetic energy T[γ] but also implies that the interaction-energy functional W[γ] is
independent of the hopping integrals tαβ. This fundamental universality means that, once a given
approximation to W[γ] has been derived, it can in principle be applied to various lattice structures
having arbitrary hoppings and site potentials. Nevertheless, W[γ] does depend on the considered
many-particle interactions as defined by the parameters Vαβγδ. In the present review, we focus on the
Anderson and Hubbard models, for which explicit approximations to W[γ] are available.

3. The Anderson Model

The single-impurity Anderson model (SIAM)

Ĥ = Ĥcond + Ĥimp + Ŵ (11)

describes the physics of a localized magnetic impurity embedded in a free-electron metal [47]. The first
term

Ĥcond = ∑
kσ

εk ĉ†
kσ ĉkσ (12)

represents the single-particle band structure of the metallic electrons of the host. The operator ĉ†
kσ (ĉkσ)

creates (annihilates) a spin σ electron in the delocalized conduction-band state k having the energy εk.
The second term

Ĥimp = ∑
σ

ε f n̂ f σ + ∑
kσ

Vk f

(
ĉ†

kσ f̂σ + f̂ †
σ ĉkσ

)
(13)

describes the magnetic impurity orbital and its hybridization with the metal. The operator f̂ †
σ ( f̂σ)

creates (annihilates) a spin σ electron in the localized f orbital having an energy ε f , and n̂ f σ = f̂ †
σ f̂σ

counts the magnetic impurity occupation for spin σ. Notice that the second term in Ĥimp accounts for
the charge fluctuations between the impurity orbital and the conduction band, which are proportional
to the hybridization matrix-element Vk f . Finally, the interaction term

Ŵ = U n̂ f ↑n̂ f ↓ (14)

takes into account the Coulomb interaction between two electrons occupying the localized f orbital
(U > 0). The SIAM is often used to describe the physics of the Kondo effect, which involves correlated
spin and valence fluctuations at the impurity [12]. This behavior results from the interplay between
reducing the ground-state average of Ŵ and maximizing the hybridization and charge fluctuations
between the impurity orbital f and the conduction band. The former favors a correlated state with
minimal double occupations 〈n̂ f ↑n̂ f ↓〉 on the f orbital, while the latter favors valence fluctuations
which a priori imply an increase of 〈n̂ f ↑n̂ f ↓〉.

To develop a lattice density-functional theory of the SIAM , we follow the work in [71,77], and
consider the single-particle energy functional T[γ], which takes the explicit form

T[γ] = ∑
k

εkγkk + ε f γ f f + ∑
k

Vk f

(
γk f + γ f k

)
(15)

in terms of the matrix elements of γ = γ↑ + γ↓. The interaction-energy functional W[γ] can be
written as

W[γ] = U D[γ] , (16)

where D[γ] represents the optimal number of f -level double occupations as a functional of γ.
It involves the minimization

D[γ] = min
Γ̂→γ

Tr
{

Γ̂ n̂ f ↑n̂ f ↓
}
= min

Γ̂→γ
∑
m

wm〈Ψm|n̂ f ↑n̂ f ↓|Ψm〉 (17)
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over all mixed states Γ̂ = ∑m wm|Ψm〉〈Ψm| satisfying the conditions

γ f f σ = ∑
m

wm〈Ψm| f̂ †
σ f̂σ|Ψm〉 (18)

γk f σ = ∑
m

wm〈Ψm|ĉ†
kσ f̂σ|Ψm〉 (19)

and
γkk′σ = ∑

m
wm〈Ψm|ĉ†

kσ ĉk′σ|Ψm〉 (20)

for all k, k′ and σ. In other words, Γ̂ runs over all mixed states which yield the given single-particle
density matrix γ by means of Equations (18), (19) and (20). A simple efficient approximation to D[γ] is
presented in the following.

3.1. Two-Level Approximation

A two-level approximation (TLA) W2L[γ] = UD2L[γ] to the interaction energy has been derived
in [71,77] to determine the low-energy properties of the SIAM. The ansatz involves the impurity f
orbital and a single conduction-band state s of the form ŝ†

σ = ∑k Sk ĉ†
kσ, where the coefficients Sk are

such that the impurity experiences direct charge fluctuations only to this particular orbital. The actual
approximation consists in assuming that these two levels are decoupled from the rest of the conduction
band for the purpose of deriving the functional dependence of W2L[γ]. In other words, the scattering
processes between the conduction-band state s and the rest of the conduction band are neglected
while performing the minimization in Equation (17). This assumption is exact in two important limits:
first, a totally degenerate (zero band width) conduction spectrum, and, second, a conduction band
with widely separated discrete levels. In the first case, it is easy to see that the impurity f orbital
couples only to the conduction-band state ŝ†

σ = A ∑k Vk f ĉ†
kσ, where A is a normalization constant.

In this case, the Hamiltonian of the Anderson model is reducible, since the single-particle states s and
f form a two-level subspace, which is decoupled from the rest of the conduction band. For widely
separated discrete conduction-band levels, we know from perturbation theory that the dominant
charge fluctuations involve the localized impurity state f and the lowest empty or partially occupied
conduction band state at the Fermi energy εF. Therefore, these two orbitals define a subsystem
which dominates the physics at low energies. The thus motivated two-level ansatz allows one to
expresses the number of f -level double occupations D and the resulting interaction energy W in
terms of the effective two-level density matrix γ2L formed by the impurity f state and the particular
conduction-band orbital s.

The two-level problem consisting of the orbitals f and s has been solved exactly in the
spin-restricted (SR) half-filled case (i.e., Tr{γ2L} = γss + γ f f = 2 and γ↑ = γ↓) [71], which is the
most important one, since the ground state of the SIAM is a singlet [78]. The density matrix γ2L of
the SR half-filled two-level system is univocally defined by the f -level occupation γ f f = γ f f ↑ + γ f f ↓
and the degree of charge fluctuations X = X↑ + X↓ where Xσ = |γs f σ|2. The average f -level double
occupation, as given in [77], reads

D2L
SR(γ f f , X) =





γ2
f f

4
−
√

2ξ

4
· 2X0

SR −
√

2ξ

1−√2ξ
if X∞

SR < X ≤ X0
SR

D∞
SR(γ f f ) = max

{
γ f f − 1, 0

}
if 0 ≤ X ≤ X∞

SR ,
(21)

where
X0

SR(γ f f ) =
1
2

γ f f (2− γ f f ) , (22)

X∞
SR(γ f f ) =





γ f f

(
1− γ f f

)
if γ f f ≤ 1(

2− γ f f

) (
γ f f − 1

)
if γ f f > 1 ,

(23)
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and
ξ = X0

SR − X . (24)

