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Abstract: Nowadays, the dynamics of non-integer order system or fractional modelling has become
a widely studied topic due to the belief that the fractional system has hereditary properties. Hence,
as part of understanding the dynamic behaviour, in this paper, we will perform the computation of
stability criterion for a fractional Shimizu–Morioka system. Different from the existing stability
analysis for a fractional dynamical system in literature, we apply the optimal Routh–Hurwitz
conditions for this fractional Shimizu–Morioka system. Furthermore, we introduce the way to
calculate the range of adjustable control parameter β to obtain the stability criterion for fractional
Shimizu–Morioka system. The result will be verified by using the predictor-corrector scheme to
obtain the time series solution for the fractional Shimizu–Morioka system. The findings of this study
can provide a better understanding of how adjustable control parameter β influences the stability
criterion for fractional Shimizu–Morioka system.

Keywords: Fractional Shimizu–Morioka System; stability criterion; Optimal Routh–Hurwitz conditions;
time-fractional dynamical system

1. Introduction

This paper emphasizes the computation of stability criterion for a Shimizu–Morioka system in
fractional order as shown below :

x(α)(t) =y(t)

y(α)(t) =(1− z(t))x(t)− σy(t)

z(α)(t) =− βz(t) + (x(t))2

(1)

where σ and β are positive values. Here, we assume β as the adjustable control parameter. The integer
order system of Equation (1) was first proposed in [1] and has attracted the interest of researchers to
study the stability and various types of bifurcation such as in [2–5]. However, the fractional order
or arbitrary order of the system as in Equation (1) have received less attention; also see [6,7]. Unlike
both [6,7], here, we apply optimal fractional order Routh–Hurwitz stability conditions which have
recently been derived by Čermák and Nechvátal in [8]. Unlike the previous version of Routh–Hurwitz
stability conditions for fractional systems (as derived in [9]), these new optimal Routh–Hurwitz
condition serve as necessary and sufficient conditions to guarantee that all roots of the characteristic
polynomial obtained from the linearization process are located inside the Matignon stability sector.
Furthermore, the optimal Routh–Hurwitz conditions obtained were in an explicit form. The optimal
Routh–Hurwitz conditions were successfully applied to study the fractional dynamical systems such as
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the fractional Lorenz system [8] and fractional Rössler System [10]. However, it is still yet to be applied
for other fractional systems such as the fractional Shimizu–Morioka system.

On the other hand, the Shimizu–Morioka system can be considered as a simplified system for
investigating the dynamic bahaviour of the well-known Lorenz system. However, due to its rich
dynamic behaviour, and especially chaotic behaviour of its solutions, the Shimizu–Morioka system has
its self-interest [2–5]. Unfortunately, there are not many published results regarding the stability and
bifurcation analysis for the Shimizu–Morioka system in fractional orders. In this research direction,
other fractional dynamical systems such as the fractional Lorenz system and many more always receive
attention from researchers to study the dynamical behaviour of their stability analysis and bifurcation
analysis [11–14]. This fractional order Shimizu–Morioka system can be considered as the generalized
fractional Lorenz system which shows hyperchaotic and has important applications such as in secure
the communication [15]. Apart from that, searching for robust stability is always the concern for
researchers. For instance, as worked by [16] for fractional order control system with interval uncertain
coefficients and a time-delay.

On top of that, an analytical approach for computation of stability analysis is always an important
approach, especially for dynamical systems in fractional orders. The new optimal Routh–Hurwitz
conditions allow us to do the analysis in explicit form. By applying the optimal Routh–Hurwitz
conditions, for the first time, under the fractional derivative order α, the range of β and its influences
towards the fractional Shimizu–Morioka system and whether it has locally stable equilibria will
be identified. Although the Routh–Hurwitz conditions can be considered as an old topic, due to
the recent development in fractional calculus, the study of Routh–Hurwitz conditions for fractional
systems has emerged recently. Among that are a new Routh-type table for fractional system [17],
Routh–Hurwitz-Liénard–Chipart Criteria [18], and a graphical approach to study stability analysis for
incommensurate fractional-order systems [19].

