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Abstract: The cytochrome P450s (CYPs) play a central role in the metabolism of various 
endogenous and exogenous compounds including drugs. CYPs are vulnerable to inhibition and 
induction which can lead to adverse drug reactions. Therefore, insights into the underlying 
mechanism of CYP450 inhibition and the estimation of overall CYP inhibitor properties might 
serve as valuable tools during the early phases of drug discovery. Herein, we present a large data 
set of inhibitors against five major metabolic CYPs (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and 
CYP3A4) for the evaluation of important physicochemical properties and ligand efficiency metrics 
to define property trends across various activity levels (active, efficient and inactive). Decision tree 
models for CYP inhibition were developed with an accuracy >90% for both the training set and 
10-folds cross validation. Overall, molecular weight (MW), hydrogen bond acceptors/donors 
(HBA/HBD) and lipophilicity (clogP/logPo/w) represent important physicochemical descriptors for 
CYP450 inhibitors. However, highly efficient CYP inhibitors show mean MW, HBA, HBD and logP 
values between 294.18–482.40,5.0–8.2,1–7.29 and 1.68–2.57, respectively. Our results might help in 
optimization of toxicological profiles associated with new chemical entities (NCEs), through a 
better understanding of inhibitor properties leading to CYP-mediated interactions. 

Keywords: cytochrome P450; CYP1A2; CYP2C9; CYP2C19; CYP2D6; CYP3A4; lipophilic efficiency; 
ligand efficiency; decision tree; drug metabolism 

 

1. Introduction 

The drug discovery and development is a grueling and lengthy process that is prone to high 
attrition rates throughout all phases of development [1]. However, to increase the research and 
development output, an improved “5R” strategy deciphering right target, right safety, right tissue, 
right patient and right commercial potential has been proposed by AstraZeneca [2]. Various proofs 
of concept examples of the application of the “5R” strategy indicates an improved success rate from 
candidate selection to the completion of phase III [2,3]. Thus, for high quality leads and drug 
candidates better insights into pharmacokinetics (PK)/pharmacodynamics (PD) along with ADMET 
(absorption, distribution, metabolism, excretion and toxicity) properties is highly recommended [3]. 
Additionally, more focused approaches towards incorporating pharmacokinetics and drug 
metabolism into compound design has assisted in making PK/PD and dose related predictions in 
humans [3]. Hitherto, drug metabolism is an influential factor in pharmacokinetics and hence 
modulates the behavior of a drug. Therefore, early understanding of metabolism of new chemical 
entities (NCE) and their affinity towards various metabolic enzymes might assist the PK/PD 
optimization during the drug development process [4]. Generally, amongst all metabolic enzymes, 
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the most important are the cytochrome P450s which constitute a ubiquitous superfamily of heme 
proteins, playing a key role in the oxidative, peroxidative and reductive metabolism of a wide range 
of endogenous and exogenous compounds, including drugs [4]. In human,57 CYP isoforms have 
been identified with CYP1A2,2C9,2C19,2D6 and 3A4 mediating ~90% of all the phase I metabolic 
reactions of clinically relevant drugs [5]. The association of cytochrome P450s with toxicological 
events due to metabolic alterations has brought about CYP-mediated drug metabolism as the 
principal reason for the occurrence of several drug–drug interactions (DDIs) [6]. Moreover, the 
co-administration of drugs might lead to the inhibition or induction of cytochrome P450s, therefore, 
there is an earnest need to assess CYP mediated interaction profiles of NCEs during the drug design 
and development phase [7,8]. Furthermore, during the last decade, DDIs associated with the 
inhibition of cytochrome P450s mainly due to the broad substrate specificity of CYP family of 
enzymes, emerged as the most common reason for the removal of various marketed drugs [9–11]. 

Additionally, the cytochrome P450 enzymes display an inherent affinity for lipophilic 
substrates due to their lipophilic nature [12–14]. Whereas, depending on the ionization states, 
lipophilic compounds also show inhibition potential against the cytochrome P450s [15]. This 
represents lipophilicity as one of the most significant physicochemical property in the drug 
discovery and design programs that plays a significant role in determining the ADMET properties 
[16] along with selectivity, promiscuity [17] and potency [18]. Many two- and three-dimensional 
quantitative structure–activity relationship (2D and 3DQSAR) studies have also reported the effect 
of lipophilicity on the inhibition of cytochrome P450s [19–24]. 

Therefore, from the drug design perspective, it is anticipated that NCEs should display a 
suitable metabolism with negligible or no potential of CYP inhibition or induction [25]. During the 
recent years the availability of X-ray, crystallographic structures of various mammalian CYP 
isoforms and mutagenesis data has provided a better understanding of CYP structure–function 
relationships [26–32]. Most importantly, significant in silico, in vitro and experimental efforts have 
been made to elucidate the underlying mechanisms behind CYP inhibition [33–39]. Moreover, 
various ligand- and structure-based in silico models as well as machine learning approaches have 
been used for the classification of inhibitors and substrates of individual CYP isoforms [40–46]. 
Herein, we estimate a set of physicochemical parameters in combination with lipophilic efficiency 
(LipE) and ligand efficiency (LE) metrics to classify the most active and efficient inhibitors of the 
target CYPs (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4). Additionally, we attempt to build 
simple and easily interpretable decision tree models for the prediction of cytochrome P450 
inhibition. The identification of molecular descriptor ranges, important for CYP inhibition in general 
and for highly efficient binding in particular, might provide a valuable tool for the classification and 
prediction of CYP inhibition against the selected subtypes. 

2. Materials and Methods 

2.1. Database Collection 

A data set of CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 inhibitors with  inhibitory 
potency (IC50) values was collated from ChEMBL database [47] using a filtering criteria of IC50 ≤ 100 
µM against each CYP subtype. The dataset was further refined by removing inconsistent potency 
values (% age inhibition, nonabsolute) and duplicate entries. After refinement, the final data set of 
6999 inhibitors of CYPs includes 612 CYP1A2,1341 CYP2C9,651 CYP2C19,1647 CYP2D6 and 2747 
CYP3A4 inhibitors (Figure 1 and Tables S1–S5 in Supplementary Information section). Additionally, 
the inhibitor datasets of each CYP class were divided in to three activity levels including active, 
efficient and inactive. Generally, an activity threshold of IC50 ≤ 50 µM was used to categorize 
compounds as actives and remaining compounds with IC50 > 50–100 µM as inactives. Here, in this 
particular study, we have used the activity threshold of 50 µM to build a more generalized inhibition 
model for each CYP subtype as proposed by Tie et al. [5,6]. However, the active inhibitors with LipE 
≥ 5, lipophilicity (clogP) values of ~1.0–3.0, IC50 ~10–150 nM and LE ≥ 0.29 (kcal/mol/heavy atom) 
were further classified as highly efficient (more prone to drug–drug interaction due to CYP 
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inhibition). These include 12 CYP1A2, eight CYP2C9, five CYP2C19, eight CYP2D6 and 17 inhibitors 
of CYP3A4. The activity ranges and the number of actives and inactives against each CYP isoform 
are presented in Figure 1. Furthermore, the IC50 (µM) values were normalized by converting into 
pIC50 for the calculation of LipE and LE metrics. The schematic workflow used in this study for the 
elucidation of CYP inhibitor properties across various activity levels is shown in Figure 2. 

 

Figure 1. The total number of cytochrome P450 (CYP) inhibitors split into “active,” “inactive” and 
“efficient” along with the respective potency ranges against each CYP isoform. 

 
Figure 2. The schematic work flow used in this study to probe the properties of the selected CYP 
inhibitors across various activity levels. IC50: Inhibitory Potency; clogP: Lipophilicity 
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2.2. Selection of Efficient Inhibitors of CYP Isoforms 

2.2.1. Lipophilic Efficiency (LipE) 

Lipophilicity contributes towards drug solubility, permeability and metabolism, thus 
representing an important factor in pharmacokinetics- and pharmacodynamics-mediated toxicity of 
a chemical entity [16]. Leeson and Springthorpe proposed the lipophilic efficiency (LipE) metric as 
an explicit approach to estimate drug-likeliness by providing a linkage between lipophilicity and 
potency [17]. However, a drug like compound may also show off-target toxicity due to its potential 
to interact with antitargets such as CYP450, hERG and P-glycoprotein. Herein, we apply this concept 
to the inhibitors of the selected CYP450 subtypes to estimate the properties of the most efficient CYP 
inhibitors and anticipate that avoiding these properties during lead optimization programs may 
reduce antitarget interaction potential of new chemical entities. The LipE profiles were generated by 
subtracting lipophilicity (clogP) from the negative logarithm of potency (pIC50) values against the 
respective CYP isoform (Equation (1)) (Tables S1–S5 in Supplementary Information section). 𝐿𝑖𝑝𝐸 =  𝑝𝐼𝐶ହ଴ − 𝑐𝑙𝑜𝑔𝑃 (1) 

The clogP values were calculated through the Bio-Loom software package [48] using the 
SMILES of the entire data set whereas, the LipE calculations were performed using the Excel 
spreadsheet. 