Knowing that the state s is a linear combination of delocalized k states, one can express the degree of
charge fluctuations between the impurity and the conduction band as

Xσ = ∑
k
|γk f σ|2 . (25)

In this way, D2L
SR can be regarded as a functional of the single-particle density matrix γ, irrespectively

of the number of k states within the conduction band.
In Figure 1, D2L

SR is shown as a function of X for the impurity occupation γ f f = 1. To understand
how D2L

SR depends on γ, let us first recall that ensemble representability requires γ to be positive
definite with eigenvalues ηkσ ∈ [0, 1]. Consequently, γ− γ2 is also positive definite, and in particular

〈 f σ|γ− γ2| f σ〉 = γ f f σ(1− γ f f σ)− Xσ ≥ 0 . (26)

0 0.1 0.2 0.3 0.4 0.5
X

0

0.1

0.2

0.3

D
2
L

S
R

γ
ff
 = 1.0

0 1 2
γ

ff

0

0.5

X

X
∞

SR

X
0

SR

X
0

SR
X

∞

SR

ground-state
representable

D
0

SR

D
∞

SR

Figure 1. Two-level double-occupation functional D2L
SR of the spin-restricted half-filled Anderson model

(γ↑ = γ↓ and N = 2) with local impurity occupation γ f f = 1 as a function of the degree of charge
fluctuations X. The values D∞

SR and X∞
SR (D0

SR and X0
SR) refer to the strongly correlated (uncorrelated)

limit. The inset shows the corresponding domain of ground-state representability of γ (grey area) in
terms of γ f f and X. Adapted with permission from Reference [71]. c©American Physical Society.

In the noninteracting limit, the many-body eigenstates |Ψ〉 are uncorrelated Slater determinants,
which implies γ = γ2. In a general case, the inequality in Equation (26) gives us a useful upper bound
for the degree of charge fluctuations, namely,

Xσ ≤ γ f f σ(1− γ f f σ) = X0
σ (27)

where we have introduced the maximum degree of spin-σ charge fluctuations X0
σ. The previous

considerations allow one to characterize the uncorrelated limit by the condition Xσ = X0
σ or ξ = 0.

Using that in the SR case γ f f ↑ = γ f f ↓ = γ f f /2 and X↑ = X↓ = X/2, we can write the inequality in
Equation (27) as

X ≤ 1
2

γ f f (2− γ f f ) = X0
SR(γ f f ) . (28)

In this case, D2L
SR takes its maximum value

D0
SR(γ f f ) =

γ2
f f

4
, (29)
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as predicted by Hartree–Fock theory (see Figure 1). As the degree of charge fluctuations X decreases,
D2L

SR also decreases, since the electrons can correlate thereby reducing double occupations of the
impurity state f . The minimum possible value D∞

SR(γ f f ) = max{γ f f − 1, 0} is achieved in the strongly
correlated limit, where double occupations (empty states) are suppressed if γ f f ≤ 1 (γ f f > 1), while
the corresponding degree of charge fluctuations is denoted by X∞

SR (see the inset of Figure 1).
In [77] the TLA has been extended to the spin polarized case. Taking advantage of the scaling

properties of D[γ], one approximates the f -level double occupations for spin-dependent γσ by the
ansatz

D2L(γ f f σ, Xσ) = D∞(γ f f σ) +
[

D0(γ f f σ)− D∞(γ f f σ)
]
·

D2L
SR(γ f f , X̃)− D∞

SR(γ f f )

D0
SR(γ f f )− D∞

SR(γ f f )
, (30)

where
D0(γ f f σ) = γ f f ↑ γ f f ↓ (31)

and
D∞(γ f f σ) = max

{
γ f f − 1, 0

}
(32)

denote, respectively, the f -level double occupations in the weakly and strongly correlated limits [77].
The effective degree of charge fluctuations X̃ scales between the limits X0

SR and X∞
SR as

X̃ = g · (X∞
SR − X0

SR) + X0
SR (33)

with g ∈ [0, 1] given by

g = g↑ g↓ (34)

and

gσ =





(
X0

σ − Xσ

X0
σ − X∞

σ

)1/2

for Xσ ≥ X∞
σ

1 for Xσ < X∞
σ .

(35)

In [77], the following approximation to the degree of charge fluctuations in the strongly correlated
limit has been proposed:

X∞
σ (γ f f σ) =





γ f f σ

(
1− γ f f

)
if γ f f ≤ 1(

1− γ f f σ

) (
γ f f − 1

)
if γ f f > 1 ,

(36)

which physically corresponds to the maximum degree of charge fluctuations Xσ that can be obtained
for the given local occupations γ f f σ, under the constraint of minimal f -level double occupation D∞.

3.2. Applications to Anderson Rings

The ground state and low-energy spin excitations of the SIAM were investigated by Töws
and Pastor [71,77] using the TLA to the interaction-energy functional. The total-energy E[γσ] =

T[γσ] + UD2L[γσ] has been minimized with respect to γσ under the constraint of well-defined Sz. For
an even number of electrons the ground state is obtained by setting Sz = 0, since this takes into account
all possible values of S. The lowest lying triplet state is obtained by setting Sz = 1, which corresponds
to a minimization for S ≥ 1. As an example, we consider half-filled finite rings having Na = 11 atoms
(No = Na + 1 = 12 orbitals) and N = No = 12 electrons.
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The Hamiltonian in Equation (12) of the metallic host can be written in a tight-binding form
in terms of the creation and annihilation operators ĉ†

iσ and ĉiσ corresponding to atomic-like orbitals
centered at the different lattice sites i. Thus, we have

Ĥcond = −t ∑
〈ij〉σ

ĉ†
iσ ĉjσ , (37)

where the sum runs over nearest-neighbor (NN) pairs i, j and t > 0 denotes the NN hopping integral.
The corresponding conduction-band Fermi energy at half-band filling is εF = 0.28 t. The single-particle
impurity terms in Equation (13) are given by

Ĥimp = ∑
σ

ε f n̂ f σ + ∑
σ

Vs f

(
ĉ†

0σ f̂σ + f̂ †
σ ĉ0σ

)
, (38)

where Vs f describes the hybridization between the impurity f level and the conduction-band orbital at
the impurity atom i = 0.