The outline of the present paper is given as follows. Some basic concepts of Shimizu–Morioka
system and its fractional counterpart is given in Section 2. Section 3 comprises of some basic concepts
of the optimal Routh Hurwitz conditions for fractional system. Section 4 discusses the calculation of
stability criterion for fractional Shimizu–Morioka system by using optimal Routh Hurwitz conditions.
Numerical result by using a fractional predictor–corrector scheme for fractional Shimizu–Morioka
system is given in Section 5 to verify the result obtained from the previous sections. Section 6 is the
conclusion of the paper.

2. Shimizu–Morioka System

2.1. Integer Order Shimizu–Morioka System

The integer order Shimizu–Morioka system as shown in Equation (2).

ẋ =y

ẏ =(1− z)x− σy

ż =− βz + x2

(2)

where σ and β are positive values. Here, we assume β as the adjustable control parameter. If β > 0,
then two equilibria appear, which are E± = (±

√
β, 0, 1). Then, we obtain the general characteristics

equation of the system from the linearization along the equilibria.

λ3 + (β + σ)λ2 + (βσ + z− 1)λ + β(z− 1) + 2x2 = 0, (3)

and by substituting E± into Equation (3), we have the characteristics equation as follow,

λ3 + (β + σ)λ2 + (βσ)λ + 2β = 0. (4)
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From the standard Routh–Hurwitz conditions, it is easy to show that that all the λ in the
Equation (4) have negative real parts if and only if

0 < β < β∗ =
2− σ2

σ
. (5)

In other words, the integer order Shimizu–Morioka system is stable if and only if 0 < β < β∗ = 2−σ2

σ .

2.2. Fractional Order Shimizu–Morioka System

Throughout this paper, we consider the standard fractional Shimizu–Morioka system as follows:

C
0 Dα

t x = y
C
0 Dα

t y = (1− z)x− σy
C
0 Dα

t z =− βz + x2

(6)

where C
0 Dα

t is the Caputo derivative operator defined as in Definition 1.

Definition 1. Let α > 0, n = [α] + 1 if α /∈ N, n = α if α ∈ N and t > 0. The left Caputo fractional derivative
of a function or order α, denoted by C

0 Dα
t f (t) is

C
0 Dα

t f (t) =
1

Γ(n− α)

∫ t

0

f (n)(τ)
(t− τ)α−n+1 dτ, (7)

with n− 1 ≤ α < n.

3. Optimal Routh–Hurwitz Conditions for Fractional System

In the classical theory of Routh–Hurwitz conditions, for three dimensional dynamical system,
the characteristic polynomial in cubic form when α = 1 is as in Equation (8)

P(λ; a, b, c) = λ3 + aλ2 + bλ + c. (8)

Let us consider a, b, c are real coefficients. The Routh–Hurwitz conditions which for the
characteristic polynomial in Equation (8) have all zeroes, i.e., λ with negative real parts if and only if

a > 0, b > 0 and 0 < c < ab. (9)

By using the linearization theorem, we get that the equilibria, E± = (±
√

β, 0, 1) are locally
asymptotically stable if all the zeroes λi, i = 1, 2, 3 of Equation (4) are located inside the Magtinon
stability sector [8].

| arg(λi)| >
απ

2
. (10)

Then, the Routh–Hurwitz conditions are only sufficient for validity of the Magtinon stability
sector in Equation (10) with 0 < α < 1. Under this situation, the stability sector of the set of all triplets
(a, b, c) is wider and significantly more complicated due to Equation (10).

Follow the work in [8], we define BL(α) as the boundary locus as follow.

BL(α) = (a, b, c) ∈ (R3) : There exist λ ∈ C, | arg(λ)| = απ

2
and P(λ; a, b, c) = 0 (11)

which λ can be computed through λ = ω (cos (απ/2) + i sin (απ/2)). Substitute the value of λ into
Equation (8), we obtain the following real and imaginary part.