2.2.2. Ligand Efficiency (LE) 

Ligand efficiency is a measure that quantifies a ligands affinity towards its target and is 
measured by dividing the binding free energy (ΔG) in kcal/mol to the number of heavy atoms (HA) 
[49,50]. The binding free energies (ΔG) were calculated using Equation (2) where, R is the ideal gas 
constant, T is the temperature in Kelvin and Kd is the disassociation constant. A temperature of 310 K 
was used to compute ligand efficiencies in kcal/mol/heavy atom. Additionally, ΔG values for CYP 
inhibitors were computed by substituting the dissociation constant (Kd) with pIC50 values as 
explicated by Hopkins et al. [49] which was also further established by the experimental findings of 
Kuntz et al. [51]. ∆𝐺 =  −𝑅𝑇ln𝐼𝐶ହ଴ (2) 

In order to estimate the binding quality of a compound towards the respective CYP isoforms, 
here ligand efficiency (LE) profiling for the entire inhibitor dataset was performed using Equation 
(3): 𝐿𝐸 =  (∆𝑔)  =  −∆ 𝐺 𝐻𝐴(୬୭୬ି୦୷ୢ୰୭୥ୣ୬ ୟ୲୭୫)⁄  (3) 

ΔG and LE values for inhibitors of each CYP subtype are shown in supplementary information 
section (Tables S1–S5 in Supplementary Information section). The Excel spreadsheet was used to 
perform ligand efficiency calculations. 

2.3. Computation of Physicochemical Properties 

The FAF-Drugs4 [52] server was used for the estimation of physicochemical properties 
including molecular weight (MW), logP, logD (pH7), topological polar surface area (TPSA), 
rotatable bonds, hydrogen bond acceptors (HBAs), hydrogen bond donors (HBDs), number of rings, 
stereocenters, fraction of sp3 carbons (Fsp3) and formal charges of the CYP inhibitors. Additionally, 
the sum of van der Waals (vdW) surface areas (Å2) of hydrogen bond acceptors (vsa_acc) and 
hydrogen bond donors (vsa_don) were also calculated for the inhibitors of each CYP subtype using 
MOE(Molecular Operating Environment) [53]. 

Furthermore, Lipinski’s rule of five [54], the Golden Triangle [55] and the Pfizer’s 3/75 rule [56] 
have also been applied using these physicochemical descriptors to probe inhibition rules for active 
and efficient inhibitors of the respective CYP isoform. 
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2.4. Decision Trees (C4.5 DT) 

The decision trees for the classification of active and inactive inhibitors of CYP1A2, CYP2C9, 
CYP2C19, CYP2D6 and CYP3A4 were built using the complete set of already calculated 
physicochemical descriptors. WEKA software package [57] was used to train decision trees based on 
J48 classifier [58] using 10-fold cross-validation procedure. J48 is one of the most powerful and 
commonly used decision tree classifier that is an improved version of C4.5 algorithm [59]. A J48 
classifier creates a binary decision tree to model the classification procedure based on the 
divide-and-conquer rule [60]. 

2.5. Model Performance Evaluation 

In order to evaluate the overall performance of decision tree models, several parameters 
including accuracy (Equation (4)), sensitivity (Equation (5)) and specificity (Equation (6)) were 
calculated; where accuracy indicates the ratio of correctly categorized occurrences to the total 
number of entities, sensitivity and specificity correspond to the ratio of correctly classified inhibitors 
and correctly predicted noninhibitors, respectively [61]. 

Accuracy = (்௉ ା ்ே)(்௉ ା ்ே ା ி௉ ା ிே) (4) 

Sensitivity = ்௉்௉ ା ிே (5) 

Specificity = ்ே்ே ା ி௉ (6) 

Matthews correlation coefficient (MCC) metric was further used to measure the quality of 
classification model by taking into account the true positive (TP), true negative (TN), false positive 
(FP) and false negative (FN) instances (Equation (7)) [62]. The MCC values usually fall between −1 to 
+1, where ideally, a value of +1 for a classifier is indicative of a good agreement between predicted 
and experimental values of classes [62]. Another index that shows a better evaluation of the models 
predictive power is kappa statistic (Equation (8)), which uses by chance, the expected agreement 
based on the ratio between the classes (Equations (8) and (9)) [63] where 1,0 and −1 indicate perfect 
agreement, no agreement above that expected by chance and complete disagreement, respectively 
[63]. 

MCC = ்௉ × ்ே ି ி௉ × ிே√(்௉ ା ி௉)(்௉ ା ிே)(்ே ା ி௉)(்ே ା ிே) (7) 

Kappa = ୟୡୡ୳୰ୟୡ୷ – ாଵିா  (8) 

where, E is the expected agreement and calculated as follows: 
E = (்ே ା ிே)(்ே ା ி௉)(ி௉ ା ்௉)(ிே ା ்௉)(்௉ ା ி௉ ା ிே ା ்ே)మ  (9) 

Furthermore, area under the curve (AUC) based on the receiver operating characteristic (ROC) 
curve was also calculated to estimate the overall model performance [64]. Overall, the AUC of about 
0.5 corresponds to the expected performance of random selection, whereas a value below 0.5 is 
indicative of inferior performance as compared to random selection [64]. 

3. Results 

3.1. Activity and Efficiency Landscape of the Selected CYP Isoforms Inhibitors 

In order to refine the CYP inhibition rules, inhibitor datasets of the selected CYP isoforms were 
divided in to active, efficient and inactive. The highly efficient inhibitors of CYP subtypes were 
selected on the basis of drug lipophilic and ligand efficiency metrics. 

3.2. Lipophilic Efficiency 

Previously, Leeson and Springthorpe demonstrated a clogP of ~2.5, potency in the range ~1–10 
nM and LipE of ~5–7 or greater as the optimal criteria for an average oral drug against a true target 
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[17]. In the present study, we attempt to apply this concept to a set of antitargets, the cytochrome 
P450 family of enzymes, to further refine the respective inhibition rules. The clogP and LipE 
distribution for the inhibitors of the selected CYP isoforms shows that a greater percentage of CYP 
inhibitors are highly lipophilic with clogP values from 2.0–7.0 and LipE values from 0.0–5.0 (Figures 
3a,b). 

 

 

Figure 3. (a) Distribution of clogP and (b) Lipophilic efficiency (LipE) values for each class of 
Cytochrome P450 inhibitors (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4). 

Further evaluation of these parameters against selected CYP450 isoforms revealed that LipE 
values of CYP1A2 inhibitors data set (612 compounds) vary from −5.47–7.06 with inhibitory potency 
(IC50) and clogP values in the range 0.0027–100 µM and −1.81–9.84, respectively, as shown in 
Supplementary Information Table S1. Majority of the CYP1A2 inhibitors (75.5%) displayed positive 
LipE values (LipE ≥ 0) while 24.67% inhibitors exhibit negative LipE values (LipE < 0) which might 
be due to their low IC50 or very high clogP values (Figure 4a and Table S1). Considering 13 
compounds having LipE ≥5, only dehydroevidiamine showed a LipE ≥5 due to negative clogP 
(−1.81) and activity value of 5.63 µM. However, the remaining 12 CYP1A2 inhibitors including a 
neuroprotective voltage-dependent sodium channel modulator 
(5-(1-benzyl-1H-indazol-3-yl)-1,2,4-oxadiazol-3-yl) [65] and a photoactive agent methoxsalen [66,67] 
satisfy the efficiency thresholds established by Leeson and Springthorpe [17] for true therapeutic 
targets and therefore, represent a set of highly efficient (prone to drug–drug interaction) CYP1A2 
inhibitors in terms of activity and lipophilicity as shown in Figure 4a and highlighted in Table S1. 
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Figure 4. LipE profiling of (a) CYP1A2, (b) CYP2C9, (c) CYP2C19, (d) CYP2D6 and (e) CYP3A4 
inhibitors, where clogP is plotted against the activity (pIC50). The cytochrome P450 inhibitors 
fulfilling Leeson and Springthorpe criteria (LipE of ~5–7) and clogP ~1–3 are highlighted (red color) 
in the plot for each CYP isoform. 

Similarly, LipE values of 1341 inhibitors of CYP2C9 vary from −9.5–7.87. About 25% CYP2C9 
inhibitors displayed negative LipE values of <0 and 75% CYP2C9 inhibitors showed positive LipE 
values of ≥ 0 as shown in Table S2. Overall,20 inhibitors of CYP2C9 exhibited LipE ≥5, clogP and IC50 

values in the ranges −3.77–2.4 and 0.007–79.5 µM, respectively. Six CYP2C9 inhibitors 
(CHEMBL179399, CHEMBL2419525, CHEMBL2419524, CHEMBL2069801, CHEMBL511410 and 
CHEMBL2419516) showed a LipE ≥ 5 due to negative clogP values (−3.77 to −0.15). However, only 14 
CYP2C9 inhibitors displayed high LipE (≥5) due to positive clogP values (Table S2 (lilac)). These 
include one c-Jun N-terminal kinase (JNK) inhibitor [68] and seven other inhibitors from ChEMBL 
database (CHEMBL2425651, CHEMBL2419505, CHEMBL2393185, CHEMBL2419515, 
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CHEMBL484345, CHEMBL2391567 and CHEMBL2393188) that show an overall balance of LipE (≥5), 
clogP (1.05–2.4) and activity values (IC50 = 0.0078–0.149 µM) against CYP2C9 (Figure 4b). These 
compounds are categorized as efficient inhibitors of CYP2C9 and highlighted in Figure 4b (red). 