The main properties of the singlet ground state and the lowest lying triplet state are shown in
Figure 2: interaction energy W = U D, impurity occupation γ f f , f -level spin polarization 〈Ŝ f z〉 =
(γ f f ↑− γ f f ↓)/2 and degree of charge fluctuations X = ∑kσ |γk f σ|2. The complete range of interactions
is explored by varying the Coulomb-repulsion strength U at the f orbital from weak to strong electronic
correlations. First, one observes that W tends to zero for large U/t since the number of f -level double
occupations D = 〈n̂ f ↑n̂ f ↓〉 rapidly vanishes, as expected in strongly correlated states. Notice, moreover,
that D is in general much smaller in the triplet than in the singlet state. This can be easily explained
by the fact that the f -level spin polarization 〈Ŝ f z〉 ' γ f f /2 is almost saturated in the former (see the
left-hand inset in Figure 2b). To analyze the impurity properties in more detail, it is useful to recall that
the conduction-band Fermi level εF is located above the impurity level: εF = ε f + 0.28t. Consequently,
in the uncorrelated limit (U/t→ 0), the ground state corresponds to an f 1– f 2 intermediate-valence
state with γ f f > 1. The singlet-triplet excitation implies therefore the transfer of an f↓ electron to
the Fermi level, which yields γ f f < 1 in the triplet (see Figure 2b). In contrast, in the limit of strong
correlations, one observes an intermediate valence state with γ f f < 1 for both singlet and triplet states.
Due to the strong Coulomb repulsion U/t� 1 no significant double occupations of the f -level take
place. In this case, the singlet-triplet excitation involves only the spin degrees of freedom and no
charge transfer.

Figure 2. Ground-state and triplet-state properties of Anderson rings having No = 12 orbitals and
N = 12 electrons as a function of the Coulomb-repulsion strength U/t at the impurity orbital:
(a) interaction energy W; and (b) impurity occupation γ f f . The insets in (b) show the impurity
spin polarization 〈Ŝ f z〉 and the degree of charge fluctuations X. Lattice density-functional theory
(LDFT) results obtained within the two-level approximation (TLA) W2L (solid and dashed curves) are
compared with exact Lanczos diagonalizations (symbols) for ε f = 0 and Vs f /t = 0.4. In the inset of
(b) the unrestricted Hartree–Fock results for 〈Ŝ f z〉 are given by the dashed blue curve for the sake of
comparison. Reproduced with permission from References [71,77]. c©American Physical Society.
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A further interesting property is the degree of charge fluctuations X between the impurity and the
conduction band. The right-hand inset of Figure 2b shows X as a function of U/t. As already discussed,
the ground-state has γ f f > 1 for small Coulomb repulsion U/t, which means that the main charge
fluctuations originate from an f 2 ↔ f 1 intermediate-valence state involving singly-occupied and
doubly-occupied impurity configurations. As U/t increases, X increases first, until ε f +U ' εF, which
is the most favorable energy-level configuration concerning charge fluctuations. However, a further
increase of U tends to suppress double occupations at the impurity (ε f + U > εF). Consequently, X
decreases with increasing U. In the strongly correlated limit the impurity double occupations are very
effectively suppressed so that the most relevant charge fluctuations in the singlet ground state involve
only f 1 ↔ f 0 transitions. In the lowest-lying triplet state, X is smaller than in the singlet ground
state. This can be understood by noting that the triplet exhibits an almost fully saturated f -level spin
polarization. Therefore, only one spin channel contributes to the charge fluctuations between the
impurity and the conduction band.

The accuracy of the TLA has been tested by comparing the LDFT results to exact numerical
diagonalizations [77,79]. In Figure 2, one observes that in the whole interaction regime, from weak to
strong electron correlations, the TLA yields a quite accurate quantitative description of the physical
properties both in the ground state and the lowest-lying spin excitation. The relative errors in γ f f ,
〈Ŝ f z〉 and X are less than 3%, 1.2% and 9.6%, respectively, while the absolute error in W is less than
0.008 t. This shows that LDFT with the TLA provides an efficient and physically sound approach to the
problem of strong electron correlations. Moreover, Figure 3 shows that the singlet-triplet excitation gap
∆E = ES=1 − ES=0 and the degree of spin fluctuations σsf = (〈Ŝ2

f z〉 − 〈Ŝ f z〉2)1/2 in the singlet ground
state, which are both very sensitive to correlation effects, are also quite accurately reproduced. The
singlet-triplet gap ∆E is particularly interesting since it defines the energy scale which governs the
low-temperature physics and is approximately proportional to the Kondo temperature. Concerning
∆E, the largest relative error is about 16%. It is also worth noting that in the strongly correlated limit the
singlet ground state exhibits a significant local magnetic moment µ f = 〈S f · S f 〉1/2 ' 0.74, although
the average impurity polarization 〈Ŝ f z〉 is strictly zero. This means that the vanishing impurity
magnetization is the consequence of spin fluctuations, a subtle indication of spin-charge separation.
This contrasts with the usual mean-field approaches, such as the Hartree–Fock approximation, which
neglect them and thus lead to an artificial spin-symmetry breaking for sufficiently large U/t (see
Figure 2b). Remarkably, the TLA takes correctly into account the fluctuations of a strong local magnetic
moment. For these reasons, it provides a simple and accurate tool to describe both ground-state and
excited-state properties.

0 1 2 3 4
U / t

0

0.1

0.2

0.3

0.4

∆
E

 /
 t

0 4U / t

0.2

0.4

σ
sf

Exact
LDFT

singlet ground state

Figure 3. Singlet-triplet gap ∆E and ground-state degree of spin fluctuations σsf in a half-filled
Anderson ring having No = 12 orbitals, ε f = 0 and Vs f /t = 0.4. The results obtained with
the TLA (curves) are compared with exact Lanczos diagonalizations (symbols) as a function of
the Coulomb-repulsion strength U/t at the impurity orbital. Reproduced with permission from
Reference [77]. c©American Physical Society.
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4. The Hubbard Model

The Hubbard model represents a further important challenge in the context of the many-body
problem [48–50,80], since it describes the physics of correlated electrons in narrow energy bands.
The associated Hamiltonian is given by

Ĥ = Ĥ0 + Ŵ . (39)

The first term
Ĥ0 = ∑

iσ
εi n̂iσ + ∑

〈ij〉 σ

tij ĉ†
iσ ĉjσ , (40)

represents the single-particle contribution, where εi denotes the energy level at site i and tij the hopping
integral between NN sites i and j. The operator ĉ†

iσ (ĉiσ) is the usual creation (annihilation) operator
for a spin σ electron at site i (n̂iσ = ĉ†

iσ ĉiσ). The hopping integrals tij characterize the structure of
the underlying lattice, as well as the range of interatomic hybridizations. The energy levels εi can
describe both homogeneous and inhomogeneous systems. In the simplest homogeneous Hubbard
model, εi = ε0 does not depend on the lattice site i. However, more complex situations, including for
example lattices composed of different chemical elements or the case where external electric fields
are present, are modeled in terms of site-dependent potentials εi. In [70], bipartite lattices have been
considered as an example of the inhomogeneous Hubbard model. In this case, the energy levels εi of
the two sublattices A and B differ by the level-splitting ε, i.e.,

εi =

{
+ε/2 if i = 1 (sublattice S1)

−ε/2 if i = 2 (sublattice S2) .
(41)

The second term
Ŵ = U ∑

i
n̂i↑n̂i↓ (42)

accounts for the dominant intra-atomic Coulomb repulsion among the electrons. The strength of the
interaction is characterized by the Coulomb integral U > 0, which is assumed to be independent of
the lattice site i.