Computation 2019, 7, 23 4 of 11

4 (cos (απ/2))3 ω3 + 2 (cos (απ/2))2 aω2 − 3 cos (απ/2)ω3 + cos (απ/2) bω− aω2 + c = 0

4 sin (απ/2) (cos (απ/2))2 ω3 + 2 sin (απ/2) cos (απ/2) aω2 −ω3 sin (απ/2) + sin (απ/2) bω = 0
(12)

Solving the above equations, we will get

b = −ω
(

4 (cos (απ/2))2 ω + 2 cos (απ/2) a−ω
)

c = 2 cos (απ/2)ω3 + aω2
(13)

From the first equation of Equation (13), we get

ω =
− cos (απ/2) a±

√
(cos (απ/2))2 a2 − 4 (cos (απ/2))2 b + b

4 (cos (απ/2))2 − 1
(14)

and putting Equation (14) into second equation of Equation (13), and after some algebra manipulation,
lead to

c±(a, b; α) =
−ab± 2γ

(
a2 − 4bγ2 + b

)√
a2γ2 − 4bγ2 + b + 2aγ2 (−a2 + 4bγ2 + b

)
(4γ2 − 1)3

where γ = cos
(

απ
2
)
.

To further describe this set, we use the following theorem which derived in [8].

Theorem 1. Let 2/3 < α < 1. The Equation Equation (8) has all the zeroes λi which satisfies the stability
condition for fractional system as in Equation (10) if and only if any of the following conditions hold:

(i) a > 0, b > 0, 0 < c < c−(a, b; α).
(ii) a > 0, b̂ ≤ b ≤ 0, c+(a, b; α) < c < c−(a, b; α).

(iii) a ≤ 0, b > b̄(a; α), 0 < c < c−(a, b; α).

where b̄(a; α) = a2

4γ2 , b̂(a; α) = a2γ2

4γ2−1 and

c±(a, b; α) =
−ab± 2γ

(
a2 − 4bγ2 + b

)√
a2γ2 − 4bγ2 + b + 2aγ2 (−a2 + 4bγ2 + b

)
(4γ2 − 1)3 (15)

with γ = cos
(

απ
2
)
.

Proof. The proof is following [8]. For c ≤ 0, the zeros λi of polynomial Equation (8) must has the
positive real parts, where contradicts with the stability sector Equation (10). Thus, we define HS(α) as
the boundary locus in half-space for c is always positive.

HS(α) = {(a, b, c) ∈ (R2 ×R+) : There exist λ ∈ C, | arg(λ)| = απ

2
and P(λ) = 0}

Let 2/3 < α < 1, we consider the TS(α) as the set of (a, b, c) ∈ (R2 ×R+) for the conditions in
Theorem 1 holds.

We denote CS(α) as the complement of the (TS(α) ∪ HS(α)) in the half-space (R2 ×R+). Hence,
we have the whole half-space with (TS(α) ∪ HS(α)) ∪ CS(α).

It is enough for us to check the Theorem 1 by assuming the triplets (a, b, c) represent in TS(α)
and CS(α) respectively. First, we assume (a, b, c) as (0.8, 0.7, 0.5) lying inside TS(α). By directly
solving the polynomial Equation (8) equal to 0, we get all the zeros λi have negative real parts, where
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λ1 = −0.7526, λ2,3 = −0.0237± 0.8147I and | arg(λ1,2,3)| > απ
2 is satisfied. Thus, the zeros λi is

satisfied the Magtinon stability sector Equation (10) when (a, b, c) ∈ TS(α).
Then, we assume (a, b, c) as (−0.8,−0.7, 0.5) which lying inside CS(α). Similarly procedure,

we obtain that the zeros λi have positive real parts, where λ1 = −0.8141, λ2 = 0.6141 and λ3 = 1.
Thus, we obviously see that the zeros have positive real parts. In addition, Equation (10) is not satisfied
since | arg(λ2,3)| = 0. Therefore, we can say that the zeros λi is not satisfied Equation (10) when
(a, b, c) ∈ CS(α). Conversely, we say that the zeros λi of Equation (8) satisfy Equation (10) if and only
if any of the conditions of Theorem 1 holds.