Additionally, for 651 CYP2C19 inhibitors, LipE values between −9.2–6.15, clogP in the range of 
−1.15–14.36 and IC50 between 0.007–100 µM were observed (Supplementary Information Table S3). 
Similar to CYP1A2 and CYP2C9 inhibitors, less number (26%) of CYP2C19 inhibitors were identified 
with negative LipE values (< 0) and a greater number (74%) of inhibitors with positive LipE values 
(≥0). Only two compounds (CHEMBL2069802 and CHEMBL2069801) with negative clogP (−1.15 to 
−0.15) and IC50 values between 1.3–9.8 µM showed LipE values ≥ 6. However, five CYP2C19 
inhibitors with positive clogP values (0.8–1.73) including CHEMBL2170635, CHEMBL3110021, 
CHEMBL1089, CHEMBL1672632 and CHEMBL2036220 were identified with LipE ≥ 5 and IC50 
values in the range 0.06–1 µM, respectively, as highlighted red in Figure 4c. Therefore, these 
epitomize a set of highly efficient CYP2C19 inhibitors with balanced activity and lipophilicity. 

Similarly, for 1647 CYP2D6 inhibitors,83% of the data displayed positive LipE (≥ 0) and the 
remaining 17% displayed negative LipE (< 0) values (Supplementary Information Table S4 and 
Figure 4d). Thirty compounds presented a LipE ≥ 5 with clogP and IC50 values falling in the range 
−1.32–10.56 and 0.000045–94.3 µM, respectively. Amongst these, seven compounds with negative 
clogP (−1.32 to −0.15) and 23 inhibitors with positive clogP (0.04–5.11) exhibited higher LipE values 
(≥ 5) (Table S4 (lilac)). However, eight CYP2D6 inhibitors with LipE ≥ 5 including Yohimbine (an 
alpha-2 adrenergic receptor blocker) [69,70], Quinidine (class I antiarrhythmic agent) [71] and a κ 
opioid receptor agonist [72] derived from drug compound ICI 199441 [73] displayed a balance of 
clogP (1.88–2.79) and potency (0.00126–0.11 µM) values as shown in Figure 4d (red points) and thus, 
represent the highly efficient inhibitors of CYP2D6. 

Nevertheless,2747 CYP3A4 inhibitors with LipE, clogP and IC50 values in the range −9.17–8.5, 
−1.55–14.36 and 0.00001–100 µM, respectively, were observed as shown in Supplementary 
Information Table S5. Amongst these,2304 (84%) compounds were identified with positive LipE 
values however, remaining 443 (16%) presented negative LipE values (Table S4 and Figure 4e). 
Overall, a total of 53 compounds showed LipE values ≥ 5 including 43 inhibitors with positive clogP 
(0.2–4.25) and ten showing negative clogP values (−1.55 to −0.12). Out of these 43 inhibitors of 
CYP3A4, only 17 compounds including five N-hydroxyformamide inhibitors used for treating 
osteoarthritis [74], four insulin-like growth factor 1 kinase (IGF-IR) inhibitors [75] and one 
antibacterial benzothiazole that inhibits Staphylococcus aureus cell division [72] fulfilled the efficiency 
criteria (LipE ≥ 5) exhibiting clogP and potency values within 1.24–2.93 and 0.0001–0.088 µM, 
respectively (Figure 4e). The mean values and ranges of IC50, clogP and LipE for all inhibitors and 
highly efficient inhibitors against each CYP subtype are presented in Table 1. 
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Table 1: The summary of IC50, clogP, LipE, heavy atom (HA) and ligand efficiency (LE) ranges for all inhibitors and highly efficient inhibitors of CYP1A2, CYP2C9, 
CYP2C19, CYP2D6 and CYP3A4 that fulfill the efficiency criteria of clogP ~1.0–3.0, LipE ≥ 5 and LE ≥ 0.29. 

CYP 
Isoform 

No. of 
Compounds 

IC50 µM 
Range 

clogP 
Range 

Max 
clogP 
Range 

Mean 
clogP 

LipE  LE  

Whole Data Set of CYP 
Inhibitors 

CYP Inhibitors Fulfilling 
Efficiency Criteria (clogP ~1–3, 

LipE ≥ 5, LE ≥ 0.29) 
Whole Data Set of CYP Inhibitors 

CYP Inhibitors Fulfilling 
Efficiency Criteria (clogP 
~1–3, LipE ≥ 5, LE ≥ 0.29) 

LipE 
Range 

Max 
LipE 

Range 

Mean 
LipE  

No. of 
Comps 

Mean 
clogP 

Mean 
LipE 

HA 
Count 
Range 

Max HA 
Count 
Range 

Mean 
HA 

Count 

LE 
Range 

Max LE 
Range 

Mean 
LE Mean HA Mean LE 

CYP1A2 612 0.0027–100 
−1.81–
9.84 

4–5 4.05 
−5.47–
7.06 

1–2 1.38 9 2.16 5.39 8–122 20–30 25 
0.069–

0.90 
0.2–0.3 0.35 19 0.52 

CYP2C9 1341 0.0005–100 
−3.77–
14.36 

3–4 4.17 
−9.95–
7.87 

<0,1–2 1.17 8 1.72 5.56 8–122 30–40 31 
0.0168–

0.92 
0.2–0.3 0.26 27 0.38 

CYP2C19 651 0.007–100 
−1.15–
14.36 

3–4 4.20 
−9.21–
6.16 

1–2 1.08 4 1.43 5.41 8–92 20–30 29 
0.075–

0.93 
0.2–0.3 0.29 23 0.49 

CYP2D6 1647 0.000045–
100 

−1.32–
10.56 

3–4 3.89 −5.32–
8.14 

2–3 1.58 8 2.36 5.48 8–64 20–30 29 0.112–
0.98 

0.2–0.3 0.29 28 0.41 

CYP3A4 2747 0.0001–100 
−1.55–
14.36 3–4 3.96 

−9.17–
8.49 2–3 1.61 17 2.28 6.02 8–92 30–40 33 

0.065–
1.07 0.2–0.3 0.25 34 0.36 
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3.3. Ligand Efficiency 

To gain insight into the highly efficient inhibitors of the selected CYP450 isoforms in terms of 
binding free energy with the respective enzyme, we computed the ligand efficiency (LE) metric for 
the entire inhibitor dataset as outlined in the Materials and Method section. For our dataset of CYP 
inhibitors, a greater percentage (97.9%) of inhibitors displayed heavy atom count (HA) from 10–50 
with LE values from 0.1–0.5 (kcal/mol/heavy atom) as shown by distribution plots in Figures 5a,b. 
Generally, LE values for the entire CYP inhibitor data set vary from 0.016–1.07 kcal/mol/heavy atom 
(Table 1 and Tables S1–S5). It is evident that out of the total data, about 365 CYP1A2,361 CYP2C9,236 
CYP2C19,739 CYP2D6 and 675 CYP3A4 inhibitors showed LE within the range of already 
established threshold (≥ 0.29 kcal/mol/heavy atom) for optimal binding with true therapeutic target, 
which may reflect an optimal fit inside the respective binding site [49]. Therefore, in the present 
study, compounds having LE ≥ 0.29 kcal/mol/heavy atom along with LipE ≥ 5 and clogP ~1.0–3.0 
were classified as the highly efficient inhibitors of the respective CYP subtype. The overall ranges 
and mean values of LE and HA for the entire set of inhibitors as well as for the most efficient 
inhibitors against each CYP subtype are shown in Table 1. However, the absolute LE, HA count and 
ΔG values of the inhibitors of CYP1A2,2C9,2C19,2D6 and 3A4 are presented in Tables S1–S5 
respectively. 

 

 

Figure 5. (a) Distribution of heavy atom count and (b) LE values for each class of cytochrome P450 
inhibitors including CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4. 
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3.5. Physicochemical Properties 

The physicochemical properties associated with chemical compounds might influence the 
overall efficacy, metabolism and safety profiles. Therefore, various studies elucidating the 
relationships between potency, ADME and physicochemical properties of chemical entities have 
been reported in literature [17,76–79]. For various classes of compounds, a better understanding of 
the physicochemical properties might assist in differentiating target families and ultimately 
avoiding the undesirable binding to off-targets. Additionally, it may also contribute towards the 
design of compounds capable of binding to multiple biological targets which might prove beneficial 
for the treatment of complex disease conditions [80]. Here, physicochemical properties including 
MW, logP, logD, TPSA, rotatable bond, HBDs and HBAs, vsa_acc, vsa_don, rings, number of 
stereocenters, fraction of sp3 carbons (Fsp3) and the formal charges have been computed to probe 
the general and specific properties of CYP inhibitors across various classes and activity levels. 

Additionally, the two most important applications of physicochemical parameters to assess 
drug-likeness are the well-known Lipinski’s rule of five (RO5) [54] and the Golden Triangle rule [55] 
that were originally proposed by taking into account the properties of successful drug compounds of 
that time. The application of these rules to true therapeutic targets has been extensively reported in 
literature [81–85]. However, here we have monitored the RO5 and Golden Triangle violations for the 
inhibitors of antitargets, the cytochrome P450 family of enzymes. 