From a physical point of view, the Hubbard Hamiltonian describes the interplay between two
opposite tendencies. On the one hand, the electrons tend to form a bound state and therefore delocalize
throughout the lattice in order to reduce their kinetic energy T = ∑ijσ tij 〈ĉ†

iσ ĉjσ〉 by profiting from
the interatomic hybridizations. On the other hand, a reduction of the charge fluctuations and of the
concomitant Coulomb-repulsion energy is aimed, which favors localized electronic states. In addition,
if inhomogeneities are present, the site-dependent potentials εi give rise to inhomogeneous charge
distributions among the atoms, whose nature depends critically on the Coulomb interaction strength.
Therefore, the Hubbard model captures the interplay between delocalization, correlations, and density
redistributions of interacting electrons in narrow energy-bands.

To derive approximations to the interaction-energy functional W[γ], we consider the Levy–Lieb
constraint search. In the case of the Hubbard model, the exact functional takes the form

W[γ] = U min
Ψ→γ

{
∑

i
〈Ψ| n̂i↑n̂i↓ |Ψ〉

}
. (43)

Notice the linearity of W[γ] as a function of U, a rigorous property to be satisfied by any explicit
approximation. In the case of a general site dependent interaction, W[γ] remains an homogeneous
function of order one of the Coulomb integrals Vαβγδ. In the following, two successful approximations
to the interaction-energy functional W[γ] are presented and discussed. One of them is based on a
real-space perspective and on the scaling properties of W. The other one exploits the translational
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invariance of the homogeneous Hubbard model and adopts a k-space perspective. In this case,
advantage is taken of some remarkable analogies between the degree of electron correlations and the
entropy associated to the occupation-number distribution of the independent delocalized Bloch states.

4.1. Local Perspective to the Interaction-Energy Functional

In previous works, the properties of the exact interaction-energy functional W[γ] have been
investigated in both homogeneous and inhomogeneous finite systems [65–69]. These studies have
revealed that the dependence of W on the NN bond order γ12 follows a simple approximate scaling
relation, which is nearly independent of the system size, lattice dimension and band filling n =

N/Na. To illustrate the idea behind this scaling ansatz, it is useful to first consider the domain
of v-representability of γ12. This is given by the set of values γ12, which can be obtained from
the ground-state of the model for arbitrary parameters. This domain is limited by the condition
γ∞

12 ≤ γ12 ≤ γ0
12, where the uncorrelated and strongly correlated limits γ0

12 and γ∞
12 correspond to the

ground states for U = 0 and U → ∞. Moreover, it has been shown that both γ0
12 and γ∞

12 increase
monotonously with increasing number of electrons N until the single-particle band is half filled [69].
In the weakly correlated limit (γ12 = γ0

12), the interaction energy is given by its Hartree–Fock value
W0 = U ∑i γii↑γii↓, since the underlying many-body state is a single Slater determinant. Starting
from γ12 = γ0

12, W decreases monotonously with decreasing γ12, reaching its lowest possible value
W∞ = U ∑i max{γii − 1 , 0} in the strongly-correlated limit γ12 = γ∞

12 [69]. The lower bound γ∞
12

represents the largest amount of interatomic charge fluctuations that can be achieved under the
constraint of minimal interaction energy (i.e., minimal double occupations). Physically, the decrease
of W with decreasing γ12 illustrates how correlations manage to reduce the Coulomb energy at the
expense of kinetic energy and electron delocalization.

The scaling approximation brings the domains of v representability for different band fillings
to a common range and scales the interaction energy with respect to its Hartree–Fock and strongly
correlated values W0 and W∞. In this way, the scaled interaction energy

ω =
W −W∞

W0 −W∞ (44)

can be regarded as a function of the relative degree of electron delocalization

g12 =
γ12 − γ∞

12
γ0

12 − γ∞
12

. (45)

As discussed in [70], the scaled interaction energy turns out to be remarkably similar for all considered
systems and band fillings. Further investigations on the Hubbard model have shown that the relative
change in W caused by a change in g12 is also approximately independent of the system size and lattice
dimension [65–70]. This indicates that the largest part of the dependence of W on γ12 is a consequence
of the changes in the domain of representability of γij as defined by the limits of weak and strong
correlations. It is therefore reasonable to regard the scaled interaction ω as a function of the degree of
electron delocalization g12, which is nearly independent of the system under study, even though the
relation between ω and g12 does depend on the charge distribution in inhomogeneous models.

An explicit approximation to W can be obtained, for example, by inferring its functional
dependence from a simple reference system which already incorporates the interplay between
electronic delocalization, charge transfer and correlations. The simplest system which fulfills this
condition is probably the Hubbard dimer. Thus, the scaled dimer approximation has been proposed [70],
which is given by

ωsc(g12, ∆n) = ω2(g12, ∆n) (46)

or, equivalently,
Wsc(g12, ∆n) = W∞ + (W0 −W∞)ω2(g12, ∆n) , (47)
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where the exact interaction-energy functional of the Hubbard-dimer (N = Na = 2) reads

W2

UNa
=





1
2
− |γ12|2

4

1 +
√

1− (∆n/2)2 − |γ12|2

(∆n/2)2 + |γ12|2
, if γ∞

12 < |γ12| ≤ γ0
12

∆n
4

, if |γ12| ≤ γ∞
12

(48)

and the uncorrelated and strongly-correlated bounds are W0
2 = UNa[1 + (∆n/2)2]/4 and W∞

2 =

UNa∆n/4. It has been shown that Wsc yields a sound approximation to the exact functional W in the
complete range from weak (g12 = 1) to strong (g12 = 0) electronic correlations. The largest quantitative
deviations are found for intermediate band fillings n = N/Na ' 0.6, where |W −Wsc|/(W0 −W∞) ≤
0.1. In most other cases, the error is in the range of only |W −Wsc|/(W0−W∞) ' 0.008–0.06 [70]. This
is quite remarkable since W0, W∞, γ0

12 and γ∞
12 strongly depend on the size of the system, the band

filling n and the charge transfer ∆n. The good general accuracy of the scaled dimer approximation
relies ultimately on the universal nature of the interaction-energy functional. In the following, we
review a few applications of LDFT in conjunction with this functional.