4. Stability Analysis of the Fractional Shimizu–Morioka System

In this section, we will compute the stability criterion for the fractional Shimizu–Morioka system
as in Equation (6). From Section 2, we will limit our value of σ in [0,

√
2]. From the calculation,

the coefficients of characteristic polynomial as in Equation (8) for fractional system in Equation (6)
are a = β + σ > 0, b = βσ > 0 and c = 2β > 0. Thus we can analyze local asymptotic stability of the
equilibria by applying fractional optimal Routh–Hurwitz conditions [8]. It is obvious that the system
in Equation (6) are locally asymptotically stable for any β > 0 if 0 < α ≤ 2/3. If 2/3 < α < 1, then
Theorem 1(i) in Section 3 will be applied. In this case, since all the a, b and c for the characteristic
polynomial are bigger than 0, the only relevant condition for calculating the stability criterion is the
inequality c < c−(a, b; α) . Hence, we shall explain some basic steps of the computational procedures
to obtain the stability criterion for this fractional Shimizu–Morioka system.

By substituting the a = β + σ > 0, b = βσ > 0 and c = 2β > 0 of the fractional Shimizu–Morioka
system into c < c−(a, b; α), we can get the inequality as follows

Aβ3 + Bβ2 + Cβ + D > (Eβ2 + Fβ + G)
√

Hβ2 + Iβ + J (16)

where
A = 2 cos2

(απ

2

)
B = σ

[
1 + 4 cos2

(απ

2

)
− 8 cos4

(απ

2

)]
C = σ2

[
1 + 4 cos2

(απ

2

)
− 8 cos4

(απ

2

)]
+ 2

[
4 cos2

(απ

2

)
− 1
]3

D = 2σ3 cos2
(απ

2

)
E =− 2 cos

(απ

2

)
F =− 2σ cos

(απ

2

) [
3− 4 cos2

(απ

2

)]
G =− 2σ2 cos

(απ

2

)
H = cos2

(απ

2

)
I = σ

[
1− 2 cos2

(απ

2

)]
J = σ2 cos2

(απ

2

)

(17)

We should notice that when α is approaching to 1, the inequality in Equation (16) becomes
Equation (5) actually. This can be said that this computation is the generalization of integer order
system to fractional order or arbitrary order system. Now, we can analyze the inequality Equation (16)
by squaring it and reducing it into polynomial, Q(β).
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Q(β) =(E2H − A2)β6 + (E2 I + 2EFH − 2AB)β5

+ (E2 J + 2EFI + 2EGH + F2H − 2AC− B2)β4

+ (2EFJ + 2EGI + F2 I + 2FGH − 2AD− 2BC)β3

+ (2EGJ + F2 J + 2FGI + G2H − 2BD− C2)β2

+ (2FGJ + G2 I − 2CD)β + G2 J − D2

(18)

If we fixed the value of σ, we can evaluate the dependence of abjustable control parameter β on
the α, i.e., fractional derivative order in the Caputo sense. In this case, from the result in Section 2,
we shall limit the σ only from 0 to

√
2. Thus, we illustrate the fractional Shimizu–Morioka system as in

Equation (6) with the value σ = 0.736. We obtain the following fractional system.

C
0 Dα

t x = y
C
0 Dα

t y = (1− z)x− 0.736y
C
0 Dα

t z =− βz + x2

(19)

Thus we analyze Equation (19) with respect to the bifurcation parameter β. In the sequel, we have
the inequality Equation (16) with

A ≡ A(α) = 2 cos2
(απ

2

)
B ≡ B(α) = 0.736 + 2.944 cos2

(απ

2

)
− 5.888 cos4

(απ

2

)
C ≡ C(α) = 128 cos6

(απ

2

)
− 100.333568 cos4

(απ

2

)
+ 26.166784 cos2

(απ

2

)
− 1.458304

D ≡ D(α) = 0.797376512 cos2
(απ

2

)
E ≡ E(α) = −2 cos

(απ

2

)
F ≡ F(α) = 5.888 cos3

(απ

2

)
− 4.416 cos

(απ

2

)
G ≡ G(α) = −1.083392 cos

(απ

2

)
H ≡ H(α) = cos2

(απ

2

)
I ≡ I(α) = 0.736− 1.472 cos2

(απ

2

)
J ≡ J(α) = 0.541696 cos2

(απ

2

)

(20)

For these values A(α), ..., J(α), from Equation (16), we let Aβ3 + Bβ2 + Cβ + D = f (β; α) and
(Eβ2 + Fβ + G)