The physicochemical properties of oral drugs reaching clinical phase II were estimated by 
Lipinski et al. to frame the well-known rule of five, indicating that a logP ≤ 5, MW ≤ 500, HBAs (O + 
N atom count) ≤ 10 and HBDs (OH + NH count) ≤ 5 is necessary for absorption or permeation [54]. 
Considering the trends of these important descriptors across the family of CYP inhibitors it is 
notable that the CYP3A4 inhibitors show the highest mean (466.29) and median (455.63) molecular 
weights with 95% percentile of 677.69 (Table 2) which is well explicated by the fact that CYP3A4 
accommodates large and structurally diverse compounds due its promiscuous binding site [86]. 
Similarly, the highly efficient CYP3A4 inhibitors with optimal LipE and LE values show the highest 
mean and median MW (M: 482.46, Mdn: 493.99) in comparison to the highly efficient inhibitors of 
the remaining CYP isoforms in the data set. Overall, CYP1A2 inhibitors including those fulfilling the 
efficiency criteria display the lowest mean and median MW (all inhibitors M: 345.14, Mdn: 330.37, 
efficient inhibitors M: 294.18, Mdn: 288.3) as compared to other CYP isoforms which expounds the 
fact that molecular planarity with a small volume to surface ratio may favor CYP1A2 inhibition [11]. 
For the analysis of molecular weight property for other CYP isoforms, refer to Table 2 and Table S6. 
The 95% confidence intervals (CI) for the difference between calculated property means were also 
computed for all datasets (Table S6). 
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Table 2: The range (R), mean (M), standard error of mean (SEM), median (Mdn) and 95% percentile (P) values for physicochemical parameters of all inhibitors and 
highly efficient inhibitors of CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4. TPSA: Topological polar surface area; HBAs: Hydrogen bond acceptors; HBDs: 
Hydrogen bond donors; Fsp3: Fraction of sp3 carbons; Vsa_acc: Sum of van der Waals (vdW) surface areas (Å2) of Hydrogen bond acceptors; Vsa_don: Sum of van 
der Waals (vdW) surface areas (Å2) of Hydrogen bond donors; MW: Molecular weight. 

Physicochemica
l Properties 

CYP1A2 CYP2C9 CYP2C19 

All CYP Inhibitors 
CYP Inhibitors Fulfilling 

Efficiency Criteria (clogP ~1–
3, LipE ≥ 5, LE ≥ 0.29) 

All CYP Inhibitors 
CYP Inhibitors Fulfilling 

Efficiency Criteria (clogP ~1–3, 
LipE ≥ 5, LE ≥ 0.29) 

All CYP Inhibitors 

CYP Inhibitors 
Fulfilling Efficiency 
Criteria (clogP ~1–3, 
LipE ≥ 5, LE ≥ 0.29) 

R M SEM Mdn P R M SEM Mdn R M SEM Mdn P R M SEM Mdn R M SEM Mdn P R M SEM Mdn 

MW 108.14–
742.9 

345.14 4.70 330.37 529.08 
195.22
–423.5 

294.18 22.27 288.3 
108.1–
1321.8 

434.5 3.23 423.5 615.57 
310.35–
457.5 

382.56 15.22 384.9 
136.19

–
1321.8 

404.1 4.67 
400.3

 
400.4 

136.19–
414.90 

319.8 64.95361.9 

logP 0.36–
10.50 

3.77 0.056 3.75 6.10 
0.88–
3.47 

2.18 0.28 2.08 0.13–10.5 4.03 0.04 3.90 6.72 0.13–2.77 1.69 0.29 1.67 
0.36–
8.44 

3.94 0.05 3.88 6.10 
1.16–
2.56 

1.99 0.31 2.12 

logD (pH7) −1.32–
10.72 3.31 0.062 3.32 5.81 

0.57–
3.45 2.15 0.31 2.20 −3.35–10.72 3.09 0.04 3.08 5.78 0.05–2.31 1.41 0.29 1.53 

−1.87–
8.43 3.18 0.06 3.14 5.68 

0.16–
2.08 1.30 0.42 1.48 

logS −9.37 to 
−4.71 

−4.34 0.04 −4.22 −2.69 
−4.11 

to 
−2.78 

−3.26 0.16 −3.1 
−12.16 to 
−1.42 

−4.91 0.037 −4.85 −2.88 
−4.07 to 
−2.18 

−3.26 0.19 −3.35 
−8.90–
−1.42 

−4.69 0.048 −4.69 −2.78 
−3.9 to 
−1.42 

−3.02 0.55 −3.39 

TPSA 0–
777.98 

63.36 1.724 61.16 115.53 32.86–
112.25 

70.19 8.36 65.09 4.44–328.77 87.56 0.98 87.05 
 

144.6 87.75–
117.08 

102.76 3.83 104.8 4.44–
328.77 

78.23 1.46 72.36136.27 38.05–
117.1 

85.67 
 

18.4093.77 

Rotatable bonds 0–31 4.36 0.11 4 9 0–5 2 0.75 1 0–31 5.98 0.076 6 11 3–5 4.13 0.23 4 0–20 5.55 0.11 5 10 3–6 4.5 0.65 4.5 
HBDs 0–25 1.32 0.064 1 4 0–2 1.33 0.29 2 0–25 1.69 0.038 1 4 1–3 2 0.27 2 0–6 1.60 0.049 1 4 1–4 2.5 0.65 2.5 
HBAs 0–36 4.49 0.10 4 8 2–9 5 0.65 5 1–36 6.16 0.068 6 10 6–8 7.25 0.25 7 1–25 5.54 0.10 5 10 2–8 5.5 1.32 6 

HBDs + HBAs 0–16 5.82 0.15 6 12 3–11 6.33 0.82 6 1–11 7.85 0.09 8 13 7–10 9.25 0.45 9.5 1–31 7.14 0.13 7 13 5–11 8 1.29 8 

Vsa_acc 0–38.10 16.95 0.56 13.87 40.54 
11.36–
58.50 

28.96 5.56 25.99 0–149.2 30.68 0.57 27.1 68.30 33.95–56.95 50.83 2.66 52.5 
0–

149.2 
25.74 0.71 26.09 54.58 0–58.74 32.86 10.8632.81 

Vsa_don 0–35.48 3.72 0.25 0 17.05 0–17.7 5.13 2.26 0 0–43.5 6.73 0.21 5.68 23.4 5.68–11.36 8.52 1.07 8.52 
0–

41.17 6.39 0.31 5.68 23.43 0–23.43 6.86 4.646 0 

Rings 0–6 2.51 0.038 2 4 1–3 2 0.33 2 1–11 3.16 0.026 3 5 2–3 2.88 0.12 3 1–6 2.98 0.038 
 

3 5 1–4 2.75 0.63 3 

Stereocenters 0–7 0.33 0.028 0 2 0–1 0.11 0.11 0 0–15 0.79 0.037 0 3 0–2 0.24 0.32 0 0–15 0.76 0.059 0 3 0–3 1 0.71 0.5 
Fsp3 0–1 0.23 0.006 0.22 0.46 0–0.33 0.093 0.035 0.08 0–1 0.28 0.004 0.28 0.52 0.06–0.39 0.24 0.04 0.24 0–1 0.29 0.006 0.28 0.63 0.16–0.3 0.233 0.02 0.235 

Formal Charges 
(pH7) 

−1–1 0.13 0.018 0 1 0–1 0.22 0.147 0 2 to −2 −0.02 0.016 0 1 0–2 0.12 0.12 0 −1–2 0.41 0.02 0 1 −1–0 −0.25 0.25 0 

Physicochemica
l Properties 

CYP2D6 CYP3A4          

All CYP Inhibitors 
CYP Inhibitors Fulfilling 

Efficiency Criteria (clogP ~1–
3, LipE ≥ 5, LE ≥ 0.29) 

All CYP Inhibitors 
CYP Inhibitors Fulfilling 

Efficiency Criteria (clogP ~1–3, 
LipE ≥ 5, LE ≥ 0.29) 

         

R M SEM Mdn P R M SEM Mdn R M SEM Mdn P R M SEM Mdn          
MW 108.1– 400.2 2.72 386.4 585.3 324.4– 381.5 16.73 369.95 108.1–677.7 466.29 2.32 455.6 677.7 284.3–604.1 482.5 21.59 493.99          
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917.1 459.6 

logP −1.27–
9.77 

3.67 0.032 3.61 5.91 
1.54–
3.44 

2.56 0.20 2.71 −1.29–9.63 3.80 0.027 3.7 6.38 0.97–3.58 2.57 0.19 2.83          

logD (pH7) 
−4.48–
10.07 

2.24 0.042 2.14 5.11 
−0.69–
2.06 

0.57 0.33 0.41 −3.12–9.24 2.88 0.03 2.89 5.46 −2.12–3.49 1.38 0.35 1.69          

logS −8.48 to 
−0.34 

−4.45 0.028 −4.37 −2.83 
−3.91 

to 
−3.12 

−3.56 0.097 −3.6 −8.98 to 
−1.06 

−4.90 0.02 −4.82 −3.04 −5.36 to 
−2.74 

−4.19 0.19 −4.57          

TPSA 
4.44–
63.25 69.91 0.87 63.25 133.3 

46.8–
108.8 77.58 9.30 76.48 4.44–377.42 90.99 0.73 87.32 161.99 

71.62–
214.76 117.0 6.92 115.32          

Rotatable bonds 0–20 5.82 0.07 5 11 2–9 6.38 1.13 6.5 0–21 6.78 0.07 6 14 2–19 7.29 0.89 7          
HBDs 0–8 1.52 0.03 1 4 1–4 2.38 0.32 2 0–14 1.81 0.026 2 4 1–5 2.82 0.39 3          
HBAs 0–17 5.18 0.059 5 9 4–8 5.5 0.5 5 0–27 6.74 0.049 7 11 4–13 8.18 0.49 9          