4.2. Applications of the Scaled Dimer Approximation

As a first application, we consider the inhomogeneous Hubbard model on a bipartite 1D ring
having Na = 14 sites and half-band filling n = 1 (N = 14 electrons). In [70], the ground-state
properties are discussed from weak to strong electronic correlations as well as along the crossover
from the homogeneous to the strongly ionic regimes. To this aim, two relevant parameters have been
varied systematically: the site-dependent potential εi given in Equation (41), which controls the degree
of charge transfer ∆n between the sublattices, and the Coulomb repulsion strength U, which measures
the importance of correlations.

Results for the average number of double occupations per site W/UNa, the charge transfer
∆n = γ22 − γ11, and the NN bond order γ12 obtained for different values of the energy-level splitting
ε/t are shown in Figure 4 as function of the Coulomb repulsion strength U/t. In the homogeneous
case (ε/t = 0), the charge transfer ∆n between the sublattices is obviously zero. One observes that the
interaction energy W and the NN bond order γ12 decrease monotonously with U/t, which reflects the
reduction of the Coulomb repulsion energy at the expense of kinetic energy. As the level splitting ε

between the sublattices increases, for a fixed Coulomb repulsion U, the charge transfer ∆n and the
interaction energy W increase in similar ways. This is due to the fact that inhomogeneous charge
distributions necessarily imply larger average double occupations. It is interesting to note that for finite
intermediate sublattice level splitting, e.g., ε/t = 1–16, the system undergoes a qualitative transition
between a delocalized charge-density-wave (CDW) state (∆n ' 0.9–1.6 and γ12 ' 0.3–0.6) to a nearly
localized state having a homogeneous charge distribution (∆n, γ12 → 0) as the Coulomb interaction
strength U/t is increased from weak to strong correlations. Starting from the weakly correlated CDW
state and increasing U/t, ∆n decreases as soon as U is of the order of ε, reaching a nearly homogeneous
charge distribution ∆n = 0 for U � ε. Moreover, for finite ε/t, an interesting maximum of γ12 is found
for U ' ε. This can be qualitatively understood by noting that for U ' ε the Coulomb repulsion on the
doubly occupied sites in sublattice S2 compensates the energy difference between the two sublattices
(ε1 − ε2 = ε). This allows a nearly freelike motion of the γ11 electrons occupying sublattice S1 together
with the γ22 − 1 electrons in sublattice S2, which occupy already occupied sites (γ11 < 1 and γ22 > 1
for ε > 0). With increasing ε/t, this effect becomes more pronounced, since both the charge transfer ∆n
in the U = 0 CDW and the crossover value of U are larger.
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Figure 4. Ground-state properties of bipartite Hubbard rings having Na = 14 sites at half-band filling
(N = 14) as function of the Coulomb repulsion strength U/t: (a) average number of double occupations
per site W/(UNa); (b) NN bond order γ12; and (c) charge transfer ∆n = γ22 − γ11. Representative
values of the energy-level splitting ε between the sublattices are considered, which are indicated by
numbers in (a). The solid curves are the results obtained with LDFT in conjunction with the scaling
approximation Wsc, while the symbols correspond to exact Lanczos diagonalizations. Reproduced
with permission from Reference [70]. c©American Physical Society.

Before closing this section, it is important to underline the very good agreement between the
results obtained in LDFT using the scaled dimer approximation and the exact results obtained
with the Lanczos method. A high accuracy is found for all considered parameter regimes, from
weak to strong electronic correlations, and from homogeneous to strongly ionic charge distributions
(see Figure 4). The largest absolute discrepancies in the number of double occupations W/(UNa),
charge transfer ∆n and NN bond order γ12 are less than 0.02, 0.05 and 0.025, respectively. Further
investigation of the ground-state properties of the Hubbard model in all dimensions d ≤ 3, including
dimerized infinite chains, have demonstrated that LDFT reproduces the kinetic, Coulomb and total
energies, the local magnetic moments, the charge-excitation gaps, and the charge susceptibilities very
accurately [66–68,70]. One concludes that LDFT with the scaled dimer approximation is an efficient
and accurate method to study the physics of the Hubbard model and, in particular, to describe the
interplay between correlation, electron delocalization and charge transfer.

4.3. Reciprocal-Space Perspective

In this section, we focus on the single-band Hubbard model on a periodic lattice and exploit
the translational invariance of the system by developing a delocalized k-space approach. Periodicity
implies that the elements γijσ of the SPDM solely depend on the vector Ri − Rj connecting the lattice
sites Ri and Rj. Therefore, applying Bloch’s theorem and knowing that there is only one orbital in the
unit cell, one may write

γijσ =
1

Na
∑

k∈BZ
ηkσ e−ik·(Ri−Rj) . (49)
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This means that any translational-invariant density matrix γ can be characterized by its eigenvalues
ηkσ, which represent the average occupation numbers of the natural orbitals. For the given lattice, the
occupation numbers ηkσ become the fundamental variable in LDFT and all physical observables can
be regarded as functionals O[ηkσ] of ηkσ. In particular, the kinetic-energy functional is given by

T[ηkσ] = ∑
k∈BZ

εk ηkσ , (50)

where εkσ is the dispersion relation of the underlying tight-binding model. To obtain the ground-state
SPDM of the interacting problem, the energy functional

E[ηkσ] = ∑
kσ

εkσ ηkσ + W[ηkσ] (51)

needs to be minimized, under the constraint of fixed number of spin σ electrons Nσ = ∑k ηkσ. This
can be done by introducing the Euler–Lagrange functional

L[ηkσ, µσ] = E[ηkσ]−∑
σ

µσ

(
∑

k∈BZ
ηkσ − Nσ

)
(52)

and by solving the extremal equations ∂L/∂ηkσ = 0 for all kσ [66].
To derive a physically sound approximation to the interaction-energy functional W[ηkσ] entering

Equation (51), it is very useful to consider two important limiting cases for which W[ηkσ] can be
obtained exactly. The first one is when all ηkσ are either 0 or 1 and γσ is idempotent (i.e., γ2

σ = γσ). There
is only one kind of many-body state which can yield such a γ, namely, the single Slater determinant
consisting of the occupied natural orbitals kσ. The interaction-energy is then given by W0 = U D0,
where

D0 = ∑
i

γii↑ γii↓ (53)

is the average number of double occupations in an uncorrelated state with the spin density γiiσ = niσ.
The second important limiting case concerns scalar density matrices γσ = nσ1, where nσ = Nσ/Na

is the density of electrons with spin σ. Physically, this corresponds to fully localized electrons since
γij = 0 for i 6= j. It is therefore easy to see that the smallest possible interaction energy of the
Hubbard model corresponding to a k-independent occupation number distribution ηkσ = nσ is given
by W∞ = U D∞, where

D∞ =

{
0 if N ≤ Na,

N − Na if N > Na .
(54)

Scalar density matrices representing localized states are particularly relevant in the limit of strong
electronic interactions or vanishing hopping integrals.