√
Hβ2 + Iβ + J = g(β; α). Thus, we analyze the inequality as shown in Equation (21).

f (β; α) > g(β; α) (21)

where β > 0 and 2/3 < α < 1. From the observation of the graph, it is obvious that E(α) < 0, F(α) < 0
and G(α) < 0 whenever 2/3 < α < 1. Hence, we have g(β; α) < 0 for all β > 0 and 2/3 < α < 1.
Similarly, a direct calculation shows that C(α) ≥ 0 for any 2/3 < α ≤ α0, where

α0 =
2
π

arccos (0.2747107675) ≈ 0.8228357939 (22)

Since A(α) > 0, B(α) > 0 and D(α) > 0 for any 2/3 < α < 1, Equation (21) is satisfied trivially
for any 2/3 < α ≤ α0 and any β > 0. Furthermore, f (β; α) ≥ 0 for all 0 < β ≤ β∗ = 1.981391304 and
2/3 < α < 1. Thus, Equation (21) is satisfied trivially for all 0 < β < β∗ and all 2/3 < α < 1. Hence,
we assume α0 < α < 1 and β > β∗ in our next analysis.
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Using elementary calculations based on the sign analysis of dg
dβ (β; α) and d2g

dβ2 (β; α), one can check
that, for any fixed α0 < α < 1, g(β; α) is decreasing in (0, ∞).

dg
dγ

(β; γ) =
M(β; γ)

N(β; γ)
(23)

where
M(β; γ) = 23.552β3γ4 − 34.668544β2γ4 + 12.75802419βγ4 − 4β4γ2 − 2.944β3γ2

+ 21.66784β2γ2 − 1.594753024βγ2 − 1.173738226γ2 − 1.472β3

− 3.250176β2 − 0.797376512β

(24)

and
N(β; γ) =

√
β2γ2 − 1.472βγ2 + 0.541696γ2 + 0.736β (25)

The interval (α0, 1) is bijectively mapped by γ = cos(απ/2) onto (0, γ0) where

γ0 = cos
(α0π

2

)
≈ 0.2747107675 (26)

Follow the similar procedure as in Section 4 of [8], we obtain

A(α)β3 + B(α)β2 + C(α)β + D(α)

= (E(α)β2 + F(α)β + G(α))
√

H(α)β2 + I(α)β + J(α)
(27)

6E(α)H(α)β3 + (5E(α)I(α) + 4F(α)H(α))β2

+ (4E(α)J(α) + 3F(α)I(α) + 2G(α)H(α))β + 2F(α)J(α) + G(α)I(α)

= 2
√
(H(α)β2 + I(α)β + J(α))(3A(α)β2 + 2B(α)β + C(α))

(28)

with unknowns β and α. By solving numerically the system formed by Equations (27) and (28), we will
obtain a pair of α and β in positive value which α lie inside [2/3, 1]. Hence, we can conclude that the
critical value for α is given as

αcr ≈ 0.9001093005 (29)

Similar to [8], the geometrical analysis of Equation (16) yields the following conclusions.

Theorem 2. Let 0 < α < αcr. Then the equilibria E± of Equation (19) are locally asymptotically stable for all
β > 0.

Theorem 3. Let αcr < α < 1. Then there exists a couple of values β∗α < β∗∗α (uniquely determined in the
interval (β∗, ∞) via Equation (27)) such that the equilibria E± of Equation (19) are locally asymptotically stable
if either 0 < β < β∗α or β > β∗∗α . Moreover, E± are not stable whenever β∗α < β < β∗∗α .

We will further explain the above theorems in following section.