HBDs + HBAs 0–22 6.69 0.078 6 12 5–11 7.88 0.72 7.5 1–38 8.54 0.065 8 14 6–15 11 0.67 10          

Vsa_acc 0–2.58 21.60 0.41 19.25 49.76 
2.5–
48.09 

18.76 5.16 13.57 0–149.2 29.45 0.31 29.58 0.31 13.57–65.6 33.6 4.88 27.1          

Vsa_don 0–3.23 4.9 0.18 0 17.74 0–1.37 5.27 1.72 5.68 0–48.5 6.34 0.149 5.68 0.14 0–23.4 6.99 1.66 5.68          
Rings 1–8 3.01 0.025 3 5 1–3 2 0.27 2 1–7 3.40 0.018 3 5 2–5 3.41 0.24 3          

Stereocenters 0–24 1.32 0.035 1 3 1–6 2.5 0.71 1.5 0–18 1.37 0.036 1 4 0–3 1.58 0.24 2          

Fsp3 0–1 0.37 0.004 0.37 0.61 
0.35–
0.57 

0.43 0.02 0.42 0–1 0.34 0.003 0.33 0.63 0.07–0.55 0.33 0.03 0.36          

Formal Charges 
(pH7) 

−2–2 0.67 0.014 1 1 0–2 0.88 0.25 1 −2–2 0.32 0.011 0 1 −2–1 0.12 0.17 0          
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An important component of the RO5 is lipophilicity, which is a major contributing factor in several 
ADMET parameters as well as potency. A higher lipophilicity-associated with the chemical entities might 
lead to unsuitable metabolism and solubility, whereas reduced permeability might be an outcome of lower 
lipophilicity [87]. Specifically, for the CYP family of enzymes, lipophilicity is crucial for determining 
binding affinity of a compound and selectivity towards the specific CYP isoforms [88]. Previously, various 
in silico models based on logP/logD, hydrogen bonding potential or polar surface area for the prediction of 
ADME and efficiency have been reported in literature [89–91]. Herein, the lipophilicity values 
characterized by computed logP and logD were compiled for each CYP subtype, showing that overall CYP 
inhibitors of the selected subtypes are highly lipophilic. This clearly indicates the inherent affinity of 
cytochrome P450 family of enzymes for lipophilic compounds [12–14]. From our datasets the highest 
mean/median logP values are shown by CYP2C9 (M: 4.03/Mdn: 3.9) and CYP2C19 (M: 3.9/Mdn: 3.88) 
inhibitors. Whereas, the highly efficient inhibitors of each CYP subtype show mean/median logP values of 
~2.5 (Table 1). Moreover, in comparison to all other CYP inhibitor datasets, the lowest mean/median logD 
values were displayed by CYP2D6 inhibitors (M: 2.24/Mdn: 2.135) as shown in Table 2. Briefly, these are 
basic compounds with positive charge on nitrogen [36]. Thus, CYP2D6 inhibitors might show lower logD 

values due to lower partitioning of the protonated amines at pH 7.4 into the organic phase [92]. Similarly, 
the lowest mean/median logD (M: 0.57/Mdn: 0.405) values were shown by highly efficient CYP2D6 
inhibitors. 

CYP-family-based property analysis of inhibitors, in terms of hydrogen bonding potential (HBA and 
HBD), was also performed. It is well explicated that the overall shape and flexibility along with molecular 
size, compound lipophilicity and hydrogen bonding potential are of extreme importance for the estimation 
of permeability of chemical entities [93]. Therefore, all these parameters were also assessed for the selected 
CYP inhibitor datasets (Table 2, Table S6). We observed mean hydrogen bond donor (HBD) values within 1 
to 2 for all inhibitors and 1 to 3 for the highly efficient inhibitors of each CYP subtype (Table 2). The highest 
mean/median hydrogen bond acceptor (HBA) values were shown by all CYP3A4 inhibitors (M: 6.7/Mdn: 
7), including highly efficient inhibitors of CYP3A4 (M: 8/Mdn: 9), which can be explained by the fact that 
CYP3A4 inhibitors exhibit high molecular weight that ultimately increases the atom count, thus 
subsequently increasing the hydrogen bonding potential. In contrast, the lowest mean/median values of 
HBA count was shown by all CYP1A2 inhibitors (M: 4/Mdn: 4) mainly due to planar aromatic compounds 
with small volume to surface ratio [94]. A similar trend in HBA count was observed for the highly efficient 
inhibitors of CYP1A2 (M: 5/Mdn: 5) (Table 2). 

Figure 6 represents the overall Lipinski’s violations for each CYP inhibitor dataset. Overall, greater 
number of CYP1A2 inhibitors (81.37%) do not violate the RO5 followed by inhibitors of CYP2D6 (74.32%), 
CYP2C19 (70.20%), CYP2C9 inhibitors (64.50%) with only 57.26% CYP3A4 inhibitors as shown in Figure 6. 
Various studies elucidating the relationships between CYP enzymes and calculated properties have been 
reported extensively in literature, however, the CYP inhibition is of utmost concern in terms of RO5 
violations [15,55,95,96]. The RO5 guidelines are based on molecular properties and, therefore, do not take 
into account the affinity of a ligand towards its particular target [97]. Thus, RO5 is a simplistic criteria 
solely based on molecular properties that does not consider a ligands affinity towards its target [97] and 
safety profiling. Therefore, majority of the CYP inhibitors from our dataset showing drug-like properties 
(no RO5 violations) also show greater chances of toxicological outcomes due to the inhibition of CYP 
isoforms. 
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Figure 6. The bar chart distribution showing the number of Lipinski’s violations (RO5) against CYP 
inhibitor datasets. The most commonly violated RO5 descriptor pairs for each CYP subtype including logP, 
MW and HBA have also been labelled. For each data set bars are color-coded according to the number of 
RO5 violations, where 0 indicates no violation and 1,2 and ≥ 3 show one, two and three or more RO5 
violations, respectively. 

Interestingly, the greatest numbers of RO5 violations were observed for logP and MW descriptors 
which can be explained by the fact that CYP inhibitors are larger and highly lipophilic in nature. Generally, 
for the two most important RO5 descriptors (logP and MW) it is shown that an increased lipophilicity 
(logP) is associated to target promiscuity and toxicity, whereas an increased MW leads to decreased 
promiscuity [17,96,98,99]. It is also well explicated that highly lipophilic compounds show a greater 
potential for hERG and CYP inhibition which clearly explains the trend observed for highest RO5 logP 
violations in our dataset [15,87]. However, CYP3A4 inhibition has also been correlated to increased MW 
and lipophilicity with decreased Fsp3 which might lead to potential drug–drug interactions and clearance 
issues [15,55,95,96]. This is also depicted by the greatest RO5 MW and logP violations for CYP3A4 
inhibitors from our data set (Figure 6). 

Moreover, the Golden Triangle hypothesis was originally proposed by Johnson et al. that aids the 
selection of molecules with better permeability, metabolic stability and improved potency by 
simultaneously optimizing the overall absorption and clearance of chemical entities. Principally, in vitro 
permeability (Caco-2 cells: 16,227 compounds) and metabolic data (human liver microsomes (HLM): 47,018 
compounds) were used for analysis with physicochemical properties including MW and logD, where a 
positive correlation was observed between logD and permeability at a given MW. However, for metabolic 
clearance, a negative correlation was observed with logD and MW. Therefore, the combination of 
permeability and HLM data were used to define favorable thresholds with baseline logD ranging from 
−2.0–5.0 at MW of 200 Da and an apex at logD 1.0–2.0 and MW of 450 Da for compounds with better 
permeability and metabolic stability properties [55]. Since the logD and MW parameters are also closely 
related to LipE, LE and lipophilic metabolic efficiency (LipMetE) parameters, therefore, the Golden 
Triangle can be effectively used by designing leads against true therapeutic targets with optimal LipE, LE 
and LipMetE into the center of Golden Triangle to provide better potency, absorption/permeability, 
metabolic stability and suitable clearance properties for new chemical entities [55]. 

Herein, the logD and MW properties have been calculated for our antitarget inhibitor datasets 
(selected CYP450 isoforms). The highly lipophilic CYP inhibitors lying outside the Golden Triangle fail to 
display better permeability and show low in vitro clearance and, thus, represent poor pharmacokinetics. 
The CYP inhibitors from our datasets with high MW and lower logD values do not lie with the Golden 
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Triangle mainly due to low permeability, whereas a greater number of highly lipophilic CYP inhibitors 
with high MW lie outside this region due to higher in vitro clearance. Ideally, while screening against an 
antitarget (toxicity prediction), compounds within the Golden Triangle represent safer chemical entities 
while the ones lying outside this region represent more notorious compounds due to poor absorption and 
permeability properties. However, for our datasets, the highest number of CYP1A2 (70.75%) and the 
lowest number of CYP3A4 (44.70%) inhibitors were observed within the Golden Triangle region mainly 
due to high MW and highly lipophilicity. Moreover, a better prevalence of inhibitors within the Golden 
Triangle has also been observed for CYP2D6 (66.48%), CYP2C19 (62.52%) and CYP2C9 (52.57%). It is also 
observed that the majority of the highly efficient inhibitors of each CYP subtype also lie within this 
window mainly due to the fulfillment of the efficiency criteria (clogP ~1.0–3.0, LipE ≥ 5, LE ≥ 0.29, MW ≤ 
500) (Figures 7a–e). Overall, the presence of most efficient, as well as highly active, inhibitors of CYP 
isoforms (toxic) within the Golden Triangle indicates that majority of the CYP inhibitors show properties of 
safer compounds but still they are notorious and show a greater degree of CYP inhibition potential. 