In this context, it is useful to consider the independent-fermion entropy (IFE)

S[ηkσ] = −∑
kσ

[
ηkσ ln(ηkσ) + (1− ηkσ) ln(1− ηkσ)

]
(55)

and its relation to the interaction-energy functional W[ηkσ]. S[ηkσ] represents the entropy associated
with an arbitrary occupation-number distribution ηkσ of fermions, i.e., not necessarily one which
matches a specific thermodynamic equilibrium situation [81]. It is interesting to note that at half-band
filling S[ηkσ] assumes its extreme values for the same occupation-number distributions ηkσ as the
interaction energy W[ηkσ]. For uncorrelated electrons, we have ηkσ = 0 or 1 for all kσ and S[ηkσ] takes
its minimum value S = 0. For localized electrons we have ηkσ = nσ for all k and thus the IFE assumes



Computation 2019, 7, 66 17 of 26

its maximal value under the constraint ∑k ηkσ/Na = nσ (see Equation (55)). If the band is half filled
(n↑ + n↓ = 1), the maximum value of the IFE reads

S∞ = −2Na[n↑ ln(n↑) + n↓ ln(n↓)] . (56)

The fact that S[ηkσ] assumes its extremes for the distributions ηkσ yielding the extremes of W[ηkσ]

suggests that S[ηkσ] could be used as a measure of the degree of electronic correlations. From this
perspective, the uncorrelated state with its well-defined natural-orbital occupations ηkσ = 0 or 1
corresponds to a perfectly-ordered zero-entropy or zero-temperature situation. In contrast, the strongly
correlated localized state in which all Bloch states are equally probable (ηkσ = 1/2 ∀kσ) corresponds to
a fully-disordered maximum-entropy or infinite-temperature situation. It is therefore most interesting
to explore to what extent an entropy analogy holds for non-trivial many-body states, where the degree
of correlations is not extreme. This would allow us to formulate approximations of W[ηkσ] in terms
of S[ηkσ], thus avoiding the certainly more general, but also more difficult to grasp, full functional
dependence on the occupation-number distribution ηkσ.

Exact Lanczos diagonalizations have been performed in [72] to quantify the relation between
W[ηkσ] and S[ηkσ] in the half-filled Hubbard model. Different occupation-number distributions ηkσ,
ranging from the weak to the strongly correlated limit, have been obtained by scaling the hopping
integrals from tij = 0 to tij � U. In this way, the complete range of S[ηkσ] has been scanned
(0 ≤ S ≤ S∞). In Figure 5, the relation between the interaction energy W[ηkσ] in the half-filled Hubbard
model and the corresponding independent fermion entropy S[ηkσ] is reproduced. Remarkably, one
observes that S[ηkσ] captures most of the functional dependence of W on ηkσ. The relation between
W and S is almost independent of the specific size and structure of the systems considered in the
exact diagonalizations. The deviations from the common nearly linear trend are always small (below
10%). It has been therefore proposed to approximate the interaction-energy functional of the half-filled
Hubbard model by the simple linear relation [72],

W[ηkσ] = W0
(

1− S[ηkσ]

S∞

)
, (57)

where W0 = U D0 is the Hartree–Fock value of the interaction energy (see Equation (53)) and S∞ is the
upper bound of the IFE given by Equation (56).
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Figure 5. Relation between the interaction energy W[ηkσ] and the independent Fermion entropy S[ηkσ]

in the ground-state of the half-filled Hubbard model for various finite lattices with periodic boundary
conditions. The results were obtained by exact Lanczos diagonalizations on finite 1D rings having
Na = 6 (plus signs), Na = 10 (crosses) and Na = 14 sites (squares), as well as for 2D square-lattices
having Na = 2 × 4 (circles) and Na = 3 × 4 sites (triangles). Reproduced with permission from
Reference [72]. c©American Physical Society.
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Substituting Equation (57) into Equation (51), it is easy to see that the minimization condition
∂L/∂ηkσ = 0 for the Euler–Lagrange functional (52) leads to the Fermi–Dirac distribution

ηkσ =
1

e(εk−µσ)/ϑ + 1
(58)

for all kσ, where ϑ = UD0/S∞ plays the role of an effective temperature which depends on the
Coulomb-interaction strength U. Furthermore, all approximations of the interaction-energy functional
in terms of the IFE of the form W = W(S[ηkσ]) lead to the Fermi–Dirac distribution in Equation (58)
of the ground-state occupation numbers ηkσ. In the general case of a nonlinear relation between W
and S, the effective temperature is given by ϑ = −dW/dS. This is a limitation since it precludes the
IFE approximation to describe any discontinuous jump in ηkσ as found, for example, at the Fermi
energy of Fermi liquids. In the following, some representative applications of the linear IFE ansatz in
Equation (57) are reviewed.

4.4. Application to the Half-Filled Hubbard Model

In Figure 6, the linear IFE-approximation in Equation (57) and exact Lanczos diagonalizations are
compared in the case of the half-filled 4×4 2D square-lattice (N↑ = N↓ = 8) [72]. First, one observes
that the IFE approximation yields accurate values for the ground-state energy E0 in the complete
interaction range, from weak to strong correlations. Most notably, in the strongly correlated limit,
the IFE approximation yields E0/Na = −α t2/U, which correctly reproduces the qualitative behavior
of localized Heisenberg spins [82,83]. From the IFE approximation, one obtains α = 5.55, which is
only 13% larger than the exact value α = 4.81 inferred from the Lanczos diagonalizations. It is also
interesting to remark that not only the ground-state energy but also the separate contributions of the
kinetic energy T and the Coulomb interaction W = U D are reproduced with high accuracy for the
most part. Only the double occupations D are significantly underestimated for U/t < 2. This is a
consequence of the degeneracy in the single-particle spectrum of the 4×4 finite lattice at the Fermi level
εF = 0, which leads to fractional occupation numbers ηkσ = 1/2 for k vectors on the Fermi surface,
even for U/t = 0. As a result, one obtains S > 0 for U/t = 0. The IFE approximation in Equation
(57) correctly predicts D < D0 in this case. However, the actual correlation-induced reduction of D
is underestimated for about 30%. Since this effect is a consequence of the degenerate single-particle
spectrum, it must be ascribed to the finite size of the system. Therefore, it should not be relevant to
infinite periodic lattices, for which the IFE approximation in Equation (57) yields the Hartree–Fock
result D = D0 for U/t→ 0.