5. Numerical Results

In this section, we will present some simulation of the stability analysis for the system
Equation (1). For the simulation purpose, we applying generalized Adams-Bashforth-Moulton
type predictor-corrector scheme for solving fractional differential equations developed in [20].
This numerical approach is widely used in the study of the dynamical behaviour of fractional dynamical
system, such as in [21,22]. This is because most of the system of fractional differential equation or
fractional dynamical system do not have analytical solution. Furthermore, we had also modified this
approach for solving differential equation in Caputo-Fabrizio sense as in [23].
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From the result in Section 4, when σ = 0.736, we will obtain β = 0.1827310163 and the critical
value of α is 0.9001093006. This condition is the fractional order Hopf bifurcation and where periodic
solution should be occurred. Perturbate the adjustable control parameter β which leads to the dissolve
of limit cycle to unstable or stable condition. For the sake of simplicity when doing the simulation,
we take α = 0.9, β = 0.1827, σ = 0.736 and the initial condition as x(0) = 0.5, y(0) = 0, z(0) = 0.8.
Figure 1 shows the periodic solution for the time series solution while the phase portrait of the
trajectories with the initial condition [0.5, 0, 0.8] shows the limit cycle appeared.

(a) Numerical solution show the periodic solution. (b) Phase portrait show limit cycle.

Figure 1. Solution for system Equation (6) when α = 0.9, β = 0.1827, σ = 0.736.

When increasing the value of adjustable control parameter β, the solution becomes to stable
toward the equilibrium (

√
β, 0, 1). We present the simulation result when β = 1 as in Figure 2.

On the other hand, based on Equation (16), the inequality is given as following.

A(α)β3 + B(α)β2 + C(α)β + D(α)

> (E(α)β2 + F(α)β + G(α))
√

H(α)β2 + I(α)β + J(α)
(30)

We can reach the conclusion for the computation of stability criterion for fractional
Shimizu–Morioka system by using optimal Routh–Hurwitz conditions as in Table 1 which follow
Theorems 2 and 3.

Table 1. The stability condition for the system under certain range of β.

α Range of β Stability Condition

α > αcr Depend on Equation (30) Stable
α < αcr 0 < β < ∞ stable

If α > αcr, solving the inequality in Equation (30) will give the range of β shows the fractional
system is stable. As example, for the case when σ = 0.736, where αcr = 0.9001093006. If we let
α = 0.95 which is > αcr, and we substitute it into Equation (30), we will be able to get the range of β

which give stability condition for the system. Following Theorem 3, we get β∗ = 0.01114995609 and
β∗∗ = 1.025145474. For other values of α, the detail of calculations is shown in Table 2.
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(a) Numerical solution show the stable solution.

(b) Phase portrait show stable solution.

Figure 2. Solution for system Equation (6) when α = 0.9, β = 1, σ = 0.736.

Table 2. The stability condition for the system under certain range of β when αcr = 0.9001093006.

α Range of β Stability Condition

0.95 > αcr [0, 0.01114995609], [1.025145474, ∞] stable
0.901 > αcr [0, 0.1393510901], [0.2364214161, ∞] stable
0.89 < αcr [0, ∞] stable
0.85 < αcr [0, ∞] stable

For illustration purpose, we take α = 0.95, the range of β must be [0, 0.01114995609], [1.025145474, ∞]

in order to get the stable solution. If the range of β do not lie in that interval, the equlibria will be locally
asymptotically not stable. We verified it through simulation for α = 0.95, β = 0.1827, σ = 0.736 as in
Figure 3. All the calculations have done by using Maple.
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(a) Numerical solution show the unastable solution. (b) Unstable solution.

Figure 3. Solution for system Equation (6) when α = 0.95, β = 0.1827, σ = 0.736.

6. Conclusions

In this paper, we have used new optimal Routh–Hurwitz conditions which also serve as necessary
and sufficient conditions to compute the stability criterion for a fractional Shimizu–Morioka system.
Here, we summarise our work as the following:

• For the σ = [0,
√

2], the new optimal Routh–Hurwitz conditions enable us to detect the critical
value of α for the stability criterion of fractional Shimizu–Morioka system when we use β as
control parameter.

• Furthermore, we introduce the way to calculate the range of adjustable control parameter β to
obtain the stability criterion for the fractional Shimizu–Morioka system.

The result was verified by the famous predictor–corrector scheme for fractional systems.
The advantage of using this new optimal Routh–Hurwitz condition is that it enables us to obtain the
range of β which fulfills the stability criterion for the fractional Shimizu–Morioka system. However,
lot of work need to be done by applying this new optimal Routh–Hurwitz condition to other fractional
systems and this will probably be part of our future research work.
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