 
Figure 7. Golden Triangle rule positioning of (a) CYP1A2 inhibitors, (b) CYP2C9 inhibitors, (c) CYP2C19 
inhibitors, (d) CYP2D6 inhibitors and (e) CYP3A4 inhibitors. Here, all compounds are denoted by blue 
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points, whereas highly efficient inhibitors are shown by red points. The compounds located in the Golden 
Triangle show a greater likelihood of an optimal permeability, low clearance and a better metabolic stability. 

The 3/75 rule is yet another important rule introduced by Pfizer that takes in account physicochemical 
properties and is mainly based on the observation that at a plasma concentration < 10 µM (Cmax), a logP > 
3 and TPSA < 75Å2 leads to a greater possibility of adverse and toxicological outcomes [56]. TPSA is an 
important physicochemical parameter related to hydrogen bonding that shows the sum of surfaces of all 
polar atoms (mainly oxygen and nitrogen) and is frequently used for the assessment of oral bioavailability 
and permeability [96,100]. Moreover, an increasing trend in TPSA values is indicative of reduced 
permeability and the overall bioavailability [100]. The trends of TPSA for our datasets were also monitored 
across various classes and activity levels and are shown in Table 2. 

Additionally, the Pfizer 3/75 rule was also applied to all inhibitor datasets and the greatest number of 
CYP1A2 inhibitors (54.24%) followed by 46.1% CYP2D6,44.4% CYP2C19,34.5% CYP2C9 and 29% CYP3A4 
inhibitors were observed in the pink region, indicating a greater likelihood to cause toxicity and 
experimental promiscuity (Figures 8a–e). A compound with clogP > 3 and TPSA < 75 is observed within the 
unacceptable region indicated by pink whereas, a chemical entity with clogP < 3 and TPSA > 75 defines the 
acceptable region of safety (green region). Similar to the Golden Triangle results, a substantial number of 
CYP inhibitors, including the highly efficient inhibitors, reside outside the pink region but still they are 
capable of causing toxicological outcomes mediated by CYP inhibition. Therefore, there is an earnest need 
to assess the physicochemical property trends of CYP inhibitors and noninhibitors at different 
classification levels and to construct highly accurate predictive models for the safety profiling. 

  

(a) (b) 

  

(c) (d) 
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(e) 

Figure 8. Pfizer 3/75 rule positioning of (a) CYP1A2 inhibitors, (b) CYP2C9 inhibitors, (c) CYP2C19 
inhibitors, (d) CYP2D6 inhibitors and (e) CYP3A4 inhibitors. Here, all compounds are denoted by blue 
points and highly efficient inhibitors of CYP isoforms are shown by red points. The compounds located in 
the pink square show a greater likelihood to cause toxicity and experimental promiscuity. 

Other important descriptors encoding molecular flexibility of CYP inhibitors were also assessed by 
the number of rings, rotatable bonds, stereocenters and the fraction of sp3 hybridized carbons (Fsp3) since 
it plays an influential role in determining the overall permeability, bioavailability and promiscuity against 
a particular target [95,101]. Overall, an increased risk of hERG toxicity and CYP inhibition has also been 
associated with an aromatic ring count greater than three [101,102]. Therefore, higher ring counts (between 
0 to 7) were shown by all inhibitors and highly efficient inhibitors of CYPs and no significant variations 
were observed in the mean/median ranges as shown in Table 2. Additionally, the greatest molecular 
flexibility in terms of rotatable bonds was shown by all CYP3A4 inhibitors, including highly efficient 
CYP3A4 inhibitors and the lowest being shown by CYP1A2 inhibitors which correlates with the molecular 
planarity of CYP1A2 inhibitors [36]. For a detailed analysis of the calculated properties of all classes of 
inhibitors (all/highly efficient) against each CYP isoform, refer to Table 2. 

4. Decision Trees 

In the current study, predictive decision tree models were obtained with HBD_HBA count, sCenters, 
number of rings, HBAs, HBDs, total charge, molecular weight, logD, logP and vsa_acc. The values of 
selected descriptors for active, efficient and inactive compounds against each CYP subtype are 
summarized in Table 3. The statistical parameters of each model are shown in Table 4. 

Table 3. The relevant set of descriptors for each CYP inhibition decision tree classifier along with the 
description, average values of selected descriptors for active, efficient and inactive inhibitors against each 
CYP isoform are presented. 

CYP 
Isoform Description Descriptors 

Selected 
Mean Values 

(All Data) 

Mean Values 

Actives Efficient Inactives 

CYP1A2 

Hydrogen bond acceptor and donor count HBD_HBA 5.82 5.65 6.33 7.83 
Number of Stereocenters sCenters 0.33 0.30 0.11 0.80 

Hydrogen bond acceptors HBA 4.49 4.39 5 5.78 

Molecular weight in atomic mass units 
Molecular 

Weight 345.14 338.84 294.18 422.65 

CYP2C9 
Molecular weight in atomic mass units 

Molecular 
Weight 434.46 435.23 382.56 380.40 

Hydrogen bond donors HBD 1.688 1.68 2 1.82 
Log of the distribution coefficient logD 3.09 3.12 1.41 2.68 
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CYP2D6 

Total charge T_charge 0.67 0.69 0.875 0.29 
Hydrogen bond donors HBD 1.52 1.509 2.38 1.66 

Hydrogen bond acceptors HBA 5.17 5.17 5.5 5.33 
Number of rings Rings 2.99 3.011 2 2.68 

Number of Stereocenters sCenters 1.32 1.33 2.5 1.15 

Molecular weight in atomic mass units 
Molecular 

Weight 
399.98 400.19 381.49 395.50 

Log of the octanol/water partition coefficient logP (o/w) 3.68 3.69 2.56 3.61 

CYP3A4 
Molecular weight in atomic mass units Molecular 

Weight 
467.96 470.86 482.47 395.78 

Approximation to the sum of vdW surface areas (Å2) of 
pure hydrogen bond acceptors vsa_acc 29.45 29.65 33.61 24.25 

Table 4. The model evaluation parameters for the inhibitor-based decision tree classifiers of CYP1A2, 
CYP2C9, CYP2C19, CYP2D6 and CYP3A4. MCC: Matthews correlation coefficient; AUC: Area under the 
curve. 

 Training Set 10-Fold Cross Validation 
CYP 

Subtype 
Accuracy 

% 
Sensitivity 

% 
Specificity 

% MCC Kappa 
Statistic AUC Accuracy 

% 
Sensitivity 

% 
Specificity 

% MCC Kappa 
Statistic AUC 

CYP1A2 94.43 94.6 87.50 0.50 0.43 0.68 93.11 94.09 61.11 0.35 0.315 0.64 
CYP2C9 96.01 95.98 100.0 0.37 0.25 0.59 95.40 95.81 53.85 0.232 0.1733 0.502 
CYP2D6 96.49 96.63 86.36 0.46 0.39 0.78 95.07 95.77 29.41 0.124 0.10 0.589 
CYP3A4 95.81 96.69 64 0.299 0.233 0.579 96.18 96.48 52.63 0.211 0.15 0.543 

A decision tree model for the classification of CYP1A2 inhibition was built using a training set of 612 
inhibitors with data split into 566 active compounds (including 12 efficient) with IC50 values ≤ 50 µM and 
46 inactives with IC50 > 50 µM. Most prominently, for CYP1A2 inhibitors the HBD and HBA count 
(HBA_HBD) was identified as an important classification descriptor. Other discerning descriptors for this 
class include stereocenters (sCenters), hydrogen bond acceptors (HBA) and molecular weight (Figure 9a). 
Additionally, for active inhibitors a HBA count of ≤6 is shown by the decision tree classifier for CYP1A2 
inhibition. A similar range of HBA count for CYP1A2 inhibitors has been reported by Vasanthanathan et al. 
[103]. Overall, it is shown by the decision tree classifier that the active inhibitors of CYP1A2 show lower 
HBA_HBD counts (≤ 11), sCenters, HBA (≤ 6) and molecular weights (≤ 507) in comparison to inactive 
CYP1A2 inhibitors. However, the highly efficient CYP1A2 inhibitors display lower mean molecular 
weights and sCenters along with higher HBA in comparison to actives (Mean: 294.18/0.11/5) and inactives 
(Mean: 422.65/0.80/5.78) (Table 3). 

 

(a) 



Computation 2019, 7, 26 20 of 31 

 

 

(b) 
 

 

(c) 



Computation 2019, 7, 26 21 of 31 
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Figure 9. (a) A J-48-pruned decision tree for CYP1A2 inhibitors based on HBD_HBA, sCenters, HBA and 
molecular weight. (b) A J-48-pruned decision tree for CYP2C9 inhibitors based on molecular weight, HBD 
and logD. (c) A J-48-pruned decision tree for CYP2D6 inhibitors based on total charge, stereocenters, HBD, 
HBA, logP, rings and molecular weight descriptors. (d) A J-48-pruned decision tree for CYP3A4 inhibitors 
based molecular weight and vsa_acc from the set of selected descriptors. 