In Figure 6b, the ground-state occupation numbers ηkσ are shown as a function of U/t for the
different values of k. The accuracy of the IFE approximation is quite remarkable. In the non-interacting
limit (U/t = 0), the single-particle states below (above) the Fermi-level εF = 0 are occupied (empty),
which corresponds to ηkσ = 1 (ηkσ = 0). Precisely at εF we have ηkσ = 1/2 due to the above-discussed
finite-size degeneracy. As U/t increases, the occupation numbers below (above) εF decrease (increase)
until, in the strongly correlated limit (U/t → ∞), all natural-orbital occupation numbers are equal
and a localized state is reached. Once the ηkσ are known, it is rather straightforward to obtain the
ground-state SPDM γijσ in real space by means of a Fourier transformation. Müller et al. [72], showed
that the IFE results for γ0δσ follow closely the exact ones. In particular, the transition from a bound
state at U/t = 0, which is characterized by strong interatomic hybridizations γ01σ, to a localized state
(γijσ = 0 for i 6= j) is well reproduced.

The IFE approximation has also been applied to the half-filled Hubbard model on infinite
hypercubic lattices by introducing an appropriate scaling of the NN hoppings as a function of the
dimensionality d (td = t/

√
d) [72].
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Figure 6. Ground-state properties of the periodic 2D Hubbard model on a 4×4 square lattice with
N↑ = N↓ = 8 electrons and periodic boundary conditions. Exact numerical Lanczos diagonalizations
(green crosses) are compared, as a function of the Coulomb repulsion strength U/t with the
linear independent-Fermion entropy (IFE) ansatz (red curves): (a) ground-state energy E0; and (b)
natural-orbital occupation numbers ηk↑ = ηk↓. The average number of double occupations D and
kinetic energy T are shown in the inset of (a). Reproduced with permission from Reference [72].
c©American Physical Society.

The ground-state energy E0, the average number of double occupations D and the kinetic energy
T of the half-filled Hubbard model have been determined in [72] for bipartite lattices in d = 1–3
dimensions, as well as for the limit d→ ∞. The results for E0 are reproduced in Figure 7. In the case of
the 1D Hubbard model, the IFE approximation in Equation (57) is almost indistinguishable from the
exact Bethe-ansatz solution [84]. The relative error ∆E = |Eex

0 − EIFE
0 |/|Eex

0 | is smaller than 0.1% in the
whole interaction range from weak to strong correlations [72]. Remarkably, the IFE approximation
yields the exact result E0 = −4Na ln(2) t2/U in the strongly-correlated Heisenberg limit. One can
furthermore show that this very good accuracy is not the result of a compensation of errors since both
the kinetic energy T and the average number of double occupations D are very accurately obtained.
The largest relative error found for the double occupations is ∆D = 0.18% while for the kinetic energy
the largest discrepancy is ∆T = 0.12%.
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Figure 7. Ground-state energy of the half-filled Hubbard model on periodic hypercubic d-dimensional
lattices as function of the Coulomb-repulsion strength U/t. All curves were obtained by means of the
linear independent-Fermion entropy (IFE) approximation to LDFT. The exact ground-state energy of
the 1D lattice is given by the blue crosses [84]. The green triangles and circles correspond to quantum
Monte Carlo simulations for the 2D square lattice [85,86]. For each dimension d, the NN hopping
integral td is scaled as td = t/

√
d in order that the second moment w2 = 2dt2

d of the local density of
states is the same for all d. Reproduced with permission from Reference [72]. c©American Physical
Society.
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The ground-state energy E0 and the average number of double occupations D obtained with
the IFE approximation for the 2D square lattice are in good agreement with available QMC
simulations [85–87]. One observes, however, that the approximation tends to underestimate the
double occupations slightly for weak interactions (U/t . 4) whereas D is slightly overestimated if the
interactions are important (U/t & 4). In the strongly correlated limit E0 can be inferred quite accurately
from the ground-state energy ε2DH of the spin- 1

2 Heisenberg model. By using the Schrieffer–Wolff
transformation [83], one obtains E0 = −αt2/U with α = 2− 4ε2DH. QMC simulations [88] on the
spin- 1

2 Heisenberg model yield ε2DH = −0.669 which implies αQMC = 4.68. As in the 1D case, the IFE
approximation reproduces correctly the linear dependence of E0 on t2/U although with a somewhat
larger coefficient αIFE = 8 ln 2 ≈ 5.55. Thus, the binding energy for the strongly correlated 2D Hubbard
model is overestimated by 18%.

The dependence of E0, T and W on d shows a rapid convergence to the limit of infinite dimensions
once the NN hopping is scaled as td = t/

√
d in order that all the local DOSs have the same

second moment w2 = 2dt2
d = 2t2. In other words, most of the dependence of E0, T and W on

the lattice dimension is concealed in the variance of the single-particle spectrum. Another result worth
mentioning is that the IFE approximation yields E0 = −Jd ln 2 = −4d ln(2) t2

d/U in the strongly
correlated limit. This becomes E0 = −4 ln(2) t2/U for all d after the d-dependent scaling of the NN
hopping integrals is taken into account (U/t � 1). This behavior contrasts with the outcome of
QMC simulations and exact diagonalizations for low d, which show no such simple scaling relation
between the ground-sate energies of the 1D and 2D Heisenberg models [88–90]. Further applications
of the present reciprocal-space approach to LDFT including the frustrated triangular lattice and
spin-polarized systems may be found in [72].

5. Conclusions

The study of strong electron-correlation effects in the framework of density-functional theory
remains one of the most difficult current challenges in condensed matter physics. In this paper, we
review some of the recent developments in the density-matrix functional theory of lattice models. Based
on the general formulation of the many-body problem in terms of the single-particle density matrix γ,
we introduce the total energy functional E[γ] = T[γ] + W[γ], which can be naturally separated into
the single-particle or kinetic-energy functional T[γ] and the interaction-energy functional W[γ]. As
in any density-functional approach, the main problem is to derive physically sound approximations
to T[γ] and W[γ], which allow us to obtain accurate predictions of the electronic properties. Since an
exact explicit expression for T[γ] is available in the density-matrix approach, all the methodological
developments are focused on assessing the elusive W[γ].