For the CYP2C9 pruned decision tree model, molecular weight appeared to be the branching 
descriptor. Other discriminating descriptors for CYP2C9 inhibitors include HBD and logD as shown in 
Figure 9b. Previously, Jónsdóttir et al. proposed that, in comparison to CYP2C9 substrates, the CYP2C9 
inhibitors exhibit larger mean molecular weight and polar surface area which further strengthens the 
selection of our descriptor set [104]. In contrast, Ekins et al. have delineated, through different inhibitor 
data sets, that CYP2C9 inhibitor binding is controlled by multiple factors within the binding site, such as 
hydrophobic, hydrogen bond acceptor and donor interactions which reflects the significance of hydrogen 
bonding potential as described by descriptors (HBD, logD) in our model [105]. Largely, the trends of MW, 
logD and HBD descriptors selected by our CYP2C9 inhibition classification model have already been 
discussed across various activity levels in the physicochemical property analysis section (Table 3). 

For CYP2D6 inhibition classification shape, atomic polarizability, electrostatic, hydrophobic, 
lipophilicity and acid base features have already been reported in literature [106,107]. Herein, a CYP2D6 
decision tree classifier was built using 1647 compounds and a set of seven descriptors as explained in Table 
3. Total charge descriptor appeared as the branching node and the other selected descriptors include HBD, 
HBA, rings, sCenters, logP and molecular weight (Figure 9c). Two extremely important descriptors 
including logP(o/w) and molecular weight were selected by our CYP2D6 inhibitor classification showing 
mean logP(o/w) and MW of 400.19/3.69 and 395.50/3.61 for actives and inactives, respectively. Considering 
the selected descriptors for the three categories of active, efficient and inactive CYP2D6 inhibitors, it is 
evident that efficient inhibitors represent the highest mean HBD, HBA, total charge and stereocenters with 
lower molecular weights, logD values and ring counts (Table 3). 

Finally, CYP3A4 inhibition-based decision tree was built using a set of 2641 active including 43 
efficient and 106 inactive compounds (Figure 1). Briefly, size and hydrophobicity of a chemical entity are 
the molecular properties that have an influential role in determining CYP3A4 inhibition [82]. Choi et al. 
have built recursive partitioning trees for CYP3A4 inhibitor and noninhibitor classification using a set of 
2D descriptors indicating molecular weight as the most conclusive feature which is also shown by the 
physicochemical property analysis and decision tree of CYP3A4 inhibitors. For the decision tree, the other 
discerning descriptor was vsa_acc (Figure 9d). The chemical entities with a molecular weight >235.28 were 
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classified as active CYP3A4 inhibitors. These also include 17 highly efficient inhibitors with LE and LipE 
values in the range of already discussed thresholds. It is obvious that the highest mean values of molecular 
weight and vsa_acc were shown by highly efficient CYP3A4 inhibitors followed by active and inactive 
compounds (Table 3). 

Additionally, for our decision tree classifiers, the model evaluation was performed using specificity, 
sensitivity, accuracy, MCC and kappa statistics. A large number of independent studies based on 
classification models to probe inhibition of CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 with 
variable data sets (109–17,143 compounds), overall accuracies, MCC and kappa statistics in the ranges 
61.9–97%,0.287–1 and 0.38–0.65 have been reported in literature until now [36,103,106–115]. The details of 
statistical parameters to evaluate the model performance have been provided in Table 4. It is notable that 
all four CYP inhibition-based decision tree models in this study show an overall accuracy and sensitivity 
above 90% for both the training set and 10-folds cross validation. Moreover, based on the model evaluation 
parameters the best performance was shown by the decision tree classifier for CYP1A2 followed by 
CYP2D6 inhibition (Table 4). 

5. Discussion 

The discovery of small-molecule drugs is a challenging endeavor that relies on parallel optimization 
of several parameters including efficacy, pharmacokinetics and safety [116]. Therefore, ADMET properties, 
in addition to the pharmacological parameters, are of extreme importance to achieve clinical success of a 
drug candidate [117]. Amongst these, drug metabolism plays a major role in determining the therapeutic 
fate of drugs where high metabolic liability can ultimately lead to high clearance and loss of 
pharmacological activity. However, poor metabolic turnover might lead to toxicity and adverse drug 
reactions due to the accumulation of drugs or active metabolites. Additionally, the inhibition or induction 
of drug metabolism due to co-administration of drugs might also lead to potential drug–drug interactions. 
Furthermore, during the recent years, high attrition rates during preclinical and later stages of clinical drug 
development have been associated with drug safety problems [118–121]. For small-molecule drug 
candidates, toxicology at preclinical phase and drug safety concerns at clinical trial remain the major 
reasons for higher attrition rates and clinical failures accounting for 25% phase I and 14% phase II failures 
during 2013 to 2015 [122,123]. Therefore, for the elucidation of drug metabolism at molecular level, a better 
understanding of metabolic properties and a revised research and development (R&D) strategy might 
assist in the optimization of the metabolic stability and safety properties of NCEs, eventually leading to an 
efficacious drug discovery and development process [124]. Thus, for the improvement of R&D 
productivity, recently a 5R framework based on right target, right tissue, right safety, right patient and 
right commercial potential has been applied that increased the success rates from 4% (2005–2010) to 19% 
(2012–2016) from candidate selection to the successful completion of phase III [3]. 

Furthermore, probing toxicological profiles of new chemical entities remains an important 
cornerstone of the drug development process which is experimentally expensive and the translation of 
animal model results to humans are also challenging. Therefore, a number of in silico models based on 
machine learning techniques using different combinations of data types have been developed for toxicity 
prediction of thousands of NCEs/drugs yet with their own strengths and weaknesses [125]. Herein, we 
presented a data set of 6999 inhibitors against five CYP isoforms mainly CYP1A2,2C9,2C19,2D6, and 3A4 
with known activity values. A combination of ligand efficiency metrics (LipE and LE), physicochemical 
parameters and decision tree models have been used to discern the important property trends across 
various activity levels (actives- > highly efficient- > inactive) to probe CYP inhibition using large datasets of 
CYP inhibitors. 

Table 1 summarizes clogP, LipE, LE and heavy atom ranges across the activity levels of CYP inhibitors 
which might provide valuable ranges and mean values generally for all CYP inhibitors and particularly for 
most efficient CYP inhibitors. It is important to note that a CYP inhibitor might not necessarily be an 
efficient inhibitor. Therefore, the estimation of these parameter ranges might prove useful for the 
differentiation between general inhibitors and efficient/potent inhibitors against the selected CYP450s. 
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Additionally, during the recent years, many studies probing the properties of fragments, HTS  High 
Throughput Screening) hits, corresponding leads, clinical candidates and marketed drugs for the 
investigation and identification of successful trends in physicochemical parameters leading to the 
formulation of several rules for future drug designing programs have been reported [49,54,126–129]. The 
physicochemical properties of oral drugs reaching clinical phase II were estimated by Lipinski et al. to 
frame the well-known rule of five indicating that a logP ≤ 5, MW ≤ 500, HBAs ≤ 10 and HBDs ≤ 5 is 
necessary for absorption or permeation [54]. For fragments and drug-like compounds, these parameters 
have already been estimated (see Table 5) but the current study is aimed at identifying the ranges of RO5 
parameters, TPSA, rotatable bonds, LipE and LE generally for all CYP inhibitors and more specifically, for 
active and highly efficient inhibitors against the selected CYP isoforms. 

Table 5. The ranges and estimated average values of rule of five parameters and ligand efficiency metrics 
for fragments, drug-like compounds and CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 active and 
highly efficient inhibitors. 

Compoun
d Type 

Fragmen
t-Like 

Drug-L
ike 

CYP1A2 
Inhibitors CYP2C9 Inhibitors CYP2C19 

Inhibitors 
CYP2D6 

Inhibitors 
CYP3A4 

Inhibitors 

Rule Rule of 
Three 

Rule of 
Five 

Rule of Five Rule of five Rule of Five Rule of Five Rule of Five 
Activ

e 
Efficien

t Active  Efficien
t Active  Efficien

t  Active Efficien
t  Active  Efficien

t  

Thresholds  

Aver
age 

Valu
e 

Averag
e Value 

Averag
e Value 

Averag
e Value 

Averag
e Value 

Averag
e Value 

Averag
e Value 

Averag
e Value 

Averag
e Value 

Averag
e Value 

Molecular 
Weight <300 <500 340 294 438 382 407 381 403 382 470.8 482 

clogP ≤3 ≤5 4.05 2.16 4.2 1.72 4.23 1.56 3.91 2.36 3.97 2.28 
H-bond 
donors 

≤3 ≤5 1 1 2 2 2 3 2 2 2 3 

H-bond 
acceptors 

≤3 ≤10 3 3 4 5 4 4 4 4 5 5 

TPSA ≤60Å2 ≤140Å2  56.25 67.61 81.3 93.75 71.9 98.81 62.58 71.67 83.46 105 
Rotatable 

bonds 
≤3 ≤10 5 2 7 6 6 6 7 7 8 8 

pIC50 4.4 8 5.53 7.54 5.39 7.3 5.27 7.09 5.34 7.83 5.63 8.29 
LipE 2.18 ≤5 1.48 5.39 1.2 5.56 1.03 5.53 1.63 5.48 1.65 6.02 

Heavy 
atoms 

~15 38 24 19 40 27 28.7 27 29 27.63 33 34 

LE 0.38 0.29 0.35 0.52 0.27 0.38 0.28 0.37 0.29 0.41 0.25 0.36 

Amongst the RO5 physicochemical properties, MW of a chemical entity is one of the most important 
parameter in the drug discovery programs that can influence absorption, elimination, blood brain barrier 
penetration and interactions with on-targets and off-targets [15,76]. For fragment-like and drug-like 
compounds, MW < 300 and < 500 have been reported [54,127,130] (Table 5), whereas from the analysis of 
MW trends in our dataset, mean values between 340 to 470.8 and 294 to 482 have been observed for active 
and highly efficient CYP inhibitors, respectively. Additionally, an increasing order of MW across CYP1A2- 
> 2D6- > 2C19- > 2C9- > 3A4 and CYP1A2- > 2C19- > 2C9- > 2D6- > 3A4 has been observed for the active and 
efficient CYP inhibitors. Overall, amongst all subtypes the lowest molecular weight was observed for 
highly efficient (MW: 195.22–423.46) and active inhibitors (MW: 108.14–742.95) of CYP1A2, whereas the 
highest molecular weight is shown by highly efficient (MW: 284.34–604.14) and active inhibitors (MW: 
108.14–1202.61) of CYP3A4; thus, indicating the potential of lower MW (195–423) entities to inhibit 
CYP1A2 and higher MW (284.34–604.14) compounds to inhibit CYP3A4. 

Additionally, lipophilicity parameter is an important mediator of the overall ADMET properties, 
where a high lipophilicity might hamper compound solubility and metabolism, whereas lower 
lipophilicity might ultimately lead to decreased permeability [87]. It is also well explicated that high 
lipophilicity associated with a chemical entity might lead to target promiscuity and toxicity issues arising 
from hERG inhibition, phospholipidosis or cytochrome P450 (CYP) inhibitions [15,87]. Generally, for 
fragments and drug-like compounds a clogP of < 3 and < 5 has been reported [54,127,130], but for our 
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dataset of CYP inhibitors, a mean clogP of ~4 has been observed for active inhibitors of all CYP subtypes, 
whereas for highly efficient inhibitors, mean clogP values between 1.56–2.36 have been observed (Table 5). 
Moreover, lipophilicity of active compounds increased from CYP2D6- > 3A4- > 1A2- > 2C9- > 2C19, 
whereas an inverse order was observed for highly efficient CYP inhibitors. Thus, new chemical entities 
displaying clogP values of 1.56 to ~4 might show greater CYP450 inhibition potential. 

However, as far as the hydrogen bonding potential is considered, fragment- and drug-like 
compounds generally follow the rule of three and RO5, whereas from our datasets, the mean HBAs and 
HBDs counts for active and efficient CYP inhibitors were observed between 3 to 5/3 to 6 and 1 to 2/1 to 3, 
respectively. For active compounds, the increase in both the number of HBA and HBD was observed in the 
order 1A2- > 2C9- > 2C19- > 2D6- > 3A4. However, with the exception of CYP1A2 and CYP2D6 inhibitors, 
all highly efficient inhibitors displayed a greater number of HBA/HBD as shown in Table 5. Thus, 
indicating that new compounds containing a lower number of HBA/HBD (Mean: 2–3/1–2) screened against 
the studied parameters might display greater inhibition potential against CYP1A2 and CYP2D6, 
respectively. Another descriptor associated to hydrogen bonding is the topological surface area (TPSA) 
[131,132] that was monitored for the CYP inhibitor datasets. A previous QSPR(Quantitative Structure 
Property Relationship)  study associated an increase in the TPSA and the number of rotatable bonds to 
decreased oral bioavailability, and proposed that TPSA can be used effectively with number of rotatable 
bonds to reveal flexibility of molecules [133]. Moreover, thresholds of rotatable bonds (≤ 10) and TPSA (≤ 
140 Å2) were defined to obtain direct correlation with oral bioavailability in the rat [133]. A TPSA of ≤ 60 Å2 

and ≤ 140 Å2 has been described in literature for fragments and drugs [54,127,130,133] in humans, whereas 
for our CYP inhibitor data sets, increasing trend of TPSA was observed while moving from actives to 
efficient inhibitors with CYP3A4 showing the highest TPSA values of > 83.46 Å2 and CYP1A2 showing the 
lowest TPSA values (> 57.25 Å2), as shown in Table 5. For CYP1A2 and CYP2C9, an increase in number of 
rotatable bonds was observed while moving from efficient to active inhibitors, whereas for CYP2C19, 
CYP2D6 and CYP3A4, no difference was observed between active and efficient inhibitors in terms of 
rotatable bonds. Overall, our results show that new chemical entities displaying mean TPSA values 
between 67.6–105 and mean rotatable bonds between 2 to 8 might show better bioavailability ultimately 
leading to a greater inhibition potential against the major metabolic CYP isoforms during first pass 
metabolism. Specifically, new chemical entities with mean TPSA values and number of rotatable bonds 
falling within 56.25–67.61/2–5,81.3–93.75/6–7,71.9–98.81/6,62.58–71.67/7 and 83.46–105/8 might show 
greater inhibition potential against CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 due to increased 
bioavailability. 

Various classification models to probe the inhibition of CYP1A2, CYP2C9, CYP2C19, CYP2D6 and 
CYP3A4 with variable data sets, overall accuracies, MCC and kappa statistics have been reported in 
literature [35,71–76,78,79,95–97]. However, a direct comparison with already reported instances in 
literature is difficult since variable datasets, descriptor selection and description methods have been used. 
Thus, a comparison of model evaluation parameters of studies reporting CYP inhibition classification 
models would be reasonable. Overall, an accuracy and sensitivity above 90% is shown by our CYP 
inhibition-based decision tree models using training sets and 10-folds cross validation (Table 4). The MCC, 
kappa statistics and AUC values for the CYP inhibition-based decision tree models were observed in the 
ranges 0.299–0.50,0.233–0.43 and 0.597–0.78, respectively, with CYP3A4 classifier showing the lowest MCC, 
kappa and AUC values. Based on the model evaluation parameters, the best performance was shown by 
the decision tree classifier for CYP1A2 inhibition (accuracy = 94.43, sensitivity = 94.6, specificity = 87.50, 
MCC = 0.50, kappa = 0.43) followed by CYP2D6 (accuracy = 96.49, sensitivity = 96.63, specificity = 86.36, 
MCC = 0.46, kappa = 0.39) and CYP2C9 (accuracy = 96.01, sensitivity = 95.98, specificity = 100.0, MCC = 0.37, 
kappa = 0.25) classifiers, respectively (Table 4). 

Generally, for the prediction of drug–drug interactions associated to CYP inhibition, various in silico 
approaches and web based computational tools have been reported in literature [134–139]. These include 
WhichCyp [134], vNN Web Server [136], admetSAR [140] and yet other freely available tools based on 
classification models for the prediction of CYP inhibition potential associated with new chemical entities. 
So far, other more sophisticated methods, based on dynamic mechanistic model taking into account the 
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simultaneous influence of reversible and irreversible CYP inhibition and DDI module of GastroPlusTM for 
the prediction of time dependent CYP inhibition, have also been reported in the literature [137,139]. 
However, in this particular study, the trends of ligand efficiency metrics and physicochemical properties 
for cytochrome P450 enzymes using large datasets of CYP inhibitors have been calculated as a simple step 
towards a better understanding of cytochrome P450 inhibition by estimating activity thresholds across 
various classes and activity levels (while considering active, efficient and finally the inactive inhibitors) 
which might assist in the optimization of overall properties of new chemical entities during the drug 
discovery phases. 

 

6. Conclusions 

Here, we estimated LipE and LE profiles along with the physicochemical properties and decision tree 
models for CYP1A2,2C9,2C19,2D6 and 3A4 inhibitor classification to effectively distinguish active 
inhibitors from inactive and highly efficient inhibitors. Moreover, the features important for inhibition 
against each CYP isoform were encoded by the relevant set of descriptors including molecular weight, 
lipophilicity, number of hydrogen bond acceptor and donors, total charges, stereocenters and ring counts. 
Additionally, the clogP, LipE, heavy atom count and LE trends were analyzed for CYP1A2,2C9,2C19,2D6 
and 3A4 inhibitor data sets to provide the thresholds of these parameters for active (IC50 ≤ 50 µM), highly 
potent (clogP ~1.0–3.0, LipE ≥ 5, LE ≥ 0.29) and inactive (IC50 > 50–100 µM) inhibitors against each CYP 
subtype. Generally, amongst the entire data set of CYP inhibitors, the highly efficient inhibitors show mean 
MW, HBA, HBD and logP values between 294.18–482.40,5.0–8.2,1–7.29 and 1.68–2.57, respectively. Overall, 
our results could aid the early prediction of CYP inhibition against the major players of drug metabolism 
(CYP1A2,2C9,2C19,2D6 and 3A4) during the drug discovery phases. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: LipE and LE 
profiling results of CYP1A2 inhibitors dataset, TABLE S2: LipE and LE profiling results of CYP2C9 inhibitors dataset, 
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CYP2D6 inhibitors dataset and TABLE S5: LipE and LE profiling results of CYP3A4 inhibitors dataset. 
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