Different complementary perspectives are discussed. One of them takes advantage of the
local nature of the dominant strong interactions and of the short-range character of the interatomic
hybridizations. The real-space density matrix γij, where i and j refer to the lattice sites, is considered as
the central variable of the many-body problem and the scaling properties of W[γ] are exploited. Taking
the inhomogeneous Hubbard model as representative example, it has been possible to demonstrate
that the dependence of W on the nearest-neighbor bond order γ12 is almost independent of the system
size, dimensionality of the lattice, and band filling, once W is appropriately scaled within the domain
of representability of γ. In this way, a simple approximation to W could be derived by extracting
the functional dependence of W from the Hubbard dimer. This two-site problem plays the role of a
reference system, pretty much as the homogeneous electron gas did in the early stages of DFT. From the
perspective of lattice models, the Hubbard dimer already contains the fundamental interplay between
electronic delocalization, charge transfer, and strong correlations. It is therefore particularly suited
as reference system since it covers the whole interaction range and the explicit analytic expression of
W[γ] is available.

The studies of the Anderson model combine a local description of a magnetic impurity, where
the electrons are subject to strong correlations, and a delocalized description of the conduction band
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states with which the impurity couples. In this case, one exploits the universality of W[γ] within
lattice density-functional theory (LDFT) and its invariance under unitary transformations among the
single-particle orbitals. A symmetry-adapted conduction state can then be identified through which
the dynamic charge fluctuations between the impurity orbital and the conduction band are channeled.
This symmetry-adapted conduction state and the impurity orbital are central to the interaction-energy
ansatz, which takes only these two single-particle states into account upon deriving the functional
dependence of W. The two-level approximation to W[γ] is thus derived, which can be shown to be
exact in two important limits: a totally degenerate conduction band and a conduction band with
widely separated discrete levels.

The third and final considered approach to LDFT is formulated from a reciprocal-space perspective
and therefore applies only to periodic lattices. In this case, the density matrix is diagonal in the Bloch
states and can be characterized by its eigenvalues or natural-orbital occupations ηkσ. Consequently,
the interaction energy can be regarded as a functional W[ηkσ] of the occupation-number distribution
ηkσ. In the case of half-band filling, a very interesting correspondence has been identified between the
degree of electron correlations and the independent-fermion entropy S[ηkσ] associated to the orbital
occupations ηkσ. The non-interacting case corresponds to a zero entropy state (occupation numbers
equal to 0 or 1), whereas the strongly-correlated limit corresponds to a maximum entropy state (all
orbital occupations equal to 1/2). Guided by this observation, an approximate linear relation between
W[ηkσ] and S[ηkσ] is revealed which could then be successfully exploited to obtain a simple, explicit
and broadly applicable lattice-density-functional ansatz.

The ability of LDFT to describe the physics of electron correlations has been successfully tested by
taking the Anderson and Hubbard models as representative examples and by comparing its predictions
with analytical solutions, numerical diagonalizations and quantum Monte Carlo simulations. Accurate
results for the most important ground-state properties have been obtained in the complete range of model
parameters, from weak to strong correlations. In particular, the comparison of the kinetic, interaction,
and total energies, the charge distribution, the degree of charge fluctuations, and the local magnetic
moments with far more involved numerical methodologies has been quite satisfactory. One concludes
that LDFT with an appropriate interaction-energy functional provides a most appealing and promising
theoretical perspective to the subtle problem of strong electron correlations in narrow bands.

Finally, to identify the most interesting directions of future methodological developments and
applications, it is useful to point out briefly some of the main goals and limitations of density-functional
approaches to many-body lattice models. From a fundamental perspective, density-functional theory
is extremely appealing because of the remarkable simplification and new perspective to many-electron
problems that it represents. However, some electron-correlation phenomena remain difficult to
grasp in the DFT framework. For example, the separation of charge and spin degrees of freedom
and the Heisenberg spin-coupling limit, which appears when atoms are pulled far apart and their
hybridizations tend to vanish, is certainly difficult to grasp in terms of the electronic density ρ(r). This
behavior appears quite naturally when the concepts of DFT are applied to lattice models or when a
minimal valence-electron basis is chosen, as it has been clearly demonstrated in several examples in the
previous sections. Besides these new perspectives and conceptual merits of LDFT, the density-matrix
functional theory of lattice models provides a number of practical advantages. The first and most
obvious one is the simplicity of the practical calculations. Once an explicit approximation to the
interaction energy W[γ] is available, performing the actual minimization of energy functional E[γ]
in the domain of ensemble representable γs can be done in a rather straightforward and numerically
reliable way for practically any lattice structure or system size. From this perspective, the LDFT
approach should be contrasted with the complexity of implementation and high numerical demands
of any of the alternatives such as the density-matrix renormalization group (DMRG) method for
1D systems [91,92], quantum Monte Carlo (QMC) methods [85–87], and exact diagonalization (ED)
methods [14,79].



Computation 2019, 7, 66 22 of 26

However, of course, LDFT has the unmissable downside that obtaining reliable generally
applicable approximations to W[γ] is far from obvious. However, we show in this review that
very often simple effective approximations can be obtained by performing interpolations between
known results in the weakly and strongly correlated limits, by using a simple reference system
which captures the essential interplay between electron delocalization and Coulomb repulsion, or
by exploiting statistical analogies. The simplicity of the above-discussed approximations to W[γ]

and their remarkable success might remind us of the simplicity and success of the early local density
approximation, which can be justified by simple sum rules. However, as for the LDA, the thus far
derived functionals in LDFT are nearly impossible to improve systematically and in a controlled
way. From this perspective, LDFT cannot compete with the above-mentioned explicitly correlated
methods (DMRG, QMC and ED, for example). In LDFT, we may well verify a posteriori the quality of
a given approximation, when exact or highly precise results are available, but is it impossible to predict
their accuracy or control the error a priori. An interesting perspective of future systematic accuracy
improvements in LDFT would be to extend the set of single-particle states involved in the derivation
of W[γ], for example, by adding further conduction-band states to the two-level system considered for
the Anderson model, or by performing a local cluster expansion in the context of the Hubbard model.
In this way, more realistic multiband models could also be addressed, eventually leading to a link with
first-principles methodologies. It is our hope that the theory, specific approximations and new physical
insights discussed in this review could serve as a starting point for such future developments.